Patents Issued in May 27, 2014
  • Patent number: 8735181
    Abstract: A measuring device measures a gate length of a plurality of gate electrodes formed on a wafer. A calculation device calculates data of an ion implantation dosage for making uniform a threshold voltage in a wafer surface on the basis of distribution of the gate length in a wafer surface measured by the measuring device. The ion implantation device implants ions into the wafer on the basis of the data of the ion implantation dosage calculated by the calculation device.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: May 27, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Osamu Fujii, Yoshimasa Kawase, Hisato Oyamatsu, Takeshi Shibata
  • Patent number: 8735182
    Abstract: A method for detecting embedded voids present in a structure formed in or on a semiconductor substrate is described. The method includes performing a processing step P1 for forming the structure; measuring the mass M1 of the substrate; performing thermal treatment; measuring the mass M2 of the substrate; calculating the mass difference between the mass of the substrate measured before and after the performed thermal treatment; and deducing the presence of embedded voids in the structure by comparing the mass difference with a pre-determined value.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: May 27, 2014
    Assignee: IMEC
    Inventors: Leonardus Leunissen, Sandip Halder, Eric Beyne
  • Patent number: 8735183
    Abstract: There is provided a semiconductor device assembly with an interposer and method of manufacturing the same. More specifically, in one embodiment, there is provided a semiconductor device assembly comprising a semiconductor substrate, at least one semiconductor die attached to the semiconductor substrate, an interposer disposed on the semiconductor die, and a controller attached to the interposer. There is also provided a method of manufacturing comprising forming a first subassembly by coupling a substrate and a semiconductor die, and forming second subassembly by attaching a controller to an interposer, and coupling the first subassembly to the second subassembly.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: May 27, 2014
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Matt Schwab
  • Patent number: 8735184
    Abstract: A device includes a semiconductor die having a surface, a plurality of proximity connectors proximate to the surface, and a circuit coupled to at least one of the plurality of proximity connectors. The semiconductor die is configured to communicate voltage-mode signals through capacitive coupling using one or more of the plurality of proximity connectors. The circuit also includes a filter with a capacitive-summing junction to equalize the signals.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: May 27, 2014
    Assignee: Oracle International Corporation
    Inventors: Ronald Ho, Robert D. Hopkins, William S. Coates, Robert J. Drost
  • Patent number: 8735185
    Abstract: The present invention relates to a method of fabricating a patterned substrate for fabricating a light emitting diode (LED), the method including forming an aluminum layer on a substrate, forming an anodic aluminum oxide (AAO) layer having a large number of holes formed therein by performing an anodizing treatment of the aluminum layer, partially etching a surface of the substrate using the aluminum layer with the large number of the holes as a shadow mask, thereby forming patterns, and removing the aluminum layer from the substrate.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: May 27, 2014
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Yeo Jin Yoon, Chang Yeon Kim
  • Patent number: 8735186
    Abstract: The energy distribution of the beam spot on the irradiated surface changes due to the change in the oscillation condition of the laser or before and after the maintenance. The present invention provides an optical system for forming a rectangular beam spot on an irradiated surface including a beam homogenizer for homogenizing the energy distribution of the rectangular beam spot on the irradiated surface in a direction of its long or short side. The beam homogenizer includes an optical element having a pair of reflection planes provided oppositely for reflecting the laser beam in the direction where the energy distribution is homogenized and having a curved shape in its entrance surface. The entrance surface of the optical element means a surface of the optical element where the laser beam is incident first.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: May 27, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Tomoaki Moriwaka
  • Patent number: 8735187
    Abstract: An array substrate for a liquid crystal display device includes a substrate, a gate line and a data line on the substrate and crossing each other to define a pixel region, a thin film transistor connected to the gate line and the data line, a first passivation layer on the thin film transistor and having a first unevenness structure at its top surface, an auxiliary unevenness layer on the first passivation layer and having a first roughness structure at its top surface, and a reflector on the auxiliary unevenness layer, the reflector having a second unevenness structure due to the first unevenness structure of the first passivation layer and a second roughness structure due to the first roughness structure of the auxiliary unevenness layer, the second roughness structure having smaller patterns than the second unevenness structure.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: May 27, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Jae-Kyun Lee, Jae-Young Oh
