Patents Issued in October 21, 2010
  • Publication number: 20100264450
    Abstract: Embodiments of a light source are disclosed herein. An embodiment of the light source comprises a first terminal and a second terminal. The first terminal comprises a first terminal first portion and a first terminal second portion, wherein at least a portion of the first terminal second portion is located on a first plane, the first terminal second portion comprising at least two contacts separated by a space. A second terminal comprises a second terminal first portion and a second terminal second portion. The second terminal first portion is located proximate the first terminal first portion. The second terminal second portion is located substantially on the first plane and in the space. A light emitter is affixed to the first terminal first portion, the light emitter is electrically connected to the first terminal first portion. A connection exists between the light emitter and the second terminal first portion.
    Type: Application
    Filed: April 20, 2009
    Publication date: October 21, 2010
    Applicant: Avago Technologies ECUBU IP (Singapore) Pte. Ltd.
    Inventors: Aizar Abdul Karim Norfidathul, Chiau Jin Lee, Keat Chuan Ng
  • Publication number: 20100264451
    Abstract: A light emitting diode includes a base, a dispersing member, a chip, a pole, a cover, an electrode, and a lens. The base is capable of conducting heat and insulated from electricity. The base has a first surface and a second surface opposite to the first surface. The dispersing member is disposed on a first surface of the base. The chip is disposed on a second surface of the base. The pole runs through the base, and two ends of the pole are connected to the dispersing member and the chip correspondingly. The cover to allow light to run therethrough is disposed on the second surface of the base and covers the chip. The electrode is disposed on the second surface the base and electrically connected to a circuit inside the base. The circuit electrically connected to the chip. The lens seals the cover.
    Type: Application
    Filed: July 14, 2009
    Publication date: October 21, 2010
    Inventors: Xinpei Xue, Xinshen Xue
  • Publication number: 20100264452
    Abstract: High temperature semiconducting materials in a freestanding epitaxial chip enables the use of high temperature interconnect and bonding materials. Process materials can be used which cure, fire, braze, or melt at temperatures greater than 400 degrees C. These include, but are not limited to, brazing alloys, laser welding, high-temperature ceramics and glasses. High temperature interconnect and bonding materials can additionally exhibit an index of refraction intermediate to that of the freestanding epitaxial chip and its surrounding matrix. High index, low melting point glasses provide a hermetic seal of the semiconductor device and also index match the freestanding epitaxial chip thereby increasing extraction efficiency. In this manner, a variety of organic free semiconducting devices, such as solid-sate lighting sources, can be created which exhibit superior life, efficiency, and environmental stability.
    Type: Application
    Filed: October 16, 2009
    Publication date: October 21, 2010
    Inventors: Scott M. Zimmerman, Karl W. Beeson, William R. Livesay
  • Publication number: 20100264453
    Abstract: A semiconductor chip pad structure and a method for manufacturing the same, wherein a flat area at the center of the terminal pad and a roughened area at the periphery thereof are provided by use of the mask photolithograph technique and the roughening process. The central area provides a sufficient adhering force for the ball bond while the peripheral area prevents the wire-bonding vibrating energy from the lateral transmission to the external side of the terminal pad. In this way, the ball bond for the terminal pad may meet the wire-bonding requirements. Moreover, the ball bond quality is ensured.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 21, 2010
    Applicant: ARIMA OPTOELECTRONICS CORP.
    Inventor: HUI-HENG WANG
  • Publication number: 20100264454
    Abstract: In accordance with embodiments of the invention, at least partial strain relief in a light emitting layer of a III-nitride light emitting device is provided by configuring the surface on which at least one layer of the device grows such that the layer expands laterally and thus at least partially relaxes. This layer is referred to as the strain-relieved layer. In some embodiments, the light emitting layer itself is the strain-relieved layer, meaning that the light emitting layer is grown on a surface that allows the light emitting layer to expand laterally to relieve strain. In some embodiments, a layer grown before the light emitting layer is the strain-relieved layer. In a first group of embodiments, the strain-relieved layer is grown on a textured surface.
    Type: Application
    Filed: July 6, 2010
    Publication date: October 21, 2010
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Sungsoo YI, Nathan F. GARDNER, Michael R. KRAMES, Linda T. ROMANO
  • Publication number: 20100264455
    Abstract: On the top surface of a thin semiconductor wafer, top surface structures forming a semiconductor chip are formed. The top surface of the wafer is affixed to a supporting substrate with a double-sided adhesive tape. Then, from the bottom surface of the thin semiconductor wafer, a trench, which becomes a scribing line, is formed by wet anisotropic etching so that side walls of the trench are exposed. On the side walls of the trench with the crystal face exposed, an isolation layer with a conductivity type different from that of the semiconductor wafer for holding a reverse breakdown voltage is formed simultaneously with a collector region of the bottom surface diffused layer by ion implantation, followed by annealing with laser irradiation. The side walls form a substantially V-shaped or trapezoidal-shaped cross section, with an angle of the side wall relative to the supporting substrate being 30-70°. The double-sided adhesive tape is then removed from the top surface to produce semiconductor chips.
