Patents Issued in September 16, 2010
-
Publication number: 20100230671Abstract: Provided are a ZnO-based semiconductor capable of alleviating the self-compensation effect and of achieving easier conversion into p-type, and a ZnO-based semiconductor device. The ZnO-based semiconductor includes a nitrogen-doped MgXZn1-XO (0<X<1) crystalline material. The ZnO-based semiconductor is subjected to a photoluminescence measurement performed at an absolute temperature of 12 Kelvin, and thus a spectrum distribution curve is obtained. The ZnO-based semiconductor is formed so that a peak intensity of the distribution curve obtained at 3.3 eV or larger is stronger than a peak intensity of the distribution curve obtained at 2.7 eV or smaller. Consequently, the self-compensation effect can be reduced and the conversion into p-type becomes easier.Type: ApplicationFiled: September 26, 2008Publication date: September 16, 2010Inventors: Ken Nakahara, Shunsuke Akasaka, Hiroyuki Yuji, Masashi Kawasaki, Akira Ohtomo, Atsushi Tsukazaki
-
Publication number: 20100230672Abstract: It is described a method for producing an integrated circuit element comprising a first electric component of a first type and a second electric component of a second type, wherein the two components require different measurement conditions for testing the components as to be defective or as to be defect free. The production method comprises the steps of (a) forming the first and the second component on a substrate, (b) providing a conductor path on the substrate in order to contact the first and the second component, the conductor path comprising a galvanic gap, wherein the galvanic gap provides the possibility to individually connect the first component with a measurement device, (c) accomplishing a test of the first component with the measurement device and (d) in case the test shows a defect free first component, closing the galvanic gap with a conductive connection, and in case the test shows a defective first component, identifying the corresponding integrated circuit element as to be defective.Type: ApplicationFiled: January 25, 2007Publication date: September 16, 2010Applicant: NXP B.V.Inventor: Wolfgang Schnitt
-
Publication number: 20100230673Abstract: The invention relates to a semiconductor fuse structure comprising a substrate (1) having a surface, the substrate (1) having a field oxide region (3) at the surface, the fuse structure further comprising a fuse body (FB), the fuse body (FB) comprising polysilicon (PLY), the fuse body (FB) lying over the field oxide region (3) and extending into a current-flow direction (CF), wherein the fuse structure is programmable by means of leading a current through the fuse body (FB), wherein the fuse body (FB) has a tensile strain in the current-flow direction (CF) and a compressive strain in a direction (Z) perpendicular to said surface of the substrate (1). The invention further relates to methods of manufacturing such a semiconductor fuse.Type: ApplicationFiled: June 6, 2007Publication date: September 16, 2010Applicant: NXP B.V.Inventors: Claire Ravit, Tobias S. Doorn
-
Publication number: 20100230674Abstract: The invention relates to a method for forming microcavities (118) of different depths in a layer (102) based on at least an amorphous or monocrystalline material, comprising at least the following steps in which: at least one shaft and/or trench is formed in the layer (102) so as to extend through one face (101) thereof, such that two sections of the shaft and/or the trench, in two different planes parallel to the face (101), are aligned in relation to one another along an alignment axis forming a non-zero angle with a normal to the plane of said face (101); and the layer (102) is annealed in a hydrogenated atmosphere so as to transform the shaft and/or trench into at least two microcavities (118).Type: ApplicationFiled: December 20, 2007Publication date: September 16, 2010Applicant: COMMISSARIATE A L'ENERGIE ATOMIQUEInventors: Jean-Charles Barbe, Erwan Dornel, Francois De Crecy, Joel Eymery
-
Publication number: 20100230675Abstract: A display device having a photosensor which exhibits excellent photoelectric conversion efficiency is provided. In a display device which forms photosensors on a substrate thereof, the photosensor is formed by sequentially stacking a gate electrode, a gate insulation film and a semiconductor layer in such an order or in an opposite order from a substrate side, and electrodes are connected to both sides of the semiconductor layer respectively, the semiconductor layer is formed of a stacked body consisting of a crystalline semiconductor layer and an amorphous semiconductor layer, and the crystalline semiconductor layer is arranged on the gate insulation film side.Type: ApplicationFiled: February 9, 2010Publication date: September 16, 2010Inventors: Katsumi Matsumoto, Hideki Nakagawa, Yoshiharu Owaku, Terunori Saitou, Toshio Miyazawa, Takahiro Kamo, Takuo Kaitoh
-
Publication number: 20100230676Abstract: A TFT array substrate includes a substrate, at least one gate line and gate electrode, a gate insulating layer, and at least one channel component, source electrode, drain electrode and data line. The gate line and gate electrode are disposed on the substrate, wherein both of the gate line and gate electrode have first and second conductive layers, the first conductive layer is formed on the substrate, the first conductive layer contains molybdenum nitride, the second conductive layer is formed on the first conductive layer, and the second conductive layer contains copper. The gate insulating layer is disposed on the gate line, gate electrode and the substrate. The channel component is disposed on the gate insulating layer. The source electrode and drain electrode are disposed on the channel component, and data line is disposed on the gate insulating layer.Type: ApplicationFiled: October 19, 2009Publication date: September 16, 2010Applicant: HANNSTAR DISPLAY CORP.Inventors: Hsien Tang HU, Chien Chih Hsiao, Chih Hung Tsai