  • Patent number: 8735188
    Abstract: An atomic layer deposition apparatus and a sealing method of an organic light emitting device using the same are disclosed. In one embodiment, the atomic layer deposition apparatus improves a structure of the purge gas injection nozzle so as to increase the exhaust efficiency of the purge gas in an atomic layer deposition process, which increases a speed of a purge process. As a result, it is possible to improve a deposition speed and a quality of a sealing film when a sealing process for sealing the organic light emitting device is implemented by using the atomic layer deposition.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: May 27, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Seung-Hun Kim, Sang-Joon Seo, Jin-Kwang Kim, Jun-Hyuk Cheon
  • Patent number: 8735189
    Abstract: A method of fabricating a light emitting diode device comprises providing a substrate, growing an epitaxial structure on the substrate. The epitaxial structure includes a first layer on the substrate, an active layer on the first layer and a second layer on the active layer. The method further comprises depositing a conductive and reflective layer on the epitaxial structure, forming a group of first trenches and a second trench. Each of the first and second trenches extends from surface of the conductive and reflective layer to the first layer to expose part of the first layer. The method further comprises depositing conductive material to cover a portion of the conductive and reflective layer to form a first contact pad, and cover surfaces between adjacent first trenches to form a second contact pad. The second contact pad electrically connects the first layer by filling the conductive material in the first trenches.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: May 27, 2014
    Assignee: Starlite LED Inc
    Inventor: Chang Han
  • Patent number: 8735190
    Abstract: A semiconductor structure includes a module with a plurality of die regions, a plurality of light-emitting devices disposed upon the substrate so that each of the die regions includes one of the light-emitting devices, and a lens board over the module and adhered to the substrate with glue. The lens board includes a plurality of microlenses each corresponding to one of the die regions, and at each one of the die regions the glue provides an air-tight encapsulation of one of the light-emitting devices by a respective one of the microlenses. Further, phosphor is included as a part of the lens board.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: May 27, 2014
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Ching-Yi Chen, Yu-Sheng Tang, Hao-Yu Yang, Hsin-Hung Chen, Tzu-Wen Shih
  • Patent number: 8735191
    Abstract: A method of fabricating a composite semiconductor structure includes providing a first substrate comprising a first material and having a first surface and forming a plurality of pedestals extending to a predetermined height in a direction normal to the first surface. The method also includes attaching a plurality of elements comprising a second material to each of the plurality of pedestals, providing a second substrate having one or more structures disposed thereon, and aligning the first substrate and the second substrate. The method further includes joining the first substrate and the second substrate to form the composite substrate structure and removing at least a portion of the first substrate from the composite substrate structure.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: May 27, 2014
    Assignee: Skorpios Technologies, Inc.
    Inventor: Elton Marchena
  • Patent number: 8735192
    Abstract: There is provided a nitride semiconductor light emitting device having a light emitting portion coated with a coating film, the light emitting portion being formed of a nitride semiconductor, the coating film in contact with the light emitting portion being formed of an oxynitride. There is also provided a method of fabricating a nitride semiconductor laser device having a cavity with a facet coated with a coating film, including the steps of: providing cleavage to form the facet of the cavity; and coating the facet of the cavity with a coating film formed of an oxynitride.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: May 27, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Takeshi Kamikawa, Yoshinobu Kawaguchi
  • Patent number: 8735193
    Abstract: A light-emitting diode includes a substrate, a lower cladding layer, an active layer having a quantum well of a thirty percent concentration of indium on the lower cladding layer, and an upper cladding layer. A method of manufacturing light-emitting diodes includes forming a lower cladding layer on a substrate, forming an active layer on the lower cladding layer such that the active layer has a quantum well of thirty percent indium, forming an upper cladding layer on the active layer, and forming a metal cap on the upper cladding layer.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: May 27, 2014
    Assignee: Phoseon Technology, Inc.