    Type: Application
    Filed: June 28, 2010
    Publication date: October 21, 2010
    Applicant: FUJI ELECTRIC HOLDINGS CO. LTD
    Inventors: Haruo NAKAZAWA, Kazuo SHIMOYAMA, Manabu TAKEI
  • Publication number: 20100264456
    Abstract: A capacitor structure in trench structures of a semiconductor device includes conductive regions made of metallic and/or semiconducting materials. The conducting regions are surrounded by a dielectric and form stacked layers in the trench structure of the semiconductor device.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 21, 2010
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Helmut Strack
  • Publication number: 20100264457
    Abstract: An electrostatic discharge (ESD) protection circuit for protecting an integrated circuit (IC) having a first voltage potential, a first power supply potential and a second power supply potential. The ESD circuit includes a first NPN bipolar transistor having a first N-doped junction, a second N-doped junction and a third P-doped base junction. The first N-doped junction is coupled to the first voltage potential and the second N-doped junction is coupled to the first power supply potential. The ESD circuit also includes a first PNP bipolar transistor having a first P-doped junction, a second P-doped junction and a third N-doped base junction. The first P-doped junction is coupled to the first voltage potential and the second P-doped junction is coupled to the second power supply potential. The third P-doped base junction of the first NPN bipolar transistor is coupled to the third N-doped base junction of the first PNP bipolar transistor.
    Type: Application
    Filed: April 15, 2010
    Publication date: October 21, 2010
    Inventors: Bart Sorgeloos, Benjamin Van Camp
  • Publication number: 20100264458
    Abstract: A method for manufacturing heterostructures for applications in the fields of electronics, optics or opto-electronics. This method includes providing a silicon oxide layer with a thickness of less than or equal to 25 nanometers on one of a donor substrate or a receiver substrate or on both substrates, heat treating the substrate(s) that contains the silicon oxide layer at 900° C. to 1,200° C. under a neutral or reducing atmosphere that contains at least one of argon or hydrogen to form layer trapping through-holes inside the silicon oxide, bonding the substrates together at a bonding interface with the silicon oxide layer(s) positioned between them, reinforcing the bonding by annealing the substrates at 25° C. to 500° C. such that the trapping holes retaining gas species at the bonding interface, and transferring an active layer as a portion of the donor substrate onto the receiver substrate to obtain the heterostructure.
    Type: Application
    Filed: January 27, 2009
    Publication date: October 21, 2010
    Inventors: Ionut Radu, Oleg Kononchuk, Konstantin Bourdelle
  • Publication number: 20100264459
    Abstract: An infrared sensor IC and an infrared sensor, which are extremely small and are not easily affected by electromagnetic noise and thermal fluctuation, and a manufacturing method thereof are provided. A compound semiconductor that has a small device resistance and a large electron mobility is used for a sensor (2), and then, the compound semiconductor sensor (2) and an integrated circuit (3), which processes an electrical signal output by the compound semiconductor sensor (2) and performs an operation, are arranged in a single package using hybrid formation. In this manner, an infrared sensor IC that can be operated at room temperature can be provided by a microminiature and simple package that is not conventionally produced.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 21, 2010
    Inventors: Koichiro Ueno, Naohiro Kuze, Yoshitaka Moriyasu, Kazuhiro Nagase
  • Publication number: 20100264460
    Abstract: In various embodiments, a semiconductor device includes an aluminum nitride single-crystal substrate, a pseudomorphic strained layer disposed thereover that comprises at least one of AlN, GaN, InN, or an alloy thereof, and, disposed over the strained layer, a semiconductor layer that is lattice-mismatched to the substrate and substantially relaxed.
    Type: Application
    Filed: April 21, 2010
    Publication date: October 21, 2010
    Inventors: James R. Grandusky, Leo J. Schowalter, Shawn R. Gibb, Joseph A. Smart, Shiwen Liu
  • Publication number: 20100264461
    Abstract: A novel enhancement mode field effect transistor (FET), such as a High Electron Mobility Transistors (HEMT), has an N-polar surface uses polarization fields to reduce the electron population under the gate in the N-polar orientation, has improved dispersion suppression, and low gate leakage.
