Patents Issued in April 14, 2015
-
Patent number: 9006001Abstract: Dimensions of structures in integrated circuits are shrinking with each new fabrication technology generation. Maintaining control of profiles of structures in transistors and interconnects is becoming more important to sustaining profitable integrated circuit production facilities. Measuring profiles of structures with many elements in integrated circuits, such as MOS transistor gates with recessed regions for Si—Ge epitaxial layers, is not cost effective for the commonly used metrology techniques: SEM, TEM and AFM. Scatterometry is technically unfeasible due to the number of elements and optical constants. The instant invention is a simplified scatterometry structure which reproduces the profiles of a structure to be profiled in a simpler structure that is compatible with conventional scatterometric techniques. A method of fabricating a transistor and an integrated circuit using the inventive simplified scatterometry structure are also disclosed.Type: GrantFiled: March 14, 2008Date of Patent: April 14, 2015Assignee: Texas Instruments IncorporatedInventors: Vladimir Alexeevich Ukraintsev, Craig Lawrence Hall
-
Patent number: 9006002Abstract: The length of the polycrystalline silicon rod (100) is measured with a tape measure, then the polycrystalline silicon rod (100) is hit with a hammer (120), and this hammering sound is recorded in a recorder (140) through a microphone (130). Then, an acoustic signal of the hammering sound is subjected to a fast Fourier transform and a frequency distribution is displayed. Furthermore, a peak frequency f is detected which shows the largest sound volume in the frequency distribution obtained after the fast Fourier transform. The relationship between the length (L) of the polycrystalline silicon rod and the peak frequency f is obtained, and the firmness of the polycrystalline silicon rod is determined on the basis of whether or not the peak frequency f is in a range of f?1,471/L (region A).Type: GrantFiled: July 4, 2011Date of Patent: April 14, 2015Assignee: Shin-Etsu Chemical Co., Ltd.Inventors: Shigeyoshi Netsu, Fumitaka Kume, Junichi Okada
-
Patent number: 9006003Abstract: A method of detecting bitmap failure associated with physical coordinates is provided. In the method, data of wafer mapping inspection are obtained first, and the data include images of defects in each of layers within a wafer and a plurality of physical coordinates of the defects. Thereafter, a bitmap failure detection is performed to obtain digital coordinates of failure bits within the wafer. The digital coordinates are converted into a plurality of physical locations, and the physical locations are overlapped with the physical coordinates so as to rapidly obtain correlations between the failure bits and the defects.Type: GrantFiled: March 20, 2014Date of Patent: April 14, 2015Assignee: MACRONIX International Co., Ltd.Inventors: Tuung Luoh, Chi-Min Chen, Ling-Wuu Yang, Ta-Hone Yang, Kuang-Chao Chen
-
Patent number: 9006004Abstract: A method includes bonding a first package component on a first surface of a second package component, and probing the first package component and the second package component from a second surface of the second package component. The step of probing is performed by probing through connectors on the second surface of the second package component. The connectors are coupled to the first package component. After the step of probing, a third package component is bonded on the first surface of the second package component.Type: GrantFiled: March 23, 2012Date of Patent: April 14, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jing-Cheng Lin, Szu Wei Lu
-
Patent number: 9006005Abstract: A method of fabricating a light emitting diode device comprises depositing conductive material to cover a portion of surface of a conductive and reflective layer to form a first contact pad, and surfaces between adjacent first trenches to form a second contact pad; and depositing a first passivation layer over uncovered portion of surface of the conductive and reflective layer to form a first planar passivation contact surface between the first contact pad and the second trench and depositing bonding material to cover a portion of surface of the first contact pad, a portion of the second contact pad and a portion of the first planar passivation contact to form a first light emitting diode bonding pad on the first contact pad, a second light emitting diode bonding pad on the second contact pad, and a third light emitting diode bonding pad on the first planar passivation contact.Type: GrantFiled: April 14, 2014Date of Patent: April 14, 2015Assignee: Starlite Led IncInventors: Chang Han, Pao Chen
-
Patent number: 9006006Abstract: A light-emitting device production method includes a positioning step of positioning, in a light-emitting element, a sealing member at least containing a silicone resin semi-cured at a room temperature (T0) by primary cross-linking and a fluorescent material, the silicone resin decreasing in viscosity reversibly in a temperature region between the room temperature (T0) and a temperature lower than a secondary cross-linking temperature (T1), and being totally cured non-reversibly in a temperature region equal to or higher than the secondary cross-linking temperature (T1).Type: GrantFiled: June 25, 2012Date of Patent: April 14, 2015Assignee: Sharp Kabushiki KaishaInventor: Masahiro Konishi
-