-
Publication number: 20100230677Abstract: A thin film transistor in which deterioration at initial operation is not likely to be caused and a manufacturing method thereof. A transistor which includes a gate insulating layer at least whose uppermost surface is a silicon nitride layer, a semiconductor layer over the gate insulating layer, and a buffer layer over the semiconductor layer and in which the concentration of nitrogen in the vicinity of an interface between the semiconductor layer and the gate insulating layer, which is in the semiconductor layer is lower than that of the buffer layer and other parts of the semiconductor layer. Such a thin film transistor can be manufactured by exposing the gate insulating layer to an air atmosphere and performing plasma treatment on the gate insulating layer before the semiconductor layer is formed.Type: ApplicationFiled: March 2, 2010Publication date: September 16, 2010Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventors: Hidekazu MIYAIRI, Erika KATO, Kunihiko SUZUKI
-
Publication number: 20100230678Abstract: A space is provided under part of a semiconductor layer. Specifically, a structure in which an eaves portion (a projecting portion, an overhang portion) is formed in the semiconductor layer. The eaves portion is formed as follows: a stacked-layer structure in which a conductive layer, an insulating layer, and a semiconductor layer are stacked in this order is etched collectively to determine a pattern of a gate electrode; and a pattern of the semiconductor layer is formed while side-etching is performed.Type: ApplicationFiled: March 4, 2010Publication date: September 16, 2010Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventor: Hidekazu Miyairi
-
Publication number: 20100230679Abstract: A contact portion of wiring and a method of manufacturing the same are disclosed. A contact portion of wiring according to an embodiment includes: a substrate; a conductive layer disposed on the substrate; an interlayer insulating layer disposed on the conductive layer and having a contact hole; a metal layer disposed on the conductive layer and filling the contact hole; and a transparent electrode disposed on the interlayer insulating layer and connected to the metal layer, wherein the interlayer insulating layer includes a lower insulating layer and an upper insulating layer disposed on the lower insulating layer, the lower insulating layer is undercut at the contact hole, and the metal layer fills in the portion where the lower insulating layer is undercut.Type: ApplicationFiled: August 19, 2009Publication date: September 16, 2010Inventors: Joo-Han Kim, Ki-Yong Song, Dong-Ju Yang, Hee-Joon Kim, Yeo-Geon Yoon, Sung-Hen Cho, Chang-Hoon Kim, Jae-Hong Kim, Yu-Gwang Jeong, Ki-Yeup Lee, Snag-Gab Kim, Yun-Jong Yeo, Shin-Il Choi, Ji-Young Park
-
Publication number: 20100230680Abstract: A liquid crystal display includes; a first substrate, a gate line disposed on the first substrate, a data line intersecting the gate line, a thin film transistor connected to the gate line and the data line, a pixel electrode connected to the thin film transistor, an interlayer insulating layer disposed on the pixel electrode, a common electrode disposed on the interlayer insulating layer and including a plurality of electrically connected common electrode lines extending substantially parallel to each other, a second substrate disposed substantially opposite to the first substrate, a reference electrode disposed on substantially an entire surface of the second substrate, and a liquid crystal layer disposed between the first substrate and the second substrate, and having negative dielectric anisotropy.Type: ApplicationFiled: November 13, 2009Publication date: September 16, 2010Applicant: SAMSUNG ELECTRONICS CO., LTD.Inventors: Dong-Gi SEONG, Joo-Seok YEOM, Youn-Hak JEONG, Keun-Chan OH
-
Publication number: 20100230681Abstract: A display unit with which lowering of long-term reliability of a transistor is decreased is provided. The display unit includes a display section having a plurality of organic EL devices with light emitting color different from each other and a plurality of pixel circuits that are singly provided for every said organic EL device for every pixel. The pixel circuit has a first transistor for writing a video signal, a second transistor for driving the organic EL device based on the video signal written by the first transistor, and a retentive capacity, and out of the first transistor and the second transistor, a third transistor provided correspondingly to a second organic EL device adjacent to a first organic EL device is arranged farther from the first organic EL device than a first retentive capacity provided correspondingly to the second organic EL device out of the retentive capacity.Type: ApplicationFiled: March 5, 2010Publication date: September 16, 2010Applicant: Sony CorporationInventors: Takayuki Taneda, Tetsuro Yamamoto, Katsuhide Uchino
-