    Type: Application
    Filed: September 18, 2006
    Publication date: October 21, 2010
    Inventors: Siddharth Rajan, Chang Soo Suh, James S. Speck, Umesh K. Mishra
  • Publication number: 20100264462
    Abstract: A semiconductor including a lateral HEMT and to a method for production of a lateral HEMT is disclosed. In one embodiment, the lateral HEMT has a substrate and a first layer, wherein the first layer has a semiconductor material of a first conduction type and is arranged at least partially on the substrate. Furthermore, the lateral HEMT has a second layer, wherein the second layer has a semiconductor material and is arranged at least partially on the first layer. In addition, the lateral HEMT has a third layer, wherein the third layer has a semiconductor material of a second conduction type, which is complementary to the first conduction type, and is arranged at least partially in the first layer.
    Type: Application
    Filed: April 21, 2010
    Publication date: October 21, 2010
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Franz Hirler, Walter Rieger, Markus Zundel
  • Publication number: 20100264463
    Abstract: The invention relates to a method for forming a semiconductor heterostructure by providing a substrate with a first in-plane lattice parameter a1, providing a buffer layer with a second in-plane lattice parameter a2 and providing a top layer over the buffer layer. In order to improve the surface roughness of the semiconductor heterostructure, an additional layer is provided in between the buffer layer and the top layer, wherein the additional layer has a third in-plane lattice parameter a3 which is in between the first and second lattice parameters.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 21, 2010
    Inventors: Christophe Figuet, Mark Kennard
  • Publication number: 20100264464
    Abstract: The present invention relates to a technology for reducing dark current noise by discharging electrons accumulated on a surface of an image sensor photodiode. In an N-type or P-type photodiode, a channel is formed between the photodiode and a power voltage terminal, so that electrons (or holes) accumulated on a surface of the photodiode are discharged to the power voltage terminal through the channel.
    Type: Application
    Filed: November 10, 2008
    Publication date: October 21, 2010
    Applicant: SILICONFILE TECHNOLOGIES INC.
    Inventor: Byoung-Su Lee
  • Publication number: 20100264465
    Abstract: An integrated circuit containing logic transistors and an array of SRAM cells in which the logic transistors are formed in semiconductor material with one crystal orientation and the SRAM cells are formed in a second semiconductor layer with another crystal orientation. A process of forming an integrated circuit containing logic transistors and an array of SRAM cells in which the logic transistors are formed in a top semiconductor layer with one crystal orientation and the SRAM cells are formed in an epitaxial semiconductor layer with another crystal orientation. A process of forming an integrated circuit containing logic transistors and an array of SRAM cells in which the SRAM cells are formed in a top semiconductor layer with one crystal orientation and the logic transistors are formed in an epitaxial semiconductor layer with another crystal orientation.
    Type: Application
    Filed: April 21, 2009
    Publication date: October 21, 2010
    Applicant: Texas Instruments Incorporated
    Inventor: Theodore W. Houston
  • Publication number: 20100264466
    Abstract: The disclosure herein pertains to fashioning a low noise junction field effect transistor (JFET) where transistor gate materials are utilized in forming and electrically isolating active areas of a the JFET. More particularly, active regions are self aligned with patterned gate electrode material and sidewall spacers which facilitate desirably locating the active regions in a semiconductor substrate. This mitigates the need for additional materials in the substrate to isolate the active regions from one another, where such additional materials can introduce noise into the JFET. This also allows a layer of gate dielectric material to remain over the surface of the substrate, where the layer of gate dielectric material provides a substantially uniform interface at the surface of the substrate that facilitates uninhibited current flow between the active regions, and thus promotes desired device operation.
    Type: Application
    Filed: June 29, 2010
    Publication date: October 21, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Xiaoju Wu, Fan-Chi Frank Hou, Pinghai Hao
  • Publication number: 20100264467
    Abstract: A transistor component having a shielding structure. One embodiment provides a source terminal, a drain terminal and control terminal. A source zone of a first conductivity type is connected to the source terminal. A drain zone of the first conductivity type is connected to the drain terminal. A drift zone is arranged between the source zone and the drain zone. A junction control structure is provided for controlling a junction zone in the drift zone between the drain zone and the source zone, at least including one control zone. A shielding structure is arranged in the drift zone between the junction control structure and the drain zone and at least includes a shielding zone of a second conductivity type being complementarily to the first conductivity type. The shielding zone is connected to a terminal for a shielding potential.
    Type: Application
    Filed: April 17, 2009
    Publication date: October 21, 2010
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Dethard Peters, Peter Friedrichs, Rudolf Elpelt, Larissa Wehrhahn-Kilian, Michael Treu, Roland Rupp
  • Publication number: 20100264468
    Abstract: The present disclosure provides a FinFET element and method of fabricating a FinFET element. The FinFET element includes a germanium-FinFET element (e.g., a multi-gate device including a Ge-fin). In one embodiment, the method of fabrication the Ge-FinFET element includes forming silicon fins on a substrate and selectively growing an epitaxial layer including germanium on the silicon fins. A Ge-condensation process may then be used to selectively oxidize the silicon of the Si-fin and transform the Si-fin to a Ge-fin. The method of fabrication provided may allow use of SOI substrate or bulk silicon substrates, and CMOS-compatible processes to form the Ge-FinFET element.
