Group Viii Noble Metal (ru, Rh, Pd, Os, Ir, Pt) Patents (Class 106/1.28)
  • Patent number: 11414761
    Abstract: At least one substrate part for is provided for coating. A first deposition is provided on the at least one support part as microstructuring of at least one first substance selected from the group consisting of rhenium, ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, gold, tin, zinc, copper, cobalt, lead, nickel and alloys comprising these, from at least one first compound which provides the at least one first substance. A second deposition is provided on the at least one support part as a nano-structuring of at least one second substance chosen from a group comprising rhenium, ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, gold and/or alloys thereof, of at least one second compound which provides the at least one second substance, in a solution.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: August 16, 2022
    Assignee: ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG
    Inventors: Patrick Daubinger, Jochen Kieninger, Gerald Urban
  • Patent number: 10741775
    Abstract: The invention provides emissive materials and organic light emitting devices using the emissive materials in an emissive layer disposed between and electrically connected to an anode and a cathode. The emissive materials include compounds with the following structure: wherein at least one of R8 to R14 is phenyl or substituted phenyl, and/or at least two of R8 to R14 that are adjacent are part of a fluorenyl group. The emissive materials have enhanced electroluminescent efficiency and improved lifetime when incorporated into light emitting devices.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: August 11, 2020
    Assignee: The University of Southern California
    Inventors: Mark E. Thompson, Arnold Tamayo, Peter Djurovich
  • Patent number: 10053479
    Abstract: The present invention relates to a raw material for a cyclometalated iridium complex, and provides a technique that makes it possible to obtain a cyclometalated iridium complex in higher yield at a lower reaction temperature than using tris(2,4-pentanedionato)iridium(III). The present invention relates to a raw material for a cyclometalated iridium complex, including an organic iridium material for producing a cyclometalated iridium complex, the organic iridium material being a tris(?-diketonato)iridium(III), in which an asymmetric ?-diketone is coordinated to iridium.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: August 21, 2018
    Assignees: TANAKA KIKINZOKU KOGYO K.K., NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Hideo Konno, Junichi Taniuchi, Ryosuke Harada, Toshiyuki Shigetomi, Yasushi Masahiro
  • Patent number: 9499913
    Abstract: A solution for electroless deposition of platinum is provided. The solution comprises Co2+ ions, Pt4+ ions, and amine ligands. A ratio of Co2+ to Pt4+ ion is between 100:1 and 2:1. The solution allows for electroless deposition of platinum without requiring high temperatures and high pH. The solution allows for the deposition of a pure platinum layer.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: November 22, 2016
    Assignee: Lam Research Corporation
    Inventors: Eugenijus Norkus, Ina Stankeviciene, Aldona Jagminiene, Loreta Tamasauskaite-Tamasiunaite, Aniruddha Joi, Yezdi Dordi
  • Patent number: 9469902
    Abstract: A method for providing an electroless plating of a platinum containing layer is provided. A Ti3+ stabilization solution is provided. A Pt4+ stabilization solution is provided. A flow from the Ti3+ stabilization solution is combined with a flow from the Pt4+ stabilization solution and water to provide a diluted mixture of the Ti3+ stabilization solution and the Pt4+ stabilization solution. A substrate is exposed to the diluted mixture of the Ti3+ stabilization solution and the Pt4+ stabilization solution.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: October 18, 2016
    Assignee: Lam Research Corporation
    Inventors: Eugenijus Norkus, Aldona Jagminiene, Albina Zieliene, Ina Stankeviciene, Loreta Tamasauskaite-Tamasiunaite, Aniruddha Joi, Yezdi Dordi
  • Patent number: 8940197
    Abstract: A process for preparing a palladium nanoparticle ink comprises reacting a reaction mixture comprising a palladium salt, a stabilizer, a reducing agent, and an optional solvent to directly form the palladium nanoparticle ink. During the formation of the palladium nanoparticle ink, the palladium nanoparticles are not isolated from the reaction mixture.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: January 27, 2015
    Assignee: Xerox Corporation
    Inventors: Ping Liu, Yiliang Wu, Nan-Xing Hu, Anthony James Wigglesworth
  • Patent number: 8888903
    Abstract: The present invention concerns an aqueous plating bath composition for electroless deposition of palladium and/or palladium alloys and a method which utilises such aqueous plating bath compositions. The aqueous plating bath comprises a source of palladium ions, a reducing agent, a nitrogenated complexing agent which is free of phosphorous and at least one organic stabilising agent comprising 1 to 5 phosphonate residues. The aqueous plating bath and the method are particularly useful if the aqueous plating bath comprises copper ions.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: November 18, 2014