    Inventor: Jules Braddell
  • Patent number: 8735194
    Abstract: Provided is a method of manufacturing a display apparatus, including forming a drive circuit and a light-emitting portion on a substrate in which the forming the light-emitting portion includes forming a transparent anode electrode for applying a charge to an emission layer, forming a first coating layer and a second coating layer on the transparent anode electrode, removing the first coating layer by etching using the second coating layer as a mask, and forming a layer including the emission layer on a part of the transparent anode electrode from which the first coating layer is removed. A surface of the transparent anode electrode becomes as clean as a surface cleaned with ultraviolet irradiation.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: May 27, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kenji Takahashi, Masafumi Sano
  • Patent number: 8735195
    Abstract: Disclosed is a method of manufacturing a ZnO-based semiconductor device having at least p-type ZnO-based semiconductor layer, which includes a step of forming a contact metal layer on the p-type ZnO-based semiconductor layer wherein the contact metal layer contains at least one of Ni and Cu; and a step of performing heat treatment of the contact metal layer and the p-type ZnO-based semiconductor layer under an oxygen-free atmosphere to form a mixture layer including elements of the p-type ZnO-based semiconductor layer and the contact metal layer at a boundary region therebetween while maintaining a metal phase layer on a surface of the contact metal layer.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: May 27, 2014
    Assignee: Stanley Electric Co., Ltd.
    Inventor: Naochika Horio
  • Patent number: 8735196
    Abstract: According to one embodiment, in a method of a nitride semiconductor light emitting device, a nitride semiconductor laminated body is formed on a first substrate having a first size. A first adhesion layer with a second size smaller than the first size is formed on the nitride semiconductor laminated body. A second adhesion layer is formed on a second substrate. The first and the second substrates are bonded while the first and second adhesion layers being overlapped each other. The first substrate is removed so as to generate a recess having a third size equal to or larger than the second size. The first substrate is etched until exposing the nitride semiconductor laminated body while injecting a chemical solution into the recess. The exposed nitride semiconductor laminated body is etched using the chemical solution so as to form a concave-convex portion in the exposed nitride semiconductor laminated body.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: May 27, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masanobu Ando
  • Patent number: 8735197
    Abstract: This invention discloses a wafer-scaled light-emitting structure comprising a supportive substrate; an anti-deforming layer; a bonding layer; and a light-emitting stacked layer, wherein the anti-deforming layer reduces or removes the deformation like warp caused by thinning of the substrate.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: May 27, 2014
    Assignee: Epistar Corporation
    Inventors: Chin-San Tao, Tzu-Chien Hsu, Tsen-Kuei Wang
  • Patent number: 8735198
    Abstract: One embodiment of the present application includes a multisensor assembly. This assembly has an electromechanical motion sensor member defined with one wafer layer, a first sensor carried with a first one or two or more other wafer layers, and a second sensor carried with a second one of the other wafer layers. The one wafer layer is positioned between the other wafer layers to correspondingly enclose the sensor member within a cavity of the assembly.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: May 27, 2014
    Assignee: NXP, B.V.
    Inventors: Padraig O'Mahony, Frank Caris, Theo Kersjes, Christian Paquet
  • Patent number: 8735199
    Abstract: In an embodiment a method of fabricating a MEMS structure is provided. The method includes fabricating a working structure in a doped layer proximate a first surface of a silicon substrate. The first surface of the silicon substrate is bonded to a first planar glass structure having a first one or more sacrificial features embedded therein. The method also includes etching to remove a bulk of the silicon substrate, wherein the bulk is reverse of the first surface on the silicon substrate, wherein etching removes the bulk and leaves the working structure bonded to the first planar glass structure. The method also includes etching to remove the first one or more sacrificial features from the first planar glass structure.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: May 27, 2014
    Assignee: Honeywell International Inc.