    Type: Application
    Filed: April 17, 2009
    Publication date: October 21, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Jeff J. Xu
  • Publication number: 20100264469
    Abstract: A metal oxide semiconductor field effect transistor structure and a method for fabricating the metal oxide semiconductor field effect transistor structure provide for a halo region that is physically separated from a gate dielectric. The structure and the method also provide for a halo region aperture formed horizontally and crystallographically specifically within a channel region pedestal within the metal oxide semiconductor field effect transistor structure. The halo region aperture is filled with a halo region formed using an epitaxial method, thus the halo region may be formed physically separated from the gate dielectric. As a result, performance of the metal oxide semiconductor field effect transistor is enhanced.
    Type: Application
    Filed: April 20, 2009
    Publication date: October 21, 2010
    Applicant: International Business Machines Corporation
    Inventors: Huilong Zhu, Qingqing Liang, Jing Wang
  • Publication number: 20100264470
    Abstract: NMOS transistors having controlled channel strain and junction resistance and methods for the fabrication of same are provided herein. In some embodiments, a method for forming an NMOS transistor may include providing a substrate having a p-type silicon region and a gate stack disposed thereon, the gate stack partially defining a source and a drain region; depositing an undoped first silicon layer having a lattice adjusting element atop the p-type silicon region and within the source and the drain regions; and depositing a second silicon layer having a lattice adjusting element and an n-type dopant atop the undoped first silicon layer.
    Type: Application
    Filed: April 20, 2010
    Publication date: October 21, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: SUNDERRAJ THIRUPAPULIYUR, FARAN NOURI, YONAH CHO
  • Publication number: 20100264471
    Abstract: The present invention relates to improved metal-oxide-semiconductor field effect transistor (MOSFET) devices with stress-inducing structures located above the gate structure or at or near the source and drain regions. Specifically, a dielectric layer in on the MOSFET and at least one stress-inducing wedge is pressed into the dielectric layer to induce a stress in the channel of the MOSFET. The at least one stress-inducing wedge is located above the gate of an n-channel MOSFET (nMOSFET) and the at least one stress-inducing wedge is located in or near the source and drain regions, but not above the gate of a p-channel MOSFET (pMOSFET). The former creates tensile stress in the channel of an nMOSFET and then enhance the performance of the nMOSFET. The latter produces compressive stress in the channel of a pMOSFET and then enhance the performance of the pMOSFET.
    Type: Application
    Filed: April 10, 2010
    Publication date: October 21, 2010
    Inventor: Huilong Zhu
  • Publication number: 20100264472
    Abstract: A patterning method with a filling material with a T-shaped cross section is used as a mask during patterning to produce structures having sublithographic dimensions, such as a double-fin field effect transistor.
    Type: Application
    Filed: July 2, 2010
    Publication date: October 21, 2010
    Inventors: Rodger Fehlhaber, Helmut Tews
  • Publication number: 20100264473
    Abstract: Optical structures having an array of protuberances between two layers having different refractive indices are provided. The array of protuberances has vertical and lateral dimensions less than the wavelength range of lights detectable by a photodiode of a CMOS image sensor. The array of protuberances provides high transmission of light with little reflection. The array of protuberances may be provided over a photodiode, in a back-end-of-line interconnect structure, over a lens for a photodiode, on a backside of a photodiode, or on a window of a chip package.
    Type: Application
    Filed: April 29, 2010
    Publication date: October 21, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, Jeffrey P. Gambino, Charles F. Musante
  • Publication number: 20100264474
    Abstract: A back-illuminated type solid-state image pickup device (1041) includes read circuits (Tr1, Tr2) formed on one surface of a semiconductor substrate (1042) to read a signal from a photo-electric conversion element (PD) formed on the semiconductor substrate (1042), in which electric charges (e) generated in a photo-electric conversion region (1052c1) formed under at least one portion of the read circuits (Tr1, Tr2) are collected to an electric charge accumulation region (1052a) formed on one surface side of the semiconductor substrate (1042) of the photo-electric conversion element (PD) by electric field formed within the photo-electric conversion element (PD). Thus, the solid-state image pickup device and the camera are able to make the size of pixel become very small without lowering a saturation electric charge amount (Qs) and sensitivity.