    Assignee: Atotech Deutschland GmbH
    Inventors: Isabel-Roda Hirsekorn, Jens Wegricht, Arnd Kilian
  • Patent number: 8883641
    Abstract: The present invention relates to a solution and a method for activating the oxidized surface of a substrate, in particular of a semiconducting substrate, for its subsequent coating by a metal layer deposited by the electroless method. According to the invention, this composition contains: A) an activator consisting of one or more palladium complexes; B) a bifunctional organic binder consisting one or more organosilane complexes; C) a solvent system consisting one or more solvents for solubilizing the said activator and the said binder.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: November 11, 2014
    Assignee: Alchimer
    Inventors: Vincent Mevellec, Dominique Suhr
  • Publication number: 20140242265
    Abstract: The present invention concerns an aqueous plating bath composition for electroless deposition of palladium and/or palladium alloys and a method which utilises such aqueous plating bath compositions. The aqueous plating bath comprises a source of palladium ions, a reducing agent, a nitrogenated complexing agent which is free of phosphorous and at least one organic stabilising agent comprising 1 to 5 phosphonate residues. The aqueous plating bath and the method are particularly useful if the aqueous plating bath comprises copper ions.
    Type: Application
    Filed: August 22, 2012
    Publication date: August 28, 2014
    Applicant: ATOTECH DEUTSCHLAND GMBH
    Inventors: Isabel-Roda Hirsekorn, Jens Wegricht, Arnd Kilian
  • Patent number: 8814997
    Abstract: An electroless plating pretreatment agent that can retain stably Pd(II) over a long period of time in an organic solvent, an electroless plating method using the same that is capable of forming an electroless plated film having excellent adhesion, and an electroless plated object. The electroless plating pretreatment agent contains an organic palladium compound and a coordination compound having a functional group with a metal-capturing capability dissolved in an organic solvent, the coordination compound being selected from the group consisting of the imidazole analogs, polyethyleneamines, ethyleneimines and polyethyleneimines.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: August 26, 2014
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Toru Imori, Jun Suzuki, Ryu Murakami, Akihiro Aiba, Junichi Ito
  • Patent number: 8741036
    Abstract: A palladium first composition is disclosed, including a palladium salt and an unsaturated organoamine, wherein the composition is substantially free of water, and wherein the first composition forms a second composition including stable palladium nanoparticles and a palladium unsaturated organoamine. The composition permits the use of solution processing methods to form a palladium layer on a wide variety of substrates, including in a pattern to form circuitry or pathways for electronic devices.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: June 3, 2014
    Assignee: Xerox Corporation
    Inventor: Yiliang Wu
  • Patent number: 8741037
    Abstract: A palladium first composition is disclosed, including a palladium salt and an unsaturated carboxylic acid, wherein the composition is substantially free of water, and wherein the first composition forms a second composition including stable palladium nanoparticles and a palladium unsaturated carboxylate. The composition permits the use of solution processing methods to form a palladium layer on a wide variety of substrates, including in a pattern to form circuitry or pathways for electronic devices.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: June 3, 2014
    Assignee: Xerox Corporation
    Inventor: Yiliang Wu
  • Patent number: 8632628
    Abstract: One aspect of the present invention is a deposition solution to deposit metals and metal alloys such as for fabrication of electronic devices. According to one embodiment, the deposition solution comprises metal ions and a pH adjustor. The pH adjustor comprises a functional group having a general formula (R1R2N)(R3R4N)C?N—R5 where: N is nitrogen; C is carbon; and R1, R2, R3, R4, and R5 are the same or different and represent hydrogen, alkyl group, aryl group, or alkylaryl group. Another aspect of the presented invention is a method of preparing deposition solutions. Still another aspect of the present invention is a method of fabricating electronic devices.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: January 21, 2014
    Assignee: Lam Research Corporation
    Inventor: Artur Kolics
  • Patent number: 8617301