Patent number: 9006007Abstract: A method for producing an optoelectronic assembly (12) is provided, in which an optoelectronic component (16) is arranged on a carrier (14). Electrical terminals of the optoelectronic component (16) are electrically coupled to electrical contacts of the carrier (14) corresponding thereto. A dummy body (20) is arranged on a first side of the optoelectronic component (16) facing away from the carrier (14). A potting material (22) is arranged on the carrier (14), which potting material at least partially encloses the optoelectronic component (16) and at least partially encloses the dummy body (20). The dummy body (20) is removed, after the potting material (22) is dimensionally stable, whereby a recess (23) results, which is at least partially enclosed by the dimensionally stable potting material (22). An optically functional material (24) is decanted into the recess (23).Type: GrantFiled: April 17, 2014Date of Patent: April 14, 2015Assignee: OSRAM Opto Semiconductors GmbHInventor: Markus Schneider
-
Patent number: 9006008Abstract: A method for manufacturing an organic electroluminescent element including, in the following order, an anode, a light-emitting layer, an electron injection layer, and a cathode, the method including the steps of: (A) forming the anode; (B) forming the light-emitting layer; (C) forming the electron injection layer; and (D) forming the cathode, in which the step (C) includes (i) applying an application liquid containing an ionic polymer to form a thin film, (ii) heating the thin film formed, (iii) storing a partially finished organic electroluminescent element obtained in (ii), and thereafter, (iv) heating the thin film again.Type: GrantFiled: February 14, 2012Date of Patent: April 14, 2015Assignee: Sumitomo Chemical Company, LimitedInventor: Shuichi Sassa
-
Patent number: 9006009Abstract: In an organic light emitting diode (OLED) display device and a method for fabricating the same, OLED pixels are patterned through a photolithography process, so a large area patterning can be performed and a fine pitch can be obtained, and an organic compound layer can be protected by forming a buffer layer of a metal oxide on an upper portion of the organic compound layer or patterning the organic compound layer by using a cathode as a mask, improving device efficiency. In addition, among red, green, and blue pixels, two pixels are patterned through a lift-off process and the other remaining one is deposited to be formed without patterning, the process can be simplified and efficiency can be increased.Type: GrantFiled: September 21, 2012Date of Patent: April 14, 2015Assignee: LG Display Co., Ltd.Inventors: Young-Mi Kim, Jong-Geun Yoon, Joon-Young Heo, Han-Sun Park, Eui-Doo Do, Yeon-Kyeong Lee, Dae-Hyun Kim, Jong-Sik Shim
-
Patent number: 9006010Abstract: Radiation detectors and methods of fabricating radiation detectors are provided. One method includes mechanically polishing at least a first surface of a semiconductor wafer using a polishing sequence including a plurality of polishing steps, wherein a last polishing step of the polishing sequence includes polishing with a slurry having a grain size smaller than about 0.1 ?m to create a polished first surface. The method also includes applying (i) an encapsulation layer on a top of the polished first surface to seal the polished first surface and (ii) a photoresist layer on top of the encapsulation layer on the polished first surface. The method further includes creating undercuts of the encapsulation layer under the photoresist layer. The method additionally includes partially etching the polished first surface of the semiconductor via the openings in the photoresist layer and in the encapsulation layer to partially etch the semiconductor creating etched regions.Type: GrantFiled: November 22, 2011Date of Patent: April 14, 2015Assignee: General Electric CompanyInventors: Arie Shahar, Eliezer Traub, Diego Sclar, Peter Rusian
-
Patent number: 9006012Abstract: A method of manufacturing an organic light emitting diode display according to an exemplary embodiment of the present invention includes: forming a first electrode on a substrate; forming an insulation layer on the first electrode; etching the insulation layer to expose the first electrode so as to form a pixel defining layer having the same height as the first electrode; forming an organic layer including one or more emission layers on the first electrode of a sub-pixel region defined by the pixel defining layer by applying a laser-induced thermal imaging (LITI) method; and forming a second electrode on the organic layer.Type: GrantFiled: October 18, 2013Date of Patent: April 14, 2015Assignee: Samsung Display Co., Ltd.Inventors: Valeriy Prushinskiy, Min-Soo Kim, Won-Sik Hyun, Heung-Yeol Na, Jin-Won Sun
-
Patent number: 9006013Abstract: According to one embodiment, a method is disclosed for manufacturing a semiconductor light emitting device. The method can include forming a nitride semiconductor layer including a light emitting layer on a first substrate having an unevenness, bonding the nitride layer to a second substrate, and separating the first substrate from the nitride layer by irradiating the nitride layer with light. The forming the nitride layer includes leaving a cavity in a space inside a depression of the unevenness while forming a thin film on the depression. The film includes a same material as part of the nitride layer. The separating includes causing the film to absorb part of the light so that intensity of the light applied to a portion of the nitride layer facing the depression is made lower than intensity of the light applied to a portion facing a protrusion of the unevenness.Type: GrantFiled: February 27, 2012Date of Patent: April 14, 2015Assignee: Kabushiki Kaisha ToshibaInventors: Toru Gotoda, Toshiyuki Oka, Shinya Nunoue, Kotaro Zaima, Hiroshi Ono, Hajime Nago