    Type: Application
    Filed: July 1, 2010
    Publication date: October 21, 2010
    Applicant: SONY CORPORATION
    Inventors: Shin IWABUCHI, Kazuhide YOKOTA, Takeshi YANAGITA, Yasushi MARUYAMA
  • Publication number: 20100264475
    Abstract: A magnetic tunnel junction transistor and method of operating the same. In a particular embodiment, the magnetic tunnel junction transistor includes electrically conductive source, drain and gate electrodes. An electrically insulating material having a non-magnetoelectric region and a magnetoelectric region is positioned such that the non-magnetoelectric region is, at least partially, between the source electrode and the drain electrode. The magnetoelectric region of the insulating material, when energized, is configured to change magnetic state of the insulating material. The gate electrode is positioned proximate the magnetoelectric region of the insulating material.
    Type: Application
    Filed: June 25, 2010
    Publication date: October 21, 2010
    Applicant: International Business Machines Corporation
    Inventor: Daniel C. Worledge
  • Publication number: 20100264476
    Abstract: To securely prevent hydrogen from entering a ferroelectric layer of a ferroelectric memory. A first hydrogen barrier layer 5 is formed on the lower side of ferroelectric capacitors 7. Upper surfaces and side surfaces of the ferroelectric capacitors 7 are covered by a second hydrogen barrier layer. All upper electrodes 7c of the plural ferroelectric capacitors 7 to be connected to a common plate line P are connected to one another by an upper wiring layer 91. The upper wiring layer 91 is connected to the plate line P through a lower wiring 32 provided below the ferroelectric capacitors 7. A third hydrogen barrier layer 92 is formed on the upper wiring layer 91 such that all edge sections 92a of the third hydrogen barrier layer 92 come in contact with the first hydrogen barrier layer 5.
    Type: Application
    Filed: July 2, 2010
    Publication date: October 21, 2010
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Shinichi Fukada
  • Publication number: 20100264477
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. A preferred embodiment includes providing a workpiece having a first orientation and at least one second orientation. The semiconductor device is implanted with a dopant species using a first implantation process in the first orientation of the workpiece. The semiconductor device is implanted with the dopant species using a second implantation process in the at least one second orientation of the workpiece, wherein the second implantation process is different than the first implantation process.
    Type: Application
    Filed: July 2, 2010
    Publication date: October 21, 2010
    Inventors: Thomas Schiml, Manfred Eller
  • Publication number: 20100264478
    Abstract: A method is provided that includes forming a trench isolation structure in a dynamic random memory region (DRAM) of a substrate and patterning an etch mask over the trench structure to expose a portion of the trench structure. A portion of the exposed trench structure is removed to form a gate trench that includes a first corner formed by the substrate and a second corner formed by the trench structure. The etch mask is removed and the first corner of the gate trench is rounded to form a rounded corner. This is followed by the formation of an oxide layer over a sidewall of the gate trench, the first rounded corner, and the semiconductor substrate adjacent the gate trench. The trench is filled with a gate material.
    Type: Application
    Filed: October 31, 2007
    Publication date: October 21, 2010
    Applicant: Agere Systems Inc.
    Inventors: Nace M. Rossi, Ranbir Singh, Xiaojun Yuan
  • Publication number: 20100264479
    Abstract: Provided is a semiconductor device having, over a semiconductor substrate, a control gate electrode and a memory gate electrode which are adjacent to each other and constitute a nonvolatile memory. The height of the memory gate electrode is lower than the height of the control gate electrode. A metal silicide film is formed over the upper surface of the control gate electrode, but not formed over the upper surface of the memory gate electrode. The memory gate electrode has, over the upper surface thereof, a sidewall insulating film made of silicon oxide. This sidewall insulating film is formed in the same step as that for the formation of respective sidewall insulating films over the sidewalls of the memory gate electrode and the control gate electrode. The present invention makes it possible to improve the production yield and performance of the semiconductor device having a nonvolatile memory.
    Type: Application
    Filed: June 28, 2010
    Publication date: October 21, 2010
    Inventors: Koichi TOBA, Yasushi ISHII, Yoshiyuki KAWASHIMA, Satoru MACHIDA, Munekatsu NAKAGAWA, Takashi HASHIMOTO
  • Publication number: 20100264480
    Abstract: Memory devices having improved TPD characteristics and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The bit line dielectrics can extend into the semiconductor. The memory cell contains one or more charge storage nodes, a first poly gate, a pair of first bit lines, and a pair of second bit lines. The second bit line can be formed at a higher energy level, a higher concentration of dopants, or a combination thereof compared to an energy level and a concentration of dopants of the first bit line.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 21, 2010
    Applicant: SPANSION LLC
    Inventors: Ning Cheng, Calvin Gabriel, Angela Hui, Lei Xue, Harpreet Kaur Sachar, Phillip Lawrence Jones, Hiro Kinoshita, K.T Chang, Huaqiang Wu
  • Publication number: 20100264481
    Abstract: Nonvolatile memory devices and methods of fabricating the same are provided. A semiconductor substrate is provided having a cell field region and a high-voltage field region. Device isolation films are provided on the substrate. The device isolation films define active regions of the substrate. A cell gate-insulation film and a cell gate-conductive film are provided on the cell field region of the substrate including the device isolation films. A high-voltage gate-insulation film and a high-voltage gate-conductive film are provided on the high-voltage field region of the substrate including the device isolation films. The device isolation film on the high-voltage field region of the substrate is at least partially recessed to provide a groove therein.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 21, 2010
    Inventors: Yoo-Cheol Shin, Jung-Dal Choi
  • Publication number: 20100264482
    Abstract: Memory cells including a control gate, a charge trapping material, and a charge blocking material between the control gate and the charge trapping material. The charge blocking material is configured to allow for erasure of the memory cell by enhanced F-N tunneling of holes from the control gate to the charge trapping material.