    Abstract: Compositions and methods for depositing elemental metal M(0) films on semiconductor substrates are disclosed. One of the disclosed methods comprises: heating the semiconductor substrate to obtain a heated semiconductor substrate; exposing the heated semiconductor substrate to a composition containing a metal precursor, an excess amount of neutral labile ligands, and a supercritical solvent; exposing the metal precursor to a reducing agent and/or thermal energy at or near the heated semiconductor substrate; reducing the metal precursor to the elemental metal M(0) by using the reducing agent and/or the thermal energy; and depositing the elemental metal M(0) film while minimizing formation of metal oxides.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: December 31, 2013
    Assignee: Lam Research Corporation
    Inventor: Mark Ian Wagner
  • Patent number: 8562727
    Abstract: Disclosed is an electroless palladium plating solution which can form a plating layer having excellent soldering properties onto electronic components and the like and excellent wire bonding properties. The electroless palladium plating solution comprises a palladium compound, an amine compound, an inorganic sulfur compound and a reducing agent, wherein a combination of hypophosphorous acid or a hypophosphorous acid compound and formic acid or a formic acid compound is used as the reducing agent, and wherein the palladium compound, the amine compound, the inorganic sulfur compound, the hypophosphorous acid compound, and formic acid or the formic acid compound are contained in amounts of 0.001 to 0.1 mole/l, 0.05 to 5 mole/l, 0.01 to 0.1 mole/l, 0.05 to 1.0 mole/l and 0.001 to 0.1 mole/l, respectively. The electroless palladium plating solution is characterized by having excellent soldering properties and excellent wire bonding properties.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: October 22, 2013
    Assignee: Kojima Chemicals Co., Ltd.
    Inventors: Hideto Watanabe, Kazuhiro Kojima, Kaoru Yagi
  • Patent number: 8361560
    Abstract: A platinum plating solution for immersion plating a continuous film of platinum on a metal structure. The immersion platinum plating solution is free of a reducing agent. The plating process does not require electricity (e.g., electrical current) and does not require electrodes (e.g., anode and/or cathode). The solution includes a platinum source and a complexing agent including Oxalic Acid. The solution enables immersion plating of platinum onto a metal surface, a metal substrate, or a structure of which at least a portion is a metal. The resulting platinum plating comprises a continuous thin film layer of platinum having a thickness not exceeding 300 ?. The solution can be used for plating articles including but not limited to jewelry, medical devices, electronic structures, microelectronics structures, MEMS structures, nano-sized or smaller structures, structures used for chemical and/or catalytic reactions (e.g., catalytic converters), and irregularly shaped metal surfaces.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: January 29, 2013
    Assignee: Unity Semiconductor Corporation
    Inventors: Robin Cheung, Wen Zhong Kong
  • Patent number: 8343580
    Abstract: Methods of vapor depositing metal-containing films using certain organometallic compounds containing a carbonyl-containing ligand are disclosed.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: January 1, 2013
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Qing Min Wang, Deodatta Vinayak Shenai-Khatkhate, Huazhi Li
  • Patent number: 8317910
    Abstract: A platinum plating solution for immersion plating a continuous film of platinum on a metal structure. The immersion platinum plating solution is free of a reducing agent. The plating process does not require electricity (e.g., electrical current) and does not require electrodes (e.g., anode and/or cathode). The solution includes a platinum source and a complexing agent including Oxalic Acid. The solution enables immersion plating of platinum onto a metal surface, a metal substrate, or a structure of which at least a portion is a metal. The resulting platinum plating comprises a continuous thin film layer of platinum having a thickness not exceeding 300 ?. The solution can be used for plating articles including but not limited to jewelry, medical devices, electronic structures, microelectronics structures, MEMS structures, nano-sized or smaller structures, structures used for chemical and/or catalytic reactions (e.g., catalytic converters), and irregularly shaped metal surfaces.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: November 27, 2012
    Assignee: Unity Semiconductor Corporation
    Inventors: Robin Cheung, Wen Zhong Kong
  • Publication number: 20120244276
    Abstract: A method for generating a surface that can be bonded with gold wire. The surface is obtained by first depositing an exchange palladium layer made of the electrolyte on conductors of printed circuit boards, in particular on conductors made of copper or conductive paste. The exchange palladium layer is then reinforced with a palladium layer, deposited from a chemical palladium electrolyte. In order to protect the palladium, an exchange gold layer is then applied. An exchange palladium bath is used, comprising an organic brightener.