-
Patent number: 9006014Abstract: A method for fabricating three dimensional high surface electrodes is described. The methods including the steps: designing the pillars; selecting a material for the formation of the pillars; patterning the material; transferring the pattern to form the pillars; insulating the pillars and providing a metal layer for increased conductivity. Alternative methods for fabrication of the electrodes and fabrication of the electrodes using CMOS are also described.Type: GrantFiled: December 13, 2013Date of Patent: April 14, 2015Assignee: California Institute of TechnologyInventors: Muhammad Mujeeb-U-Rahman, Axel Scherer
-
Patent number: 9006015Abstract: Exemplary microelectromechanical system (MEMS) devices, and methods for fabricating such are disclosed. An exemplary method includes providing a silicon-on-insulator (SOI) substrate, wherein the SOI substrate includes a first silicon layer separated from a second silicon layer by an insulator layer; processing the first silicon layer to form a first structure layer of a MEMS device; bonding the first structure layer to a substrate; and processing the second silicon layer to form a second structure layer of the MEMS device.Type: GrantFiled: January 24, 2013Date of Patent: April 14, 2015Assignee: Taiwan Semiconductor Manfacturing Company, Ltd.Inventors: Chia-Hua Chu, Te-Hao Lee, Jiou-Kang Lee, Kai-Chih Liang, Chung-Hsien Lin, Chun-wen Cheng
-
Patent number: 9006016Abstract: The present invention provides a method and apparatus for fabricating piezoresistive polysilicon on a substrate by low-temperature metal induced crystallization by: (1) providing the substrate having a passivation layer; (2) performing, at or near room temperature in a chamber without breaking a vacuum or near-vacuum within the chamber, the steps of: (a) creating a metal layer on the passivation layer, and (b) creating an amorphous silicon layer on the metal layer, wherein the metal layer and the amorphous silicon layer have approximately the same thickness; (3) annealing the substrate, the passivation layer, the metal layer and the amorphous silicon layer at a temperature equal to or less than 600° C. and a period of time equal to or less than three hours to form a doped polysilicon layer below a residual metal layer; and (4) removing the residual metal layer to expose the doped polysilicon layer.Type: GrantFiled: June 24, 2013Date of Patent: April 14, 2015Assignee: Board of Regents, The University of Texas SystemInventors: Zeynep Celik-Butler, Suraj K. Patil, Donald Philip Butler
-
Patent number: 9006017Abstract: A circuit layer is formed on a surface of a substrate and includes a transistor. A photoelectric conversion element includes a photoelectric conversion layer of a chalcopyrite-type semiconductor provided between a first electrode and a second electrode. A supply layer is formed between the circuit layer and the photoelectric conversion layer and contains an Ia group element. Diffusion of the Ia group element to the photoelectric conversion layer improves the photoelectric conversion efficiency. A protective layer is formed between the supply layer and the circuit layer and prevents the diffusion of the Ia group element to the circuit layer.Type: GrantFiled: September 22, 2014Date of Patent: April 14, 2015Assignee: Seiko Epson CorporationInventor: Manabu Kudo
-
Patent number: 9006018Abstract: A solid-state imaging device including a substrate; a wiring layer formed on a front side of the substrate in which pixels are formed; a surface electrode pad section formed in the wiring layer; a light-shielding film formed on a rear side of the substrate; a pad section base layer formed in the same layer as the light-shielding film; an on-chip lens layer formed over the light-shielding film and the pad section base layer in a side opposite from the substrate side; a back electrode pad section formed above the on-chip lens layer; a through-hole formed to penetrate the on-chip lens layer, the pad section base layer, and the substrate so as to expose the surface electrode pad section; and a through-electrode layer which is formed in the through-hole and connects the surface electrode pad section and the back electrode pad section.Type: GrantFiled: June 18, 2013Date of Patent: April 14, 2015Assignee: Sony CorporationInventor: Kazufumi Watanabe
-
Patent number: 9006019Abstract: A method for manufacturing a light-emitting device includes a step of forming an etching resistant protection layer on a substrate provided with an organic planarizing layer, a step of forming a plurality of electrodes on the etching resistant protection layer, a step of forming an organic compound layer on the substrate provided with the plurality of electrodes, a step of forming a resist layer on the organic compound layer formed on parts of electrodes among the plurality of electrodes using a photolithographic method, and a step of removing the organic compound layer in a region not covered with the resist layer by dry etching, wherein an entire surface of the organic planarizing layer on the substrate on which steps up to the step of forming the plurality of electrodes have been performed is covered with at least one of the etching resistant protection layer and the electrode.Type: GrantFiled: September 14, 2012Date of Patent: April 14, 2015Assignee: Canon Kabushiki KaishaInventors: Manabu Otsuka, Tomoyuki Hiroki