    Type: Application
    Filed: July 2, 2010
    Publication date: October 21, 2010
    Inventors: Arup Bhattacharyya, Kirk D. Prall, Luan C. Tran
  • Publication number: 20100264483
    Abstract: A semiconductor storage device and method of manufacturing same at a lower cost by without forming a photolithographic resist. Second impurity regions are arranged in such a manner that second impurity regions adjacent along the column direction are joined together. A select gate electrode is arranged into a ring shape so as to surround the second impurity regions, and is electrically connected to a word line. A first control gate electrode is arranged into a ring shape on the outer peripheral side of the select gate electrode, and a second control gate electrode is arranged into a ring shape on the inner peripheral side of the select gate electrode. A pair of first and second bit lines corresponding to every row are placed on the memory cells of the device, a first bit line is electrically connected to one of first impurity regions that are adjacent along the row direction, and a second bit line is electrically connected to the other of the first impurity regions that are adjacent along the row direction.
    Type: Application
    Filed: April 15, 2010
    Publication date: October 21, 2010
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Toshiaki TAKESHITA
  • Publication number: 20100264484
    Abstract: In a vertical transistor comprising a pillar-shaped semiconductor layer and a gate electrode formed to around the pillar-shaped semiconductor layer, it is difficult to form a transistor having a gate length greater than that of the vertical transistor. The present invention provides a semiconductor device which comprises two vertical transistors comprising first and second pillar-shaped semiconductor layers each formed on a first diffusion layer on a substrate. The vertical transistors have a common gate electrode. A first upper diffusion layer formed on a top of the first pillar-shaped semiconductor layer is connected to a source electrode, and a second upper diffusion layer formed on a top of the second pillar-shaped semiconductor layer is connected to a drain electrode. The vertical transistors are connected in series to operate as a composite transistor having a gate length two times greater than that of each of the vertical transistors.
    Type: Application
    Filed: April 15, 2010
    Publication date: October 21, 2010
    Inventors: Fujio Masuoka, Shintaro Arai
  • Publication number: 20100264485
    Abstract: This invention provides a method of manufacturing a semiconductor device, which comprises the steps of: forming a first columnar semiconductor layer on a first flat semiconductor layer; forming a first semiconductor layer of a second conductive type in a lower portion of the first columnar semiconductor layer; forming a first insulating film around a lower sidewall of the first columnar silicon layer; forming a gate insulating film and a gate electrode around the first columnar silicon layer; forming a sidewall-shaped second insulating film to surround an upper sidewall of the first columnar silicon layer; forming a semiconductor layer of a first conductive type between the first semiconductor layer of the second conductive type and a second semiconductor layer of the second conductive type; and forming a metal-semiconductor compound on an upper surface of the first semiconductor layer of the second conductive type.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 21, 2010
    Inventors: Fujio Masuoka, Hiroki Nakamura, Shintaro Arai, Tomohiko Kudo, Navab Singh, Kavitha Devi Buddharaju, Shen Nansheng, Rukmani Devi Sayanthan
  • Publication number: 20100264486
    Abstract: An electronic device has a plurality of trenches formed in a semiconducting layer. A vertical drift region is located between and adjacent the trenches. An electrode is located within each trench, the electrode having a gate electrode section and a field plate section. A graded field plate dielectric is located between the field plate section and the vertical drift region.
    Type: Application
    Filed: April 20, 2009
    Publication date: October 21, 2010
    Applicant: Texas Instruments Incorporated
    Inventors: Marie Denison, Sameer Pendharkar, Philip L. Hower, John Lin
  • Publication number: 20100264487
    Abstract: A trenched field effect transistor is provided that includes (a) a semiconductor substrate, (b) a trench extending a predetermined depth into the semiconductor substrate, (c) a pair of doped source junctions, positioned on opposite sides of the trench, (d) a doped heavy body positioned adjacent each source junction on the opposite side of the source junction from the trench, the deepest portion of the heavy body extending less deeply into said semiconductor substrate than the predetermined depth of the trench, and (e) a doped well surrounding the heavy body beneath the heavy body.