    Inventors: Ryan Supino, Grant H. Lodden
  • Patent number: 8735200
    Abstract: Embodiments of the invention provide robust electrothermal MEMS with fast thermal response. In one embodiment, an electrothermal bimorph actuator is fabricated using aluminum as one bimorph layer and tungsten as the second bimorph layer. The heating element can be the aluminum or the tungsten, or a combination of aluminum and tungsten, thereby providing a resistive heater and reducing deposition steps. Polyimide can be used for thermal isolation of the bimorph actuator and the substrate. For MEMS micromirror designs, the polyimide can also be used for thermal isolation between the bimorph actuator and the micromirror.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: May 27, 2014
    Inventors: Sagnik Pal, Huikai Xie
  • Patent number: 8735201
    Abstract: The challenge for the present invention is to provide a film-forming method and for forming a passivation film which can sufficiently inhibit the loss of carriers due to their recombination; and a method for manufacturing a solar cell element with the use of the method or the device. The film-forming device comprises a mounting portion 22 for mounting a film-forming object, a high frequency power source 25, and a shower plate 23 which is provided to face the film-forming object S mounted on the mounting portion 22, which introduces a film-forming gas, and to which the high frequency power source is connected and a high frequency voltage is applied. A low frequency power source 26 for applying a low frequency voltage is connected to the shower plate or the mounting portion mounting a substrate. The film-forming method is performed using the film-forming device, and the film-forming method is carried out in forming a passivation film.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: May 27, 2014
    Assignee: ULVAC, Inc.
    Inventors: Masashi Kubo, Makoto Kikuchi, Kazuya Saito, Miwa Watai, Miho Shimizu
  • Patent number: 8735202
    Abstract: A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 27, 2014
    Assignee: Alliance for Sustainable Energy, LLC
    Inventor: Mark W. Wanlass
  • Patent number: 8735203
    Abstract: The present invention relates to multicrystalline p-type silicon wafers with high lifetime. The silicon wafers contain 0.2-2.8 ppma boron and 0.06-2.8 ppma phosphorous and/or arsenic and have been subjected to phosphorous diffusion and phosphorous gettering at a temperature of above 925° C. The invention further relates to a method for production of such multicrystalline silicon wafers and to solar cells comprising such silicon wafers.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: May 27, 2014
    Assignee: Elkem Solar AS
    Inventors: Eric Enebakk, Kristian Peter, Bernd Raabe, Ragnar Tronstad
  • Patent number: 8735204
    Abstract: Methods for contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication are provided. In one embodiment, a method for fabricating an electrical semiconductor device comprises: a first step that includes gettering of impurities from a semiconductor wafer and forming a backsurface field; and a second step that includes forming a front contact for the semiconductor wafer, wherein the second step is performed after completion of the first step.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: May 27, 2014
    Assignee: Alliance for Sustainable Energy, LLC
    Inventor: Bhushan Sopori
  • Patent number: 8735205
    Abstract: A method of fabricating a microelectronic unit can include providing a semiconductor element having front and rear surfaces, a plurality of conductive pads each having a top surface exposed at the front surface and a bottom surface remote from the top surface, and a first opening extending from the rear surface towards the front surface. The method can also include forming at least one second opening extending from the first opening towards the bottom surface of a respective one of the pads. The method can also include forming a conductive via, a conductive interconnect, and a contact, the conductive via in registration with and in contact with the conductive pad and extending within the second opening, the contact exposed at an exterior of the microelectronic unit, the conductive interconnect electrically connecting the conductive via with the contact and extending away from the via at least partly within the first opening.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: May 27, 2014
    Assignee: Invensas Corporation
    Inventors: Belgacem Haba, Kenneth Allen Honer, David B. Tuckerman, Vage Oganesian
  • Patent number: 8735206
    Abstract: A method includes a first bonding step of bonding a first main surface of a first solar cell and one side portion of a first wiring member to each other in such a way that the first main surface of the first solar cell and the one side portion are heated and pressed against each other by heated first and second tools in a state where the first main surface of the first solar cell and the one side portion face each other with the resin adhesive interposed therebetween. The first bonding step is performed with the first tool disposed in such a way that, in an extending direction of the first wiring member, both end portions of the first tool are located outside both ends of a portion of the first wiring member, the portion facing the first solar cell with the resin adhesive interposed therebetween.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: May 27, 2014
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Koutarou Sumitomo, Tomonori Tabe
  • Patent number: 8735207