-
Patent number: 9006020Abstract: A method and system for controlling the amount of a second material incorporated into a first material by controlling the amount of a third material which can interact with the second material.Type: GrantFiled: January 11, 2013Date of Patent: April 14, 2015Assignee: First Solar, Inc.Inventors: Gang Xiong, Rick C. Powell, Xilin Peng, John Barden, Arnold Allenic, Feng Liao, Kenneth M. Ring
-
Patent number: 9006021Abstract: The amorphous silicon film formation method includes forming a seed layer on the surface of a base by heating the base and flowing aminosilane-based gas onto the heated base; and forming an amorphous silicon film on the seed layer by heating the base, supplying silane-based gas containing no amino group onto the seed layer on the surface of the heated base, and thermally decomposing the silane-based gas containing no amino group.Type: GrantFiled: April 26, 2011Date of Patent: April 14, 2015Assignee: Tokyo Electron LimitedInventors: Kazuhide Hasebe, Hiroki Murakami, Akinobu Kakimoto
-
Patent number: 9006022Abstract: A method is provided for fabricating a phase change memory. The method includes providing a semiconductor substrate having a bottom electrode connecting with one or more semiconductor devices, and forming a first dielectric layer on the semiconductor substrate. The method also includes forming a loop-shape electrode in the first dielectric layer, and forming a second dielectric layer having a first opening exposing a portion of the first dielectric layer and a portion of the loop-shape electrode. Further, the method includes forming a phase change layer in the first opening of the second dielectric layer such that a contact area between the phase change layer and the loop-shape electrode may be controlled to achieve desired contact, and forming a top electrode.Type: GrantFiled: October 17, 2013Date of Patent: April 14, 2015Assignee: Semiconductor Manufacturing International (Shanghai) CorporationInventors: Ying Li, Neil Zhu, Guanping Wu
-
Patent number: 9006023Abstract: Provided are resistive random access memory (ReRAM) cells having diffusion barrier layers formed from various materials, such as beryllium oxide or titanium silicon nitrides. Resistive switching layers used in ReRAM cells often need to have at least one inert interface such that substantially no materials pass through this interface. The other (reactive) interface may be used to introduce and remove defects from the resistive switching layers causing the switching. While some electrode materials, such as platinum and doped polysilicon, may form inert interfaces, these materials are often difficult to integrate. To expand electrode material options, a diffusion barrier layer is disposed between an electrode and a resistive switching layer and forms the inert interface with the resistive switching layer. In some embodiments, tantalum nitride and titanium nitride may be used for electrodes separated by such diffusion barrier layers.Type: GrantFiled: September 22, 2014Date of Patent: April 14, 2015Assignee: Intermolecular, Inc.Inventors: Yun Wang, Imran Hashim
-
Patent number: 9006024Abstract: In a semiconductor device in which transistors are formed in a plurality of layers to form a stack structure, a method for manufacturing the semiconductor device formed by controlling the threshold voltage of the transistors formed in the layers selectively is provided. Further, a method for manufacturing the semiconductor device by which oxygen supplying treatment is effectively performed is provided. First oxygen supplying treatment is performed on a first oxide semiconductor film including a first channel formation region of a transistor in the lower layer. Then, an interlayer insulating film including an opening which is formed so that the first channel formation region is exposed is formed over the first oxide semiconductor film and second oxygen supplying treatment is performed on a second oxide semiconductor film including a second channel formation region over the interlayer insulating film and the exposed first channel formation region.Type: GrantFiled: April 18, 2013Date of Patent: April 14, 2015Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventor: Kengo Akimoto
-
Patent number: 9006025Abstract: A semiconductor device which includes an oxide semiconductor layer, a source electrode and a drain electrode electrically connected to the oxide semiconductor layer, a gate insulating layer covering the oxide semiconductor layer, the source electrode, and the drain electrode, and a gate electrode over the gate insulating layer is provided. The thickness of the oxide semiconductor layer is greater than or equal to 1 nm and less than or equal to 10 nm. The gate insulating layer satisfies a relation where ?r/d is greater than or equal to 0.08 (nm?1) and less than or equal to 7.9 (nm?1) when the relative permittivity of a material used for the gate insulating layer is ?r and the thickness of the gate insulating layer is d. The distance between the source electrode and the drain electrode is greater than or equal to 10 nm and less than or equal to 1 ?m.Type: GrantFiled: January 9, 2014Date of Patent: April 14, 2015Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Hiromichi Godo, Daisuke Kawae
-