Publication number: 20100230682Abstract: The present invention provides an array substrate comprising: a substrate, having a thin film transistor (TFT) formed thereupon, the TFT having a gate electrode, a source electrode and a drain electrode; a first metal layer, formed on the substrate, and comprising a gate line and the gate electrode of the TFT; a first insulating layer, covering the first metal layer and the substrate; a semiconductor layer, an ohmic contact layer, and a second metal layer, which are sequentially formed on the first insulating layer; a second insulating layer, covering the semiconductor layer, the ohmic contact layer, and the second metal layer; a pixel electrode, provided on the second insulating layer and is connected to the drain electrode. The second metal layer further comprises an etch-blocking pattern in the peripheral area of the pixel electrode within the overlapping region between the pixel electrode and the first metal layer.Type: ApplicationFiled: March 15, 2010Publication date: September 16, 2010Applicant: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.Inventors: Youngsuk SONG, Seungjin CHOI, Seongyeol YOO
-
THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, DISPLAY DEVICE, AND MANUFACTURING METHOD THEREOF
Publication number: 20100230683Abstract: Disclosed is a manufacturing method of a thin film transistor, which enables the formation of a thin film transistor by using only one photomask. The method includes: over a substrate sequentially forming a first insulating film, a first conductive film, a second insulating film, a semiconductor film, an impurity semiconductor film, and a second conductive film; forming a resist mask thereover using a first photomask; performing a first etching to allow the side surface of the layers including an upper portion of the first insulating film, the first conductive film, the second insulating film, the semiconductor film, the impurity semiconductor film, and the second conductive film to be coplanar to a side surface of the resist mask; and performing a second etching to selectively etch the first conductive film to allow the side surface of the first conductive film is located inside the side surface of the layers.Type: ApplicationFiled: May 27, 2010Publication date: September 16, 2010Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventor: Hidekazu Miyairi -
Publication number: 20100230684Abstract: A semiconductor device includes a channel layer, an electron-supplying layer provided on the channel layer, a cap layer provided on the electron-supplying layer and creating lattice match with the channel layer, and ohmic electrodes provided on the cap layer. The cap layer has a composition of (InyAl1-y)zGa1-zN (0?y?1, 0?z?1). The z for such cap layer monotonically decreases as being farther away from the electron-supplying layer.Type: ApplicationFiled: May 7, 2007Publication date: September 16, 2010Applicant: NEC CORPORATIONInventors: Yasuhiro Okamoto, Yuji Ando, Takashi Inoue, Tatsuo Nakayama, Hironobu Miyamoto
-
Publication number: 20100230685Abstract: Provided are a light emitting device, a light emitting device package and a lighting system including the same. The light emitting device (LED) comprises a light emitting structure comprising a second conductive type semiconductor layer, an active layer, and a first conductive type semiconductor layer and a first electrode over the light emitting structure. A portion of the light emitting structure is sloped at a predetermined angle.Type: ApplicationFiled: March 16, 2010Publication date: September 16, 2010Applicant: LG INNOTEK CO., LTD.Inventors: HYUN KYONG CHO, HYUN DON SONG, CHANG HEE HONG, HYUNG GU KIM
-
Publication number: 20100230686Abstract: Disclosed are a light emitting device and a method of manufacturing the same. The light emitting device includes a plurality of compound semiconductor layers that includes a first conductive semiconductor layer, an active layer under the first conductive semiconductor layer, and a second conductive semiconductor layer under the active layer. An electrode is formed on the compound semiconductor layers. A groove is formed at an upper portion of the compound semiconductor layers. An electrode layer is formed under the compound semiconductor layers.Type: ApplicationFiled: March 16, 2010Publication date: September 16, 2010Inventor: Hwan Hee JEONG
-
Publication number: 20100230687Abstract: In a group III nitride hetero junction transistor 11a, a second AlY1InY2Ga1-Y1-Y2N layer 15 forms a hetero junction 21 with a first AlX1InX2Ga1-X1-X2N layer 13a. A first electrode 17 forms a Schottky junction with the first AlX1InX2Ga1-X1-X2N layer 13a. The first AlX1InX2Ga1-X1-X2N layer 13a and the second AlY1InY2Ga1-Y1-Y2N layer 15 are provided over a substrate 23. The electrodes 17a, 18a, and 19a include a source electrode, a gate electrode, and a drain electrode, respectively. The carbon concentration NC13 in the first AlX1InX2Ga1-X1-X2N layer 13a is less than 1×1017 cm?3. The dislocation density D in the second AlY1InY2Ga1-Y1-Y2N layer 15 is 1×108 cm?2. The hetero junction 21 generates a two-dimensional electron gas layer 25. These provide a low-loss gallium nitride based electronic device.Type: ApplicationFiled: October 28, 2008Publication date: September 16, 2010Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.Inventors: Shin Hashimoto, Tatsuya Tanabe
-