    Type: Application
    Filed: November 6, 2010
    Publication date: September 27, 2012
    Applicant: Doduco GmbH
    Inventors: Jochen Heber, Erwin Marka, Walter Macht, Silke Oelschlaeger
  • Patent number: 8252377
    Abstract: The present invention is an organoruthenium compound for use in production of a ruthenium or ruthenium compound thin film by chemical vapor deposition, including ruthenium and an arene group and norbornadiene both coordinated to the ruthenium and represented by the following formula. The present invention is an organoruthenium compound for use in chemical vapor deposition which does not require the coexistence of oxygen during the thin film formation, and moreover, is liquid at ordinary temperature, thereby having good handleability and recyclability. wherein the substituents, R1 to R6, of the arene group are each hydrogen or an alkyl group, and the total number of carbons of R1 to R6 (R1+R2+R3+R4+R5+R6) is 6 or less.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: August 28, 2012
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Junichi Taniuchi, Masayuki Saito, Minoru Ishida
  • Publication number: 20120196441
    Abstract: The present invention relates to a solution and a method for activating the oxidized surface of a substrate, in particular of a semiconducting substrate, for its subsequent coating by a metal layer deposited by the electroless method. According to the invention, this composition contains: A) an activator consisting of one or more palladium complexes; B) a bifunctional organic binder consisting one or more organosilane complexes; C) a solvent system consisting one or more solvents for solubilizing the said activator and the said binder.
    Type: Application
    Filed: September 30, 2010
    Publication date: August 2, 2012
    Applicant: ALCHIMER
    Inventors: Vincent Mevellec, Dominique Suhr
  • Publication number: 20120192758
    Abstract: It is an object of the present invention to provide an electroless plating pretreatment agent that can retain stably Pd(II) over a long period of time in an organic solvent, an electroless plating method using the same that is capable of forming an electroless plated film having excellent adhesion, and an electroless plated object. The object is achieved by an electroless plating pretreatment agent comprising an organic palladium compound and a coordination compound having a functional group with a metal-capturing capability dissolved in an organic solvent, the coordination compound being selected from the group consisting of the imidazole analogs, polyethyleneamines, ethyleneimines and polyethyleneimines.
    Type: Application
    Filed: March 14, 2011
    Publication date: August 2, 2012
    Inventors: Toru Imori, Jun Suzuki, Ryu Murakami, Akihiro Aiba, Junichi Ito
  • Publication number: 20120104331
    Abstract: One aspect of the present invention is a deposition solution to deposit metals and metal alloys such as for fabrication of electronic devices. According to one embodiment, the deposition solution comprises metal ions and a pH adjustor. The pH adjustor comprises a functional group having a general formula (R1R2N)(R3R4N)C?N—R5 where: N is nitrogen; C is carbon; and R1, R2, R3, R4, and R5 are the same or different and represent hydrogen, alkyl group, aryl group, or alkylaryl group. Another aspect of the presented invention is a method of preparing deposition solutions. Still another aspect of the present invention is a method of fabricating electronic devices.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Inventor: Artur KOLICS
  • Patent number: 8137447
    Abstract: Disclosed is an electroless plating solution exhibiting a good plating metal filling performance even for larger trenches or vias of several to one hundred and tens of ?m, in a manner free from voids or seams, and allowing maintenance of stabilized performance for prolonged time. The electroless plating solution contains at least a water-soluble metal salt, a reducing agent for reducing metal ions derived from the water-soluble metal salt, and a chelating agent. In addition, the electroless plating solution contains a sulfur-based organic compound as a leveler having at least one aliphatic cyclic group or aromatic cyclic group to which may be linked at least one optional substituent. The aliphatic cyclic group or the aromatic cyclic group contains optional numbers of carbon atoms, oxygen atoms, phosphorus atoms, sulfur atoms and nitrogen atoms.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: March 20, 2012
    Assignee: C. Uyemura & Co., Ltd.