    Type: Application
    Filed: April 7, 2010
    Publication date: October 21, 2010
    Inventors: Brian Sze-Ki Mo, Duc Chau, Steven Sapp, Izak Bencuya, Dean Edward Probst
  • Publication number: 20100264488
    Abstract: An integrated circuit includes a plurality of trench MOSFET and a plurality of trench Schottky rectifier. The integrated circuit further comprises: tilt-angle implanted body dopant regions surrounding a lower portion of all trench gates sidewalls for reducing Qgd; a source dopant region disposed below a bottom surface of all trench gates for functioning as a current path for preventing a resistance increased caused by the body dopant regions.
    Type: Application
    Filed: April 15, 2009
    Publication date: October 21, 2010
    Applicant: FORCE MOS TECHNOLOGY CO. LTD.
    Inventor: FU-YUAN HSIEH
  • Publication number: 20100264489
    Abstract: A transistor contains a first semiconductor layer of a first conductivity type and a drift layer having a pillar structure in which a second semiconductor layer of the first conductivity type and a third semiconductor layer of a second conductivity type are alternately disposed in a direction parallel to a surface of the first semiconductor layer. The fourth semiconductor layer of the first conductivity type and the fifth semiconductor layer of the second conductivity type are alternately disposed and parallel to the drift layer. The fifth semiconductor layer has a larger amount of impurities than the fourth semiconductor layer. The sixth semiconductor layer of the first conductivity type and the seventh semiconductor layer of the second conductivity type are alternately disposed and parallel to the fourth and the fifth semiconductor layers. The seventh semiconductor layer has a smaller amount of impurities than the sixth semiconductor layer.
    Type: Application
    Filed: March 8, 2010
    Publication date: October 21, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiroshi OHTA, Wataru SAITO, Syotaro ONO, Munehisa YABUZAKI, Nana HATANO, Miho WATANABE
  • Publication number: 20100264490
    Abstract: A field effect transistor includes a semiconductor region of a first conductivity type having an upper surface and a lower surface, the lower surface of the semiconductor region extending over and abutting a substrate. A well regions of a second conductivity type is disposed within the semiconductor region. The field effect transistor also includes source regions of the first conductivity type disposed in the well regions and a gate electrode extending over each well region and overlapping a corresponding one of the source regions. Each gate electrode is insulated from the underlying well region by a gate dielectric. At least one LDD region of the first conductivity type is disposed in the semiconductor region between every two adjacent well regions such that the at least one LDD region is in contact with the two adjacent well regions between which it is disposed.
    Type: Application
    Filed: April 16, 2009
    Publication date: October 21, 2010
    Inventors: BRUCE D. MARCHANT, Daniel M. Kinzer
  • Publication number: 20100264491
    Abstract: A high breakdown voltage semiconductor device, in which a semiconductor layer is formed on a semiconductor substrate across a dielectric layer, includes a drain layer on the semiconductor layer, a buffer layer formed so as to envelop the drain layer, a source layer, separated from the drain layer, and formed so as to surround a periphery thereof, a well layer formed so as to envelop the source layer, and a gate electrode formed across a gate insulating film on the semiconductor layer, wherein the planar shape of the drain layer 113 and buffer layer is a non-continuous or continuous ring.
    Type: Application
    Filed: March 8, 2010
    Publication date: October 21, 2010
    Applicant: FUJI ELECTRIC SYSTEMS CO. LTD.
    Inventor: Masaharu YAMAJI
  • Publication number: 20100264492
    Abstract: A semiconductor on insulator semiconductor device has metal or silicide source and drain contact regions (38, 40), activated source and drain regions (30, 32) and a body region (34). The structure may be a double gated SOI structure or a fully depleted (FD) SOI structure. A sharp intergace and low resistance are achieved with a process that uses spacers (28) and which fully replaces the full thickness of a semiconductor layer with the contact regions.
    Type: Application
    Filed: June 6, 2006
    Publication date: October 21, 2010
    Inventors: Radu Surdeanu, Gerben Doornbos, Youri Ponomarev, Josine Loo
  • Publication number: 20100264493
    Abstract: To provide a semiconductor device which includes a P-type Si substrate, an ESD protection element, and a protected element. The ESD protection element includes a source N-type diffusion region, and a high-concentration P-type diffusion region formed from under the source N-type diffusion region to at least under part of a gate electrode, covering the source N-type diffusion region within the P-type Si substrate, and having a higher P-type impurity concentration than the P-type Si substrate. The protected element includes a drain N-type diffusion region, and a low-concentration P-type diffusion region that is in contact with the drain N-type diffusion region within the P-type Si substrate. The drain electrode of the ESD protection element and the drain electrode of the protected element are connected, and the high-concentration P-type diffusion region 103 has a higher P-type impurity concentration than the low-concentration P-type diffusion region.