Publication number: 20100230688Abstract: Provided is a light-emitting element including a cathode; an anode; a first light-emitting layer that is disposed between the cathode and the anode and emits in a first color; a second light-emitting layer that is disposed between the first light-emitting layer and the cathode and emits in a second color that is different from the first color; and an intermediate layer that is disposed between the first light-emitting layer and the second light-emitting layer so as to be in contact with these layers and has a function of controlling the migration of holes and electrons between the first light-emitting layer and the second light-emitting layer.Type: ApplicationFiled: February 24, 2010Publication date: September 16, 2010Applicant: SEIKO EPSON CORPORATIONInventors: Masayuki MITSUYA, Koji YASUKAWA
-
Publication number: 20100230689Abstract: A new SMD (surface mount devices) package design for efficiently removing heat from LED Chip(s) is involved in this invention. Different from the regular SMD package, which electrical isolated materials like Alumina or AlN are used, the substrate material here is metal like Copper, Aluminum and so on. Also, different from regular design, which most time only has one LED chip inside, current design will at least have two or more LED chips (or chip groups) in one package. All chips are electrical connected via metal blocks, traces or wire-bond. This type of structure is generally fabricated via chemical etching and then filled with dielectric material inside to form a strong package. Because the thermal conductivity of the metal is much higher than the ceramics, the package thermal resistance is much lower than the ceramics based package. Also, the cost of the package is much lower than ceramics package. Moreover, emitting area in one package is much larger than the current arts.Type: ApplicationFiled: March 15, 2009Publication date: September 16, 2010Applicant: SKY ADVANCED LED TECHNOLOGIES INC.Inventor: Lijun Cui
-
Publication number: 20100230690Abstract: A group III nitride semiconductor device having a gallium nitride based semiconductor film with an excellent surface morphology is provided. A group III nitride optical semiconductor device 11a includes a group III nitride semiconductor supporting base 13, a GaN based semiconductor region 15, an active layer active layer 17, and a GaN semiconductor region 19. The primary surface 13a of the group III nitride semiconductor supporting base 13 is not any polar plane, and forms a finite angle with a reference plane Sc that is orthogonal to a reference axis Cx extending in the direction of a c-axis of the group III nitride semiconductor. The GaN based semiconductor region 15 is grown on the semipolar primary surface 13a. A GaN based semiconductor layer 21 of the GaN based semiconductor region 15 is, for example, an n-type GaN based semiconductor, and the n-type GaN based semiconductor is doped with silicon.Type: ApplicationFiled: February 26, 2010Publication date: September 16, 2010Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.Inventors: Takashi KYONO, Yusuke YOSHIZUMI, Yohei ENYA, Katsushi AKITA, Masaki UENO, Takamichi SUMITOMO, Takao NAKAMURA
-
Publication number: 20100230691Abstract: A ferrous-metal-alkaline-earth-metal mixed silicate based phosphor is used in form of a single component or a mixture as a light converter for a primarily visible and/or ultraviolet light emitting device. The phosphor has a rare earth element as an activator. The rare earth element is europium (Eu). Alternatively, the phosphor may have a coactivator formed of a rare earth element and at least one of Mn, Bi, Sn, and Sb.Type: ApplicationFiled: March 26, 2007Publication date: September 16, 2010Inventors: Mitsuhiro Inoue, Akio Namiki, Makoto Ishida, Takashi Nonogawa, Koichi Ota, Atsuo Hirano, Walter Tews, Gundula Roth, Stefan Tews
-
Publication number: 20100230692Abstract: The present invention provides a lamp comprising a substrate composed of a base substrate and a covering member which are made of an inorganic insulator and are joined through a joining metal layer; and a semiconductor light emitting device mounted on said substrate, wherein a concave portion is provided in a covering member-side surface of said substrate, said semiconductor light emitting device is accommodated in said concave portion, an end face of said metal layer is positioned on a region of the lateral surface of said concave portion which faces said semiconductor light emitting device, and a light reflection portion, which reflects light emitted from said semiconductor light emitting device, is composed of said end face.Type: ApplicationFiled: May 9, 2008Publication date: September 16, 2010Applicant: SHowa Denko K.K.Inventor: Takaki Yasuda
-
Publication number: 20100230693Abstract: A white light emitting diode (LED) package with multilayered encapsulation structure and the packaging methods are disclosed. The white LED package structure includes metal electrodes, a heat dissipation base, a PPA plastic for fixing the electrodes and the heat dissipation base together, at least one LED die, a die attaching material, gold wires for electrically connecting the LED die to the electrodes, a first type of silicone encapsulant, a second type of silicone encapsulant, and a phosphor containing layer. The invention utilizes a low-refractive index silicone (the second type of silicone encapsulant) to separate the phosphor containing layer away from the first type of silicone, which covers the LED die, to prevent/reduce emitted light going backward and hitting the LED die.Type: ApplicationFiled: March 10, 2009Publication date: September 16, 2010Applicant: NEPES LED, INC.Inventor: Nguyen The Tran