    Inventors: Teruyuki Hotta, Takahiro Ishizaki, Tomohiro Kawase, Masaharu Takeuchi
  • Patent number: 8097299
    Abstract: The present invention is an organoruthenium compound for use in production of a ruthenium or ruthenium compound thin film by chemical vapor deposition, including ruthenium and an arene group and norbornadiene both coordinated to the ruthenium and represented by the following formula. The present invention is an organoruthenium compound for use in chemical vapor deposition which does not require the coexistence of oxygen during the thin film formation, and moreover, is liquid at ordinary temperature, thereby having good handleability and recyclability. wherein the substituents, R1 to R6, of the arene group are each hydrogen or an alkyl group, and the total number of carbons of R1 to R6 (R1+R2+R3+R4+R5+R6) is 6 or less.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: January 17, 2012
    Assignee: Tanaka Kikinzoku Kogyo
    Inventors: Junichi Taniuchi, Masayuki Saito, Minoru Ishida
  • Patent number: 8048284
    Abstract: Disclosed are metal plating compositions for plating a metal on a substrate. The metal plating compositions include compounds which influence the leveling and throwing performance of the metal plating compositions. Also disclosed are methods of depositing metals on a substrate.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: November 1, 2011
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Erik Reddington, Gonzalo Urrutia Desmaison, Zukhra I. Niazimbetova, Donald E. Cleary, Mark Lefebvre
  • Publication number: 20110229734
    Abstract: A platinum plating solution for immersion plating a continuous film of platinum on a metal structure. The immersion platinum plating solution is free of a reducing agent. The plating process does not require electricity (e.g., electrical current) and does not require electrodes (e.g., anode and/or cathode). The solution includes a platinum source and a complexing agent including Oxalic Acid. The solution enables immersion plating of platinum onto a metal surface, a metal substrate, or a structure of which at least a portion is a metal. The resulting platinum plating comprises a continuous thin film layer of platinum having a thickness not exceeding 300 ?. The solution can be used for plating articles including but not limited to jewelry, medical devices, electronic structures, microelectronics structures, MEMS structures, nano-sized or smaller structures, structures used for chemical and/or catalytic reactions (e.g., catalytic converters), and irregularly shaped metal surfaces.
    Type: Application
    Filed: March 22, 2010
    Publication date: September 22, 2011
    Applicant: UNITY SEMICONDUCTOR CORPORATION
    Inventors: Robin Cheung, Wen Zhong Kong
  • Patent number: 8012334
    Abstract: Disclosed are metal plating compositions and methods. The metal plating compositions provide good leveling performance and throwing power.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: September 6, 2011
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Erik Reddington, Gonzalo Urrutia Desmaison, Zukhra I. Niazimbetova, Donald E. Cleary, Mark Lefebvre
  • Patent number: 7981202
    Abstract: An electroless pure palladium plating solution capable of forming pure palladium plating films having less plating film variations is provided. The electroless pure palladium plating solution comprises an aqueous solution containing (a) 0.001 to 0.5 mol/liter of a water-soluble palladium compound, (b) 0.005 to 10 mol/liter of at least two members selected from the group consisting of aliphatic carboxylic acids and water-soluble salts thereof, (c) 0.005 to 10 mol/liter of phosphoric acid and/or a phosphate, and (d) 0.005 to 10 mol/liter of sulfuric acid and/or a sulfate.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: July 19, 2011
    Assignee: Kojima Chemicals Co., Ltd.