Patent number: 9006026Abstract: Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack which contains at least one hard metal oxide film (e.g., metal is completely oxidized or substantially oxidized) and at least one soft metal oxide film (e.g., metal is less oxidized than hard metal oxide). The soft metal oxide film is less electrically resistive than the hard metal oxide film since the soft metal oxide film is less oxidized or more metallic than the hard metal oxide film. In one example, the hard metal oxide film is formed by an ALD process utilizing ozone as the oxidizing agent while the soft metal oxide film is formed by another ALD process utilizing water vapor as the oxidizing agent.Type: GrantFiled: August 22, 2014Date of Patent: April 14, 2015Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLCInventors: Zhendong Hong, Vidyut Gopal, Imran Hashim, Randall J. Higuchi, Tim Minvielle, Hieu Pham, Takeshi Yamaguchi
-
Patent number: 9006027Abstract: An electrical device includes a blocking layer disposed on top of a substrate layer, wherein the blocking layer and the substrate layer each are wide bandgap semiconductors, and the blocking layer and the substrate layer form a buried junction in the electrical device. The device comprises a termination feature disposed at a surface of the blocking layer and a filled trench disposed proximate to the termination feature. The filled trench extends through the blocking layer to reach the substrate layer and is configured to direct an electrical potential associated with the buried junction toward the termination feature disposed near the surface of the blocking layer to terminate the buried junction.Type: GrantFiled: September 11, 2012Date of Patent: April 14, 2015Assignee: General Electric CompanyInventors: Zachary Matthew Stum, Ahmed Elasser, Stephen Daley Arthur, Stanislav I. Soloviev, Peter Almern Losee
-
Patent number: 9006028Abstract: This document describes the fabrication and use of multilayer ceramic substrates, having one or more levels of internal thick film metal conductor patterns, wherein any or all of the metal vias intersecting one or both of the major surface planes of the substrates, extend out of the surface to be used for making flexible, temporary or permanent interconnections, to terminals of an electronic component. Such structures are useful for wafer probing, and for packaging, of semiconductor devices.Type: GrantFiled: September 11, 2009Date of Patent: April 14, 2015Inventors: Ananda H. Kumar, Ashish Asthana, Farooq Quadri
-
Patent number: 9006029Abstract: According to one embodiment, a method is disclosed for manufacturing a semiconductor device including a semiconductor chip having electrode pads formed on a first major surface and a bonding layer provided on a second major surface, and a substrate having the semiconductor chip mounted on the substrate. The manufacturing method can include applying a fillet-forming material to a portion contacting an outer edge of the second major surface of the semiconductor chip on a front face of the substrate. The method can include bonding the second major surface of the semiconductor chip to the substrate via the bonding layer.Type: GrantFiled: March 21, 2011Date of Patent: April 14, 2015Assignee: Kabushiki Kaisha ToshibaInventors: Yukio Katamura, Yasuo Tane, Atsushi Yoshimura, Fumihiro Iwami
-
Patent number: 9006030Abstract: An integrated circuit includes a stacked conductive layer interposer and a first die at least partially encapsulated in a mold material. The first die is mechanically and electrically attached to a top surface of the stacked conductive layer interposer using solder bumps. The integrated circuit further includes a first warpage correction layer.Type: GrantFiled: December 9, 2013Date of Patent: April 14, 2015Assignee: Xilinx, Inc.Inventors: Woon-Seong Kwon, Suresh Ramalingam, Paul Y. Wu, Manoj Nachnani
-
Patent number: 9006031Abstract: A semiconductor device has a carrier with a die attach area. Recesses are formed partially through the carrier outside the die attach area. A first conductive layer is conformally applied over a surface of the carrier and into the recesses. A semiconductor die is mounted to the die attach area of the carrier. An encapsulant is deposited over the carrier and semiconductor die. The encapsulant extends into the recesses over the first conductive layer to form encapsulant bumps. The carrier is removed to expose the first conductive layer over the encapsulant bumps. A first insulating layer is formed over the semiconductor die with openings to expose contact pads of the semiconductor die. A second conductive layer is formed between the first conductive layer and the contact pads on the semiconductor die. A second insulating layer is formed over the second conductive layer and semiconductor die.Type: GrantFiled: June 23, 2011Date of Patent: April 14, 2015Assignee: STATS ChipPAC, Ltd.Inventors: Zigmund R. Camacho, Henry D. Bathan, Emmanuel A. Espiritu
-
Patent number: 9006032Abstract: A method of forming a semiconductor device package includes removing a portion of a first connector and a molding compound surrounding the first connector to form an opening, wherein the first connector is part of a first package, and removing the portion of the first connector comprises forming a surface on the first connector which is at an angle with respect to a top surface of the molding compound. The method further includes placing a second connector in the opening, wherein the second connector is part of a second package having a semiconductor die. The method further includes bonding the second connector to a remaining portion of the first connector.Type: GrantFiled: March 14, 2014Date of Patent: April 14, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jung Wei Cheng, Tsung-Ding Wang, Chien-Hsun Lee, Chun-Chih Chuang