-
Publication number: 20100230694Abstract: An optoelectronic component is specified that emits a useful radiation. It comprises a housing having a housing base body with a housing cavity, and a light-emitting diode chip arranged in the housing cavity. At least one base body material of the housing base body has radiation-absorbing particles admixed in a targeted manner to reduce its reflectivity. According to another embodiment of the component, the housing additionally or alternatively has a housing material transmissive for the useful radiation that has radiation-absorbing particles admixed in a targeted manner to reduce its reflectivity. In addition, a method for manufacturing such a component is specified.Type: ApplicationFiled: March 26, 2008Publication date: September 16, 2010Applicant: OSRAM OPTO SEMICONDUCTORS GMBHInventors: Karlheinz Arndt, Kirstin Petersen
-
Publication number: 20100230695Abstract: An LED package structure includes an LED chip, an internal transparent colloidal layer, a fluorescent colloidal layer, and an external transparent colloidal layer. The internal transparent colloidal layer is interposed between the LED chip (such as a blue-light LED chip) and the fluorescent colloidal layer (such as a yellow fluorescent colloidal layer), and that the external transparent colloidal layer, in cooperation with the internal transparent colloidal layer, sandwiches and envelops the fluorescent colloidal layer so as to lower the possibility that light emitted from the LED chip may be absorbed by the LED chip itself because the light is scattered backward by particles of the fluorescent powder. This will increase overall lumen output and decrease thermal energy of the LED chip, and will as well provide a more desirable moisture insulation for the fluorescent powder.Type: ApplicationFiled: February 18, 2010Publication date: September 16, 2010Applicant: Forward Electronics Co., Ltd.Inventors: Yu-Bing Lan, Pei-Hsuan Lan
-
Publication number: 20100230696Abstract: There is provided a semiconductor device that suppresses the occurrence of resin burrs to ensure favorable electrical connectivity and bond strength, and a manufacturing method for such semiconductor device. Also provided is an LED device which ensures stronger adhesion between a silicone resin and a wiring lead and thus achieves favorable light emitting properties, and a manufacturing method for such LED device. Also provided is an LED device that can present superior luminous efficiency by the provision of a sufficient reflectivity even when emitting relatively short wavelength light, and a manufacturing method for such LED device. Also provided is a film carrier tape with which a superior Sn plating coat is formed, mechanical strength and connectivity are achieved. Also provided is a manufacturing method for such film carrier tape that can avoid damage to the wiring pattern layer during an Sn plating step while maintaining favorable manufacturing efficiency.Type: ApplicationFiled: August 21, 2008Publication date: September 16, 2010Inventor: Takahiro Fukunaga
-
Publication number: 20100230697Abstract: An optoelectronic semiconductor module includes a chip carrier, a light emitting semiconductor chip mounted on the chip carrier and a cover element with an at least partly light transmissive cover plate, which is arranged on the side of the semiconductor chip facing away from the chip carrier, and has a frame part, wherein the frame part laterally encloses the semiconductor chip, is joined to the cover plate in a joining-layer free fashion and is joined to the chip carrier on its side remote from the cover plate.Type: ApplicationFiled: August 11, 2008Publication date: September 16, 2010Applicant: OSRAM OPTO SEMICONDUCTORS GMBHInventors: Steffen Köhler, Moritz Engl, Frank Singer, Stefan Grötsch, Thomas Zeiler, Mathias Weiss
-
Publication number: 20100230698Abstract: An optoelectronic semiconductor body includes a substrate with a front side for emitting electromagnetic radiation. The optoelectronic semiconductor body has a semiconductor layer sequence that is arranged on a rear side of the substrate and has an active layer suitable for generating the electromagnetic radiation. The optoelectronic semiconductor body also includes first and second electrical connection layers that are arranged on a first surface of the semiconductor body that faces away from the substrate.Type: ApplicationFiled: August 27, 2008Publication date: September 16, 2010Inventors: Patrick Rode, Karl Engl, Martin Strassburg, Lutz Hoeppel, Matthias Sabathil
-
Publication number: 20100230699Abstract: A light emitting device including a light emitting structure having a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer; a first electrode on the light emitting structure; and a photon escape layer on the light emitting structure. Further, the photon escape layer has a refractive index that is between a refractive index of the light emitting structure and a refractive index of an encapsulating material with respect to the light emitting structure such that an escape probability for photons emitted by the light emitting structure is increased.Type: ApplicationFiled: January 25, 2010Publication date: September 16, 2010Inventor: Hyun Don SONG
-