    Inventors: Kazuhiro Kojima, Hideto Watanabe
  • Patent number: 7887692
    Abstract: The invention provides a plating solution capable of forming a palladium plating film which can further improve solder characteristics in surface treatment of a composition made of a nickel plating film, a palladium plating film and a gold plating film on a surface of a conductor formed from a metal such as copper. In a palladium plating solution of the invention containing a soluble palladium salt and an electrically conductive salt having a liquid composition containing germanium, the amount of the soluble palladium salt is 0.1 g/l to 50 g/l in terms of a reduced value of palladium metal, the amount of the electrically conductive salt is 10 g/l to 400 g/l and the amount of the germanium is 0.1 mg/l to 1000 mg/l.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: February 15, 2011
    Assignee: Electroplating Engineers of Japan Limited
    Inventors: Shingo Watanabe, Junji Ohnishi, Hiroshi Wachi, Takayuki Sone
  • Publication number: 20100285664
    Abstract: Compositions and methods for forming metal films on semiconductor substrates are disclosed. One of the disclosed methods comprises: heating the semiconductor substrate to obtain a heated semiconductor substrate; exposing the heated semiconductor substrate to a composition containing at least one metal precursor comprising at least one ligand, an excess amount of neutral labile ligands, a supercritical solvent, and optionally at least one source of B, C, N, Si, P, and mixtures thereof; exposing the composition to a reducing agent and/or thermal energy at or near the heated semiconductor substrate; disassociating the at least one ligand from the metal precursor; and forming the metal film while minimizing formation of metal oxides.
    Type: Application
    Filed: July 21, 2010
    Publication date: November 11, 2010
    Applicant: Lam Research Corporation
    Inventor: Mark Ian Wagner
  • Patent number: 7731786
    Abstract: The invention relates to a photosensitive dispersion with adjustable viscosity for metal deposition on an insulating substrate, which combines the following: a pigment providing oxidation-reduction properties under light irradiation, a metallic salt, a complex-forming agent for the metallic salt, a liquid film-forming polymer formulation, a basic compound, an organic solvent and water. The invention also relates to the use of said dispersion.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: June 8, 2010
    Assignee: Semika
    Inventors: Olivier Dupuis, Mary-Helene Delvaux
  • Patent number: 7704307
    Abstract: An electroless palladium plating liquid, with excellent bath stability, that can provide a film with excellent corrosion resistance, solder bondability, and wire bondability is provided. The invention is an electroless palladium plating liquid, containing: a water soluble palladium compound; at least one of ammonia, an amine compound, an aminocarboxylic acid compound, and carboxylic acid as a complexing agent; and bismuth or a bismuth compound as a stabilizer. Preferably the electroless palladium plating liquid further contains at least one of hypophosphorous acid, phosphorous acid, formic acid, acetic acid, hydrazine, a boron hydride compound, an amine borane compound, and salts thereof as a reducing agent.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: April 27, 2010
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Akihiro Aiba, Hirofumi Takahashi
  • Patent number: 7682431
    Abstract: An electroless ruthenium plating solution is disclosed herein. The solution includes a ruthenium source, a polyamino polycarboxylic acid complexing agent, a reducing agent, a stabilizing agent, and a pH-modifying substance. A method of preparing an electroless ruthenium plating solution is also provided.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: March 23, 2010
    Assignee: Lam Research Corporation
    Inventors: Albina Zieliene, Algirdas Vaskelis, Eugenijus Norkus
  • Patent number: 7678183
    Abstract: Disclosed is an electroless palladium plating bath containing a palladium compound, at least one complexing agent selected from ammonia and amine compounds, at least one reducing agent selected from phosphinic acid and phosphinates, and at least one unsaturated carboxylic acid compound selected from unsaturated carboxylic acids, unsaturated carboxylic acid anhydrides, unsaturated carboxylates and unsaturated carboxylic acid derivatives. Such an electroless palladium plating bath has high bath stability, and decomposition of the bath hardly occurs. Consequently, the electroless palladium plating bath of the present invention has a longer bath life than conventional electroless palladium plating baths. In addition, this electroless palladium plating bath enables to obtain excellent solder bonding characteristics and wire bonding characteristics since it does not affect plating film characteristics even when it is used for a long time.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: March 16, 2010
    Assignee: C. Uyemura & Co., Ltd.