    Abstract: The present disclosure provides one embodiment of a method. The method includes providing a semiconductor substrate having a front side and a backside, wherein the front side of the semiconductor substrate includes a plurality of backside illuminated imaging sensors; bonding a carrier substrate to the semiconductor substrate from the front side; thinning the semiconductor substrate from the backside; performing an ion implantation to the semiconductor substrate from the backside; performing a laser annealing process to the semiconductor substrate from the backside; and thereafter, performing a polishing process to the semiconductor substrate from the backside.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: May 27, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung Chien Wang, Yeur-Luen Tu, Chia-Shiung Tsai
  • Patent number: 8735208
    Abstract: A method for forming a back-side illuminated image sensor from a semiconductor substrate, including the steps of: a) forming, from the front surface of the substrate, areas of same conductivity type as the substrate but of higher doping level, extending deep under the front surface, these areas being bordered with insulating regions orthogonal to the front surface; b) thinning the substrate from the rear surface to the vicinity of these areas and all the way to the insulating regions; c) partially hollowing out the insulating regions on the rear to surface side; and d) performing a laser surface anneal of the rear surface of the substrate.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: May 27, 2014
    Assignees: STMicroelectronics S.A., STMicroelectronics (Crolles 2) SAS
    Inventors: François Roy, Michel Marty
  • Patent number: 8735209
    Abstract: An apparatus or method can include forming a graphene layer including a working surface, forming a polyvinyl alcohol (PVA) layer upon the working surface of the graphene layer, and forming a dielectric layer upon the PVA layer. In an example, the PVA layer can be activated and the dielectric layer can be deposited on an activated portion of the PVA layer. In an example, an electronic device can include such apparatus, such as included as a portion of graphene field-effect transistor (GFET), or one or more other devices.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 27, 2014
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Inanc Meric, Kenneth Shepard, Noah J. Tremblay, Philip Kim, Colin P. Nuckolls
  • Patent number: 8735210
    Abstract: A method for forming a photovoltaic device includes depositing one or more layers of a photovoltaic stack on a substrate by employing a high deposition rate plasma enhanced chemical vapor deposition (HDR PECVD) process. Contacts are formed on the photovoltaic stack to provide a photovoltaic cell. Annealing is performed on the photovoltaic cell at a temperature and duration configured to improve overall performance.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: May 27, 2014
    Assignee: International Business Machines Corporation
    Inventors: Keith E. Fogel, Augustin J. Hong, Jeehwan Kim, Devendra K. Sadana
  • Patent number: 8735211
    Abstract: The present disclosure includes a high density resistive random access memory (RRAM) device, as well as methods of fabricating a high density RRAM device. One method of forming an RRAM device includes forming a resistive element having a metal-metal oxide interface. Forming the resistive element includes forming an insulative material over the first electrode, and forming a via in the insulative material. The via is conformally filled with a metal material, and the metal material is planarized to within the via. A portion of the metal material within the via is selectively treated to create a metal-metal oxide interface within the via. A second electrode is formed over the resistive element.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: May 27, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Joseph N. Greeley, John A. Smythe
  • Patent number: 8735212
    Abstract: A silicon solar cell is manufactured by providing a carrier plate, and by applying a first contact pattern to the carrier plate. The first contact pattern includes a set of first laminar contacts. The silicon solar cell is further manufactured by applying a multitude of silicon slices to the first contact pattern, and by applying a second contact pattern to the multitude of silicon slices. Each first laminar contact of the set of first laminar contacts is in spatial laminar contact with maximally two silicon slices. The second contact pattern includes a set of second laminar contacts. Each second laminar contact of the set of second laminar contacts is in spatial laminar contact with maximally two silicon slices.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: May 27, 2014
    Assignee: International Business Machines Corporation
    Inventors: Rainer Klaus Krause, Gerd Pfeiffer, Hans-Juergen Eickelmann, Thorsten Muehge
  • Patent number: 8735213
    Abstract: A minute electrode, a photoelectric conversion device including the minute electrode, and manufacturing methods thereof are provided. A plurality of parallel groove portions and a region sandwiched between the groove portions are formed in a substrate, and a conductive resin is supplied to the groove portions and the region and is fixed, whereby the groove portions are filled with the conductive resin and the region is covered with the conductive resin. The supplied conductive resin is not expanded outward, and the electrode with a designed width can be formed. Part of the electrode is formed over the region sandwiched between the groove portions, thus, the area of a cross section in the short axis direction can be large, and a low resistance in the long axis direction can be obtained.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: May 27, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yuji Oda, Takashi Hirose, Koichiro Tanaka, Sho Kato, Emi Koezuka
  • Patent number: 8735214