Publication number: 20100230700Abstract: A light emitting device package is provided. The light emitting device package may include a package body having a cavity formed therein, a lead frame, and a light emitting device positioned in the cavity and electrically connected to the lead frame. The lead frame may penetrate the package body such that one end of the lead frame is positioned in the cavity and the other end of the lead frame is exposed to an outside of the package body. The lead frame may be partially coated with a thin metal layer.Type: ApplicationFiled: February 9, 2010Publication date: September 16, 2010Inventor: Ki Bum KIM
-
Publication number: 20100230701Abstract: A light emitting device, a light emitting device package and a lighting system including the same are provided. The light emitting device may include a light emitting structure, a dielectric pattern, a second electrode layer, and a resonator structure. The light emitting structure may include a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer. The dielectric pattern may be disposed on the second conductive type semiconductor layer. The second electrode layer may be disposed on the second conductive type comprising the dielectric pattern. The resonator structure may be disposed on the light emitting structure.Type: ApplicationFiled: March 9, 2010Publication date: September 16, 2010Inventor: Sun Kyung KIM
-
Publication number: 20100230702Abstract: Disclosed is a light emitting device including a conductive substrate; a reflective layer on the conductive substrate; an etching protective layer on a peripheral portion of a top surface of the conductive substrate; and a light emitting structure, which is formed on the reflective layer and the etching protective layer such that the etching protective layer is partially exposed and includes a first conductive semiconductor layer, a second conductive semiconductor layer and an active layer between the first and second conductive semiconductor layers, wherein the etching protective layer includes a first refractive layer having a first refractive index and a second refractive layer having a second refractive index greater than the first refractive index.Type: ApplicationFiled: March 9, 2010Publication date: September 16, 2010Inventor: Duk Hyun Park
-
Publication number: 20100230703Abstract: A light emitting device is provided. The light emitting device comprises a conductive substrate, a reflection layer, a support layer, an ohmic contact layer, and a light emitting semiconductor layer. The reflection layer is disposed on the conductive substrate. The support layer is disposed partially on the reflection layer. The ohmic contact layer is disposed at the side of the support layer. The light emitting semiconductor layer is disposed on the ohmic contact layer and the support layer.Type: ApplicationFiled: March 9, 2010Publication date: September 16, 2010Inventor: Hwan Hee JEONG
-
Publication number: 20100230704Abstract: A light emitting apparatus includes: a substrate including a first conductive type impurity; a first heatsink and a second heatsink on a first region and a second region of the substrate; second conductive type impurity regions on the substrate and electrically connected to the first heatsink and the second heatsink, respectively; a first electrode electrically connected to the first heatsink on the substrate; a second electrode electrically connected to the second heatsink on the substrate; and a light emitting device electrically connected to the first electrode and the second electrode on the substrate.Type: ApplicationFiled: March 9, 2010Publication date: September 16, 2010Inventor: Bum Chul CHO
-
Publication number: 20100230705Abstract: A light emitting device according to the embodiment includes a reflecting layer; an adhesion layer including an oxide-based material on the reflecting layer; an ohmic contact layer on the adhesion layer; and a light emitting structure layer on the ohmic contact layer.Type: ApplicationFiled: March 9, 2010Publication date: September 16, 2010Inventor: Hwan Hee JEONG
-
Publication number: 20100230706Abstract: The invention discloses a semiconductor light-emitting device, which includes a substrate, a first conductive type semiconductor material layer, a second conductive type semiconductor material layer, a light-emitting layer, a first electrode, a second electrode, and a plurality of bump structures. The first conductive type semiconductor material layer is formed on the substrate and has an upper surface which includes a first region and a second region distinct from the first region. The first electrode is formed on the first region. The light-emitting layer and the second conductive type semiconductor material layer are formed on the second region. The bump structures are formed on the upper surface of the first conductive type semiconductor material layer and between the first region and the second region. At least one recess is formed in the sidewall of each bump structure. Alternatively, the sidewall of each bump structure has a curved contour.Type: ApplicationFiled: April 6, 2010Publication date: September 16, 2010Applicant: HUGA OPTOTECH INC.Inventors: Tzong Liang Tsai, Wei-Kai Wang, Su-Hui Lin, Yi-Cun Lu
-
Publication number: 20100230707Abstract: An LED package is provided. The LED package comprises a metal plate, circuit patterns, and an LED. The metal plate comprises grooves. The insulating layer is formed on the metal plate. The circuit patterns are formed on the insulating layer. The LED is electrically connected with the circuit pattern on the insulating layer.Type: ApplicationFiled: May 26, 2010Publication date: September 16, 2010Inventor: KYUNG HO SHIN
-