    Type: Application
    Filed: March 25, 2010
    Publication date: October 21, 2010
    Applicant: PANASONIC CORPORATION
    Inventors: Yasufumi IZUTSU, Kazuyuki SAWADA, Yuji HARADA
  • Publication number: 20100264494
    Abstract: Recessed channel array transistor (RCAT) structures and method of formation are generally described. In one example, an electronic device includes a semiconductor substrate, a first fin coupled with the semiconductor substrate, the first fin comprising a first source region and a first drain region, and a first gate structure of a recessed channel array transistor (RCAT) formed in a first gate region disposed between the first source region and the first drain region, wherein the first gate structure is formed by removing a sacrificial gate structure to expose the first fin in the first gate region, recessing a channel structure into the first fin, and forming the first gate structure on the recessed channel structure.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 21, 2010
    Inventors: Brian S. Doyle, Ravi Pillarisetty, Gilbert Dewey, Robert S. Chau
  • Publication number: 20100264495
    Abstract: A method of forming a semiconductor device is provided that includes forming a Ge-containing layer atop a p-type device regions of the substrate. Thereafter, a first dielectric layer is formed in a second portion of a substrate, and a second dielectric layer is formed overlying the first dielectric layer in the second portion of the substrate and overlying a first portion of the substrate. Gate structures may then formed atop the p-type device regions and n-type device regions of the substrate, in which the gate structures to the n-type device regions include a rare earth metal.
    Type: Application
    Filed: April 20, 2009
    Publication date: October 21, 2010
    Applicant: International Business Machines Corporation
    Inventors: Renee T. Mo, Huiming Bu, Michael P. Chudzik, William K. Henson, Mukesh V. Khare, Vijay Narayanan
  • Publication number: 20100264496
    Abstract: A microelectronic device including, on a substrate, at least one element such as a SRAM memory cell; one or more first transistor(s), respectively including a number k of channels (k?1) parallel in a direction forming a non-zero angle with the main plane of the substrate, and one or more second transistor(s), respectively including a number m of channels, such that m>k, parallel in a direction forming a non-zero angle, or an orthogonal direction, with the main plane of the substrate.
    Type: Application
    Filed: November 7, 2008
    Publication date: October 21, 2010
    Applicant: COMM. A L'ENERGIE ATOM. ET AUX ENERGIES ALTERNA
    Inventors: Olivier Thomas, Thomas Ernst
  • Publication number: 20100264497
    Abstract: Multiple threshold voltage (Vt) field-effect transistor (FET) devices and techniques for the fabrication thereof are provided. In one aspect, a FET device is provided including a source region; a drain region; at least one channel interconnecting the source and drain regions; and a gate, surrounding at least a portion of the channel, configured to have multiple threshold voltages due to the selective placement of at least one band edge metal throughout the gate.
    Type: Application
    Filed: April 21, 2009
    Publication date: October 21, 2010
    Applicant: International Business Machines Corporation
    Inventors: Josephine B. Chang, Leland Chang, Renee T. Mo, Vijay Narayanan, Jeffrey W. Sleight
  • Publication number: 20100264498
    Abstract: Method for manufacturing a capacitor on a substrate, the capacitor including a first electrode (5) and a second electrode (12; 25), the first and second electrodes being separated by a cavity (16; 32), the substrate including an insulating surface layer (3), the first electrode (5) being arranged on the insulating surface layer a first metal body (7a; 20) being adjacent to the first electrode and arranged as anchor of the second electrode (12; 25) the second electrode being arranged as a beam-shaped body (12; 25) located on the first metal body and above the first electrode; the cavity (16; 32) being laterally demarcated by a sidewall of the first metal body.
    Type: Application
    Filed: October 15, 2008
    Publication date: October 21, 2010
    Applicant: EPCOS AG
    Inventors: Robertus T. F. Van Schaijk, Piebe Anne Zijlstra, Ronald Koster, Pieter Simon Van Dijk
  • Publication number: 20100264499
    Abstract: A MEMS device includes a chip carrier having an acoustic port extending from a first surface to a second surface of the chip carrier, a MEMS die disposed on the chip carrier to cover the acoustic port at the first surface of the chip carrier, and an enclosure bonded to the chip carrier and encapsulating the MEMS die.
    Type: Application
    Filed: June 28, 2010
    Publication date: October 21, 2010
    Inventors: Jason P. Goodelle, Kaigham J. Gabriel