    Abstract: This invention relates to a method for producing group IB-IIIA-VIA quaternary or higher alloy semiconductor films wherein the method comprises the steps of (i) providing a metal film comprising a mixture of group IB and group IIIA metals; (ii) heat treating the metal film in the presence of a source of a first group VIA element (said first group VIA element hereinafter being referred to as VIA1) under conditions to form a first film comprising a mixture of at least one binary alloy selected from the group consisting of a group IB-VIA1 alloy and a group IIIA-VIA1 alloy and at least one group IB-IIIA-VIA1 ternary alloy (iii) optionally heat treating the first film in the presence of a source of a second group VIA element (said second group VI element hereinafter being referred to as VIA2) under conditions to convert the first film into a second film comprising at least one alloy selected from the group consisting of a group IB-VIA1-VIA2 alloy and a group IIIA-VIA1-VIA2 alloy; and the at least one group IB-III-V
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: May 27, 2014
    Assignee: University of Johannesburg
    Inventor: Vivian Alberts
  • Patent number: 8735215
    Abstract: An example embodiment relates to a method including forming a bottom electrode and an insulating layer on a substrate, the insulating layer defining a first opening that exposes a portion of the bottom electrode. The method includes forming a variable resistance material pattern, including a plurality of elements, to fill the first opening. The variable resistance material pattern may be doped with a dopant that includes at least one of the plurality of elements in the variable resistance material pattern. The method includes forming a top electrode on the variable resistance material pattern.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 27, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-Hee Park, Man-Sug Kang, Hideki Horii, Hyo-Jung Kim, Jung-Hwan Park
  • Patent number: 8735216
    Abstract: Some embodiments include methods for fabricating memory cell constructions. A memory cell may be formed to have a programmable material directly against a material having a different coefficient of expansion than the programmable material. A retaining shell may be formed adjacent the programmable material. The memory cell may be thermally processed to increase a temperature of the memory cell to at least about 300° C., causing thermally-induced stress within the memory cell. The retaining shell may provide a stress which substantially balances the thermally-induced stress. Some embodiments include memory cell constructions. The constructions may include programmable material directly against silicon nitride that has an internal stress of less than or equal to about 200 megapascals. The constructions may also include a retaining shell silicon nitride that has an internal stress of at least about 500 megapascals.
    Type: Grant
    Filed: February 9, 2013
    Date of Patent: May 27, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Jun Liu, Jian Li
  • Patent number: 8735217
    Abstract: A nonvolatile memory element is disclosed comprising a first electrode, a near-stoichiometric metal oxide memory layer having bistable resistance, and a second electrode in contact with the near-stoichiometric metal oxide memory layer. At least one electrode is a resistive electrode comprising a sub-stoichiometric transition metal nitride or oxynitride, and has a resistivity between 0.1 and 10 ?cm. The resistive electrode provides the functionality of an embedded current-limiting resistor and also serves as a source and sink of oxygen vacancies for setting and resetting the resistance state of the metal oxide layer. Novel fabrication methods for the second electrode are also disclosed.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: May 27, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Hieu Pham, Vidyut Gopal, Imran Hashim, Tim Minvielle, Dipankar Pramanik, Yun Wang, Takeshi Yamaguchi, Hong Sheng Yang
  • Patent number: 8735218
    Abstract: A method of producing an electronic module with at least one electronic component and one carrier. A structure is provided on the carrier so that the electronic component can take a desired target position relative to the structure. The structure is coated with a liquid meniscus suitable for receiving the electronic component. Multiple electronic components are provided at a delivery point for the electronic components. The carrier, with the structure, is moved nearby and opposite to the delivery point, where the delivery point delivers one of the electronic components without contact, while the structure on the carrier is moving near the delivery point, so that after a phase of free movement the electronic component at least partly touches the material, and the carrier, with the structure, is moved to a downstream processing point, while the electronic component aligns itself to the structure on the liquid meniscus.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: May 27, 2014
    Assignee: Muehlbauer AG
    Inventors: Michael Max Mueller, Helfried Zabel, Hans-Peter Monser
  • Patent number: 8735219
    Abstract: A method of integrating a first substrate having a first surface with a first insulating material and a first contact structure with a second substrate having a second surface with a second insulating material and a second contact structure. The first insulating material is directly bonded to the second insulating material. A portion of the first substrate is removed to leave a remaining portion. A third substrate having a coefficient of thermal expansion (CTE) substantially the same as a CTE of the first substrate is bonded to the remaining portion. The bonded substrates are heated to facilitate electrical contact between the first and second contact structures. The third substrate is removed after heating to provided a bonded structure with reliable electrical contacts.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: May 27, 2014
    Assignee: Ziptronix, Inc.