Publication number: 20100230708Abstract: An LED leadframe package with surface tension function to enable the production of LED package with convex lens shape by using dispensing method is disclosed. The LED leadframe package of the invention is a PPA supported package house for LED packaging with metal base, four identical metal electrodes, and PPA plastic to fix the metal electrodes and the heat dissipation base together, four ring-alike structures with a sharp edge and with a tilted inner surface, and three ring-alike grooves formed between sharp edge ring-alike structures.Type: ApplicationFiled: March 10, 2009Publication date: September 16, 2010Applicant: NEPES LED, INC.Inventor: Nguyen The Tran
-
Publication number: 20100230709Abstract: An optical semiconductor unit of the present invention has an LED device provided with an LED (Light Emitting Diode) and a socket to which the LED device is mounted, the LED device has a main body to which the LED is mounted, the main body has a first surface to which block-shaped electrode portions are connected.Type: ApplicationFiled: February 11, 2010Publication date: September 16, 2010Inventor: Hideyuki Kanno
-
Publication number: 20100230710Abstract: Embodiments include a light emitting device package. The light emitting device package comprises a housing including a cavity; a light emitting device positioned in the cavity; a lead frame including a first section electrically connected to the light emitting device in the cavity, a second section, which penetrates the housing, extending from the first section and a third section, which is exposed to outside air, extending from the second section; and a metal layer positioned on an area defined by a distance which is distant from the housing in the second section of the lead frame.Type: ApplicationFiled: March 9, 2010Publication date: September 16, 2010Applicant: LG. Innotek Co. Ltd.Inventor: Ki Bum KIM
-
Publication number: 20100230711Abstract: A method for fabricating flip-chip semiconductor optoelectronic devices initially flip-chip bonds a semiconductor optoelectronic chip attached to an epitaxial substrate to a packaging substrate. The epitaxial substrate is then separated using lift-off technology.Type: ApplicationFiled: March 11, 2010Publication date: September 16, 2010Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY INC.Inventors: CHESTER KUO, LUNG HSIN CHEN, WEN LIANG TSENG, SHIH CHENG HUANG, PO MIN TU, YING CHAO YEH, WEN YU LIN, PENG YI WU, SHIH HSIUNG CHAN
-
Publication number: 20100230712Abstract: Provided are a light emitting device and a method of fabricating the same. The light emitting device comprises a first conductive type substrate, first to fourth metal electrodes, and a light emitting diode. The first conductive type substrate comprises P-N junction first to fourth diodes. The first metal electrode is connected to the first diode and the fourth diode. The second metal electrode is connected to the third diode and the second diode. The third metal electrode is connected to the first diode and the third diode. The fourth metal electrode is connected to the second diode and the fourth diode. The light emitting diode is electrically connected to the third metal electrode and the fourth metal electrode.Type: ApplicationFiled: October 29, 2008Publication date: September 16, 2010Inventor: Jae Cheon Han
-
Publication number: 20100230713Abstract: An object of the present invention is to obtain, with respect to a semiconductor light-emitting element using a group III nitride semiconductor substrate, a semiconductor light-emitting element having an excellent light extraction property by selecting a specific substrate dopant and controlling the concentration thereof. The semiconductor light-emitting element comprises a substrate composed of a group III nitride semiconductor comprising germanium (Ge) as a dopant, an n-type semiconductor layer composed of a group III nitride semiconductor formed on the substrate, an active layer composed of a group III nitride semiconductor formed on the n-type semiconductor layer, and a p-type semiconductor layer composed of a group III nitride semiconductor formed on the active layer in which the substrate has a germanium (Ge) concentration of 2×1017 to 2×1019 cm?3.Type: ApplicationFiled: January 19, 2007Publication date: September 16, 2010Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.Inventors: Hisashi Minemoto, Yasuo Kitaoka, Yasutoshi Kawaguchi, Yasuhito Takahashi, Yoshiaki Hasegawa
-
Publication number: 20100230714Abstract: A method for producing a gallium nitride based compound semiconductor light emitting device that is excellent in terms of light emission efficiency and is also capable of operating at a low driving voltage, a gallium nitride based compound semiconductor light emitting device, and a lamp using the device are provided, and the method for producing a gallium nitride based compound semiconductor light emitting device includes a first crystal growth step in which an n-type semiconductor layer 13, a light emitting layer 14, and a first p-type semiconductor layer 15 which are formed of a gallium nitride based compound semiconductor are laminated in this order on a substrate 11; and a second crystal growth step in which a second p-type semiconductor layer 16 formed of a gallium nitride based compound semiconductor is further laminated thereon; and also has an uneven pattern forming step in which an uneven pattern is formed on the surface of the first p-type semiconductor layer 15 before the first crystal growth stepType: ApplicationFiled: March 23, 2007Publication date: September 16, 2010Applicant: SHOWA DENKO K.K.Inventors: Hironao Shinohara, Noritaka Muraki, Hiroshi Osawa