-
Patent number: 9006033Abstract: A method of forming a package on package structure includes bonding a semiconductor die and an interposer frame to a substrate, and the interposer frame surrounds the semiconductor die. The semiconductor die is disposed in an opening of the interposer frame, and the interposer frame has a plurality of TSHs. The plurality of TSHs is aligned with a plurality of bumps on the substrate. The method also includes positioning a packaged die over the semiconductor die and the interposer frame. The packaged die has a plurality of bumps aligned with the plurality of TSHs of the interposer. The method further includes performing a reflow process to allow solder of the plurality of bumps of the substrate and the solder of the plurality of bumps of the packaged die to fill the plurality of TSHs.Type: GrantFiled: May 30, 2014Date of Patent: April 14, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventor: Jiun Yi Wu
-
Patent number: 9006034Abstract: Method of and devices for protecting semiconductor packages are provided. The methods and devices comprise loading a leadframe containing multiple semiconductor packages into a molding device, adding a molding material on a surface of the leadframe, molding the molding material, such that the molding material covers the entire surface of the semiconductor packages except conducting terminals, and singulating the semiconductor packages from the leadframe after molding the molding material.Type: GrantFiled: November 29, 2012Date of Patent: April 14, 2015Assignee: UTAC Thai LimitedInventor: Saravuth Sirinorakul
-
Patent number: 9006035Abstract: A fabrication method of manufacturing a package a plurality of electronic components in an encapsulation body, firstly, mounting the plurality of electronic components and one ends of a plurality of metal resilient units on a substrate. After that, the plurality of electronic components and the plurality of metal resilient units are encapsulated on the substrate to form an encapsulation body with another ends of the plurality of metal resilient units exposed on an exterior surface of the encapsulation body. Then etching remaining epoxy resin on the other ends of the plurality of metal resilient units.Type: GrantFiled: November 17, 2013Date of Patent: April 14, 2015Assignee: Shunsin Technology (Zhong Shan) LimitedInventor: Jun-Yi Xiao
-
Patent number: 9006036Abstract: To provide a semiconductor device having an improved quality. The semiconductor device of the invention has a tape substrate having a semiconductor chip thereon, a plurality of land pads placed around the semiconductor chip, a plurality of wires for electrically coupling the electrode pad of the semiconductor chip to the land pad, and a plurality of terminal portions provided on the lower surface of the tape substrate. An average distance between local peaks of the surface roughness of a first region between the land pad of the tape substrate and the semiconductor chip is smaller than an average distance of local peaks of the surface roughness of a second region between the land pad of the tape substrate and the first region.Type: GrantFiled: September 18, 2013Date of Patent: April 14, 2015Assignee: Renesas Electronics CorporationInventors: Tomoko Higashino, Yuichi Morinaga, Kazuya Tsuboi, Tamaki Wada
-
Patent number: 9006037Abstract: Provided are methods of forming a bump and a semiconductor device with the same. The method may include providing a substrate with pads, forming a bump maker layer to cover the pads and include a resin and solder particles, thermally treating the bump maker layer to aggregate the solder particles onto the pads, removing the resin to expose the aggregated solder particles, forming a resin layer to cover the aggregated solder particles, and reflowing the aggregated solder particles to form bumps on the pads.Type: GrantFiled: May 29, 2013Date of Patent: April 14, 2015Assignee: Electronics and Telecommunications Research InstituteInventors: Kwang-Seong Choi, Yong Sung Eom, Hyun-cheol Bae, Haksun Lee
-
Patent number: 9006038Abstract: A method for fabricating a leadframe strip is disclosed. A leadframe pattern is formed from flat sheet of base metal. Additional metal layers are plated on patterned tape of base metal and the leadframe surface is roughed. A first set of leadframe areas is planished. A second set of leadframe areas are offsetted and the tape is cut into strips.Type: GrantFiled: July 9, 2013Date of Patent: April 14, 2015Assignee: Texas Instruments IncorporatedInventor: Donald C. Abbott
-
Patent number: 9006039Abstract: A fabrication method of a packaging substrate includes: providing a metal board having a first surface and a second surface opposite to the first surface, wherein the first surface has a plurality of first openings for defining a first core circuit layer therebetween, the second surface has a plurality of second openings for defining a second core circuit layer therebetween, each of the first and second openings has a wide outer portion and a narrow inner portion, and the inner portion of each of the second openings is in communication with the inner portion of a corresponding one of the first openings; forming a first encapsulant in the first openings; forming a second encapsulant in the second openings; and forming a surface circuit layer on the first encapsulant and the first core circuit layer.Type: GrantFiled: July 2, 2014Date of Patent: April 14, 2015Assignee: Siliconware Precision Industries Co., Ltd.Inventors: Chi-Ching Ho, Yu-Chih Yu, Ying-Chou Tsai