    Inventors: Paul M. Enquist, Gaius Gillman Fountain
  • Patent number: 8735220
    Abstract: A method for fabricating a re-built wafer which comprises chips having connection pads, comprising: fabricating a first wafer of chips, production on this wafer of a stack of at least one layer of redistribution of the pads of the chips on conductive tracks designed for the interconnection of the chips, this stack being designated the main RDL layer, cutting this wafer in order to obtain individual chips each furnished with their RDL layer, transferring the individual chips with their RDL layer to a sufficiently rigid support to remain flat during the following steps, which support is furnished with an adhesive layer, with the RDL layer on the adhesive layer, depositing a resin in order to encapsulate the chips, polymerizing the resin, removing the rigid support, depositing a single redistribution layer called a mini RDL in order to connect the conductive tracks of the main RDL layer up to interconnection contacts, through apertures made in the adhesive layer, the wafer comprising the polymerized resin, the c
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: May 27, 2014
    Assignee: 3D Plus
    Inventor: Christian Val
  • Patent number: 8735221
    Abstract: Provided are a stacked package, method of fabricating a stacked package, and method of mounting a stacked package. A method includes providing an upper semiconductor package including an upper package substrate, upper semiconductor chips formed on a top surface of the upper package substrate, and first solders formed on a bottom surface of the upper package substrate and having a first melting temperature, providing a lower semiconductor package including a lower package substrate, lower semiconductor chips formed on a top surface of the lower package substrate, and solder paste nodes formed on the top surface of the lower package substrate and having a second melting temperature lower than the first melting temperature, and forming inter-package bonding units by attaching respective first solders and solder paste nodes to each other by performing annealing at a temperature higher than the second melting temperature and lower than the first melting temperature.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 27, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Wook Yoo, Sun-Kyoung Seo
  • Patent number: 8735222
    Abstract: In regard to a semiconductor device having a multilayered wiring board where a semiconductor chip is embedded inside, a technology which allows the multilayered wiring board to be made thinner is provided. A feature of the present invention is that, in a semiconductor device where bump electrodes are formed over a main surface (element forming surface) of a semiconductor chip embedded in a chip-embedded wiring board, an insulating film is formed over a back surface (a surface on the side opposite to the main surface) of the semiconductor chip. As a result, it becomes unnecessary to form a prepreg over the back surface of the semiconductor chip. Therefore, an effect of thinning the chip-embedded wiring board in which the semiconductor chip is embedded is obtained.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: May 27, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Masakatsu Goto, Minoru Enomoto
  • Patent number: 8735223
    Abstract: A method of forming a semiconductor device includes affixing a die to a heat sink to form a die and heat sink assembly and then placing the die and heat sink assembly on a support element. A semiconductor device includes a die and heat sink assembly disposed on a support element. The die and heat sink assembly is pre-assembled prior to being disposed on the support element.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: May 27, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Wei Gao, Zhiwei Gong, Dehong Ye, Huchang Zhang
  • Patent number: 8735224
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a terminal having a top with a depression; applying a dielectric material in the depression, the dielectric material having a gap formed therein and exposing a portion of the top therefrom; forming a trace within the gap and in direct contact with the top, the trace extending laterally over an upper surface of the dielectric material; and connecting an integrated circuit to the terminal through the trace.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: May 27, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Zigmund Ramirez Camacho
  • Patent number: 8735225
    Abstract: Methods and systems for packaging MEMS devices such as interferometric modulator arrays are disclosed. One embodiment of a MEMS device package structure includes a seal with a chemically reactant getter. Another embodiment of a MEMS device package comprises a primary seal with a getter, and a secondary seal proximate an outer periphery of the primary seal. Yet another embodiment of a MEMS device package comprises a getter positioned inside the MEMS device package and proximate an inner periphery of the package seal.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: May 27, 2014
    Assignee: Qualcomm Mems Technologies, Inc.