-
Publication number: 20100230715Abstract: A semiconductor device has a semiconductor body with a semiconductor device structure including at least a first electrode and a second electrode. Between the two electrodes, a drift region is arranged, the drift region including charge compensation zones and drift zones arranged substantially parallel to one another. At least one charge carrier storage region which is at least partially free of charge compensation zones is arranged in the semiconductor body.Type: ApplicationFiled: March 12, 2009Publication date: September 16, 2010Applicant: INFINEON TECHNOLOGIES AUSTRIA AGInventors: Anton Mauder, Giulliano Aloise
-
Publication number: 20100230716Abstract: A semiconductor device includes: a drift layer of a first conductivity type; a base layer of a second conductivity type provided on the drift layer; an emitter layer of the first conductivity type provided in part of an upper portion of the base layer; a buffer layer of the first conductivity type provided below the drift layer; a high-resistance layer of the first conductivity type provided below the buffer layer; a collector layer of the second conductivity type provided in a partial region on a lower surface of the high-resistance layer; a contact layer of the first conductivity type provided in another partial region on the lower surface of the high-resistance layer; a trench gate electrode extending through the emitter layer and the base layer into the drift layer; and a gate insulating film provided between the emitter layer, the base layer, and the drift layer on one hand and the trench gate electrode on the other.Type: ApplicationFiled: March 12, 2010Publication date: September 16, 2010Applicant: KABUSHIKI KAISHA TOSHIBAInventor: Tatsuo NAIJO
-
Publication number: 20100230717Abstract: A semiconductor device includes: a first semiconductor layer of non-doped AlXGa1-XN (0?X<1); a second semiconductor layer of non-doped or n-type AlYGa1-YN (0<Y?1, X<Y) on the first semiconductor layer; a first electrode on the second semiconductor layer; a second electrode on the second semiconductor layer that is separated from the first electrode and electrically connected to the second semiconductor layer; a first insulating film covering the first and second electrodes; a first field plate electrode electrically connected to the first electrode and covered by a second insulating film; and a second field plate electrode on the second insulating film, wherein a length of at least one of the first and second field plate electrodes in a first direction from the first electrode toward the second electrode changes periodically in a second direction intersecting the first direction.Type: ApplicationFiled: February 24, 2010Publication date: September 16, 2010Applicant: KABUSHIKI KAISHA TOSHIBAInventor: Wataru SAITO
-
Publication number: 20100230718Abstract: A semiconductor device has a first semiconductor layer of a first conductivity type and a second semiconductor layer of a second conductivity type complementary to the first conductivity type arranged in or on the first semiconductor layer. Further, the semiconductor device has a region of the first conductivity type arranged in the second semiconductor layer. A first electrode contacts the region of the first conductivity type and the second semiconductor layer. A first trench extends into the first semiconductor layer, and a voltage dependent short circuit diverter structure includes electrically conductive material arranged in the first trench and coupled to the first electrode and a highly-doped diverter region of the second conductivity type.Type: ApplicationFiled: March 11, 2009Publication date: September 16, 2010Applicant: INFINEON TECHNOLOGIES AUSTRIA AGInventors: Franz Hirler, Frank Dieter Pfirsch
-
Publication number: 20100230719Abstract: In an aspect of the present invention, an ESD (Electrostatic Discharge) protection element includes a bipolar transistor comprising a collector diffusion layer connected with a first terminal and an emitter diffusion layer; and current control resistances provided for a plurality of current paths from a second terminal to the collector diffusion layer through the emitter diffusion layer, respectively. The bipolar transistor further includes a base diffusion region connected with the second terminal through a first resistance which is different from the current control resistances.Type: ApplicationFiled: March 11, 2010Publication date: September 16, 2010Applicant: NEC Electronics CorporationInventor: Kouichi SAWAHATA
-
Publication number: 20100230720Abstract: The present invention is directed to a semiconductor device that includes at least one p-n junction including a p-type material, an n-type material, and a depletion region. The at least one p-n junction is configured to generate bulk photocurrent in response to incident light. The at least one p-n junction is characterized by a conduction band energy level, a valence band energy level and a surface Fermi energy level. The surface Fermi energy level is pinned either near or above the conduction band energy level or near or below the valence band energy level. A unipolar barrier structure is disposed in a predetermined region within the at least one p-n junction.Type: ApplicationFiled: February 16, 2010Publication date: September 16, 2010Applicant: UNIVERSITY OF ROCHESTERInventor: Gary W. Wicks