-
Patent number: 9006040Abstract: A method of fabricating a semiconductor device is disclosed. A photosensitive material is coated over the device. A plurality of masks for a chip layout are obtained. The plurality of masks are exposed to encompass a chip area of the device using at least one reticle repeatedly. The at least one reticle is of a set of reticles. The chip area has a resultant dimension greater than a dimension of the at least one reticle. A developer is used to remove soluble portions of the photosensitive material forming a resist pattern in the chip area.Type: GrantFiled: April 16, 2013Date of Patent: April 14, 2015Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Ming-Chang Hsieh, Kong-Beng Thei
-
Patent number: 9006041Abstract: A method for manufacturing a bipolar punch-through semiconductor device is disclosed, which includes providing a wafer having a first and a second side, wherein on the first side a high-doped layer of the first conductivity type having constant high doping concentration is arranged; epitaxially growing a low-doped layer of the first conductivity type on the first side; performing a diffusion step by which a diffused inter-space region is created at the inter-space of the layers; creating at least one layer of the second conductivity type on the first side; and reducing the wafer thickness within the high-doped layer on the second side so that a buffer layer is created, which can include the inter-space region and the remaining part of the high-doped layer, wherein the doping profile of the buffer layer decreases steadily from the doping concentration of the high-doped region to the doping concentration of the drift layer.Type: GrantFiled: October 4, 2013Date of Patent: April 14, 2015Assignee: ABB Technology AGInventors: Munaf Rahimo, Arnost Kopta, Thomas Clausen, Maxi Andenna
-
Patent number: 9006042Abstract: Provided is a functional thin film forming method comprising: (a) forming a transparent semiconductor layer on a substrate; (b) adjusting a surface resistance of the transparent semiconductor layer by performing a n-type doping process on the transparent semiconductor layer formed in the step (a); and (c) forming an insulating protective film of SiOx on the transparent semiconductor layer of which the surface resistance is adjusted in the step (b), wherein the surface resistance of the transparent semiconductor layer is in a range of from 10 M?/? to 100 M?/?.Type: GrantFiled: November 25, 2014Date of Patent: April 14, 2015Assignee: Research & Business Foundation Sungkyunkwan UniversityInventors: Jeongeon Han, Yoonseok Choi, Su Bong Jin
-
Patent number: 9006043Abstract: The invention provides a technique to manufacture a highly reliable semiconductor device and a display device at high yield. As an exposure mask, an exposure mask provided with a diffraction grating pattern or an auxiliary pattern formed of a semi-transmissive film with a light intensity reducing function is used. With such an exposure mask, various light exposures can be more accurately controlled, which enables a resist to be processed into a more accurate shape. Therefore, when such a mask layer is used, the conductive film and the insulating film can be processed in the same step into different shapes in accordance with desired performances. As a result, thin film transistors with different characteristics, wires in different sizes and shapes, and the like can be manufactured without increasing the number of steps.Type: GrantFiled: April 18, 2012Date of Patent: April 14, 2015Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Hideto Ohnuma, Masayuki Sakakura
-
Patent number: 9006044Abstract: A method of manufacturing a graphene device may include forming a device portion including a graphene layer on the first substrate; attaching a second substrate on the device portion of the first substrate; and removing the first substrate. The removing of the first substrate may include etching a sacrificial layer between the first substrate and the graphene layer. After removing the first substrate, a third substrate may be attached on the device portion. After attaching the third substrate, the second substrate may be removed.Type: GrantFiled: July 11, 2012Date of Patent: April 14, 2015Assignee: Samsung Electronics Co., Ltd.Inventors: Chang-seung Lee, Joo-ho Lee, Yong-sung Kim, Chang-youl Moon
-
Patent number: 9006045Abstract: A semiconductor structure comprises a substrate and a transistor. The transistor comprises a raised source region and a raised drain region provided above the substrate, one or more elongated semiconductor lines, a gate electrode and a gate insulation layer. The one or more elongated semiconductor lines are connected between the raised source region and the raised drain region, wherein a longitudinal direction of each of the one or more elongated semiconductor lines extends substantially along a horizontal direction that is perpendicular to a thickness direction of the substrate. Each of the elongated semiconductor lines comprises a channel region. The gate electrode extends all around each of the channel regions of the one or more elongated semiconductor lines. The gate insulation layer is provided between each of the one or more elongated semiconductor lines and the gate electrode.Type: GrantFiled: March 11, 2013Date of Patent: April 14, 2015Assignee: GLOBALFOUNDRIES Inc.Inventors: Stefan Flachowsky, Jan Hoentschel