    Inventors: Lauren Palmateer, William J. Cummings, Brian Gally, Clarence Chui, Manish Kothari
  • Patent number: 8735226
    Abstract: Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of arrays on coatings comprising nanostructure association groups, formation of arrays in spin-on-dielectrics, solvent annealing after nanostructure deposition, patterning using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices).
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: May 27, 2014
    Assignee: SanDisk Corporation
    Inventors: Jian Chen, Karen Chu Cruden, Xiangfeng Duan, Chao Liu, J. Wallace Parce
  • Patent number: 8735227
    Abstract: A semiconductor device with minimized current flow differences and method of fabricating same are disclosed. The method includes forming a semiconductor stack including a plurality of layers that include a first layer having a first conductivity type and a second layer having a first conductivity type, in which the second layer is on top of the first layer, forming a plurality of mesas in the semiconductor layer stack, and forming a plurality of gates in the semiconductor layer stack having a second conductivity type and situated partially at a periphery of the mesas, in which the plurality of gates are formed to minimize current flow differences between a current flowing from the first layer to the plurality of mesas at a first applied gate bias and a current flowing from the first layer to the plurality of mesas at a second applied gate bias when voltage is applied to the semiconductor device.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: May 27, 2014
    Assignee: Northrop Grumman Systems Corporation
    Inventor: John V. Veliadis
  • Patent number: 8735228
    Abstract: A trench isolation metal-oxide-semiconductor (MOS) P-N junction diode device and a manufacturing method thereof are provided. The trench isolation MOS P-N junction diode device is a combination of an N-channel MOS structure and a lateral P-N junction diode, wherein a polysilicon-filled trench oxide layer is buried in the P-type structure to replace the majority of the P-type structure. As a consequence, the trench isolation MOS P-N junction diode device of the present invention has the benefits of the Schottky diode and the P-N junction diode. That is, the trench isolation MOS P-N junction diode device has rapid switching speed, low forward voltage drop, low reverse leakage current and short reverse recovery time.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: May 27, 2014
    Assignee: PFC Device Corp.
    Inventors: Mei-Ling Chen, Hung-Hsin Kuo, Kuo-Liang Chao
  • Patent number: 8735229
    Abstract: A ZnO-based thin film transistor (TFT) is provided herein. Also provided is a method for manufacturing the TFT. The ZnO-based TFT is very sensitive to the oxygen concentration present in a channel layer. In order to prevent damage to a channel layer of a bottom gate TFT, and to avoid a deep negative threshold voltage resulting from damage to the channel layer, the method for manufacturing the ZnO-based TFT comprises formation of an etch stop layer or a passivation layer comprising unstable or incompletely bonded oxygen, and annealing the layers to induce an interfacial reaction between the oxide layer and the channel layer and to reduce the carrier concentration.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: May 27, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyoung-seok Son, Sang-yoon Lee, Myung-kwan Ryu, Tae-sang Kim, Jang-yeon Kwon, Kyung-bae Park, Ji-sim Jung
  • Patent number: 8735230
    Abstract: A process for manufacturing a semiconductor device consecutively includes forming a recess in the surface region of a silicon substrate, forming a gate insulation film on the surface of the recess, depositing a silicon electrode film including an oxygen-mixed layer extending parallel to the surface of the recess, injecting impurities into silicon the electrode film 17, and heat-treating the silicon electrode film to diffuse impurities.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: May 27, 2014
    Inventor: Kanta Saino