-
Patent number: 9006046Abstract: An object is to provide a deposition method in which a gallium oxide film is formed by a DC sputtering method. Another object is to provide a method for manufacturing a semiconductor device using a gallium oxide film as an insulating layer such as a gate insulating layer of a transistor. An insulating film is formed by a DC sputtering method or a pulsed DC sputtering method, using an oxide target including gallium oxide (also referred to as GaOX). The oxide target includes GaOX, and X is less than 1.5, preferably more than or equal to 0.01 and less than or equal to 0.5, further preferably more than or equal to 0.1 and less than or equal to 0.2. The oxide target has conductivity, and sputtering is performed in an oxygen gas atmosphere or a mixed atmosphere of an oxygen gas and a rare gas such as argon.Type: GrantFiled: August 26, 2013Date of Patent: April 14, 2015Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Junichiro Sakata, Makoto Furuno
-
Patent number: 9006047Abstract: A method for thermally processing a minimally absorbing thin film in a selective manner is disclosed. Two closely spaced absorbing traces are patterned in thermal contact with the thin film. A pulsed radiant source is used to heat the two absorbing traces, and the thin film is thermally processed via conduction between the two absorbing traces. This method can be utilized to fabricate a thin film transistor (TFT) in which the thin film is a semiconductor and the absorbers are the source and the drain of the TFT.Type: GrantFiled: September 11, 2013Date of Patent: April 14, 2015Assignee: NCC Nano, LLCInventors: Kurt A. Schroder, Robert P. Wenz
-
Patent number: 9006048Abstract: Disclosed are process enhancements to fully integrate the processing of a photonics device into a CMOS manufacturing process flow. A CMOS wafer may be divided into different portions. One of the portions is for the CMOS devices and one or more other portions are for the photonics devices. The photonics devices include a ridged waveguide. One or more process steps may be performed simultaneously on the CMOS devices and the photonics devices.Type: GrantFiled: November 20, 2013Date of Patent: April 14, 2015Assignee: International Business Machines CorporationInventors: Solomon Assefa, William M. J. Green, Yurii A. Vlasov, Min Yang
-
Patent number: 9006049Abstract: Disclosed are process enhancements to fully integrate the processing of a photonics device into a CMOS manufacturing process flow. A CMOS wafer may be divided into different portions. One of the portions is for the CMOS devices and one or more other portions are for the photonics devices. The photonics devices include a ridged waveguide and a germanium photodetector. The germanium photodetector may utilize a seeded crystallization from melt process so there is more flexibility in the processing of the germanium photodetector.Type: GrantFiled: November 20, 2013Date of Patent: April 14, 2015Assignee: International Business Machines CorporationInventors: Solomon Assefa, William M. J. Green, Yurii A. Vlasov, Min Yang
-
Patent number: 9006050Abstract: A first resist pattern is formed by exposure using a first multi-tone photomask, and a first conductive layer, a first insulating layer, a first semiconductor layer, and a second semiconductor layer are etched, so that an island-shaped single layer and an island-shaped stack are formed. Here, sidewalls are formed on side surfaces of the island-shaped single layer and the island-shaped stack. Further, a second resist pattern is formed by exposure using a second multi-tone photomask, and a second conductive layer and the second semiconductor layer are etched, so that a thin film transistor, a pixel electrode, and a connection terminal are formed. After that, a third resist pattern is formed by exposure from a rear side using metal layers of the first conductive layer and the second conductive layer as masks, and the third insulating layer are etched, so that a protective insulating layer is formed.Type: GrantFiled: February 17, 2012Date of Patent: April 14, 2015Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Kunio Hosoya, Saishi Fujikawa
-
Patent number: 9006051Abstract: An object is to improve water resistance and reliability of a semiconductor device by reducing the degree of peeling of a film. In a semiconductor device, a first inorganic insulating layer, a semiconductor element layer, a second inorganic insulating layer, an organic insulating layer, and a third inorganic insulating layer are sequentially stacked over a substrate. The second inorganic insulating layer is in contact with the first inorganic insulating layer in an opening portion provided in the semiconductor element layer. The third inorganic insulating layer is in contact with the second inorganic insulating layer in an opening portion provided in the organic insulating layer. In a region where the second inorganic insulating layer and the third inorganic insulating layer are in contact with each other, the second inorganic insulating layer has a plurality of irregularities or openings.Type: GrantFiled: April 14, 2009Date of Patent: April 14, 2015Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Yoshiaki Oikawa, Masayuki Kajiwara, Masataka Nakada, Masami Jintyou, Shunpei Yamazaki