    Inventors: Akihiko Murasumi, Seigo Kurosaka, Hiromu Inagawa, Yukinori Oda
  • Patent number: 7632343
    Abstract: An electroless palladium plating solution is capable of forming a pure palladium plating film directly on an electroless nickel plating film without (pre)treatment such as substituted palladium plating treatment or the like, which pure palladium plating film has good adhesion and small variations in plating film thickness. An electroless palladium plating solution includes: a first complexing agent, a second complexing agent, phosphoric acid or a phosphate, sulfuric acid or a sulfate, and formic acid or a formate: the first complexing agent being an organopalladium complex having ethylenediamine as a ligand: the second complexing agent being a chelating agent having a carboxyl group or a salt thereof and/or a water-soluble aliphatic organic acid or a salt thereof.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: December 15, 2009
    Assignee: Kojima Chemicals Co., Ltd.
    Inventors: Kazuhiro Kojima, Hideto Watanabe
  • Publication number: 20080138528
    Abstract: Copper conductor tracks of circuit boards require a coating which has good corrosion resistance and is suitable for multiple solderability and bondability to enable them to be provided with electronic components. These properties are fulfilled by a layer system which has an intermediate layer of autocatalytically deposited nickel on which a palladium layer has been deposited by charge exchange. To ensure reliable adhesive strength, low porosity and a good homogeneity, the bath for deposition of the palladium layer contains a copper compound. To passivate the palladium layer, the layer system can be provided with a final layer of gold deposited by charge exchange and/or autocatalytically.
    Type: Application
    Filed: January 11, 2006
    Publication date: June 12, 2008
    Applicant: UMICORE GALVANOTECHNIK GMBH
    Inventors: Andreas Gross, Andreas Tieffenbacher
  • Patent number: 7122108
    Abstract: A tin-silver electrolyte and methods of depositing tin-silver alloys on a substrate.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: October 17, 2006
    Assignee: Shipley Company, L.L.C.
    Inventors: Jochen Heber, André Egli
  • Patent number: 7084288
    Abstract: The object of this invention is to provide an organometallic precursor for forming a metal film or pattern and a method of forming the metal film or pattern using the same. More particularly, the present invention provides an organometallic precursor containing a hydrazine-based compound coordinated with a central metal thereof, and a method of forming a metal film or pattern using the same. Further, the present invention provides a composition containing an organometallic compound and a hydrazine-based compound, and a method of forming a metal film or pattern using the same. Additionally, the present invention is advantageous in that a pure metal film or pattern is formed using the organometallic precursor or composition through a simple procedure without limiting atmospheric conditions at a low temperature, and the film or pattern thus formed has excellent conductivity and morphology. Therefore, the film is useful in an electronic device field including flexible displays and large-sized TFT-LCD.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: August 1, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hae Jung Son, Euk Che Hwang, Sang Yoon Lee, Soon Taik Hwang, Byong Ki Yun
  • Patent number: 6911067
    Abstract: An electroless deposition solution of the invention for forming an alkali-metal-free coating on a substrate comprises a first-metal ion source for producing first-metal ions, a pH adjuster in the form of a hydroxide for adjusting the pH of the solution, a reducing agent, which reduces the first-metal ions into the first metal on the substrate, a complexing agent for keeping the first-metal ions in the solution, and a source of ions of a second element for generation of second-metal ions that improve the corrosion resistance of the aforementioned coating.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: June 28, 2005
    Assignee: Blue29, LLC
    Inventors: Artur Kolics, Nicolai Petrov, Chiu Ting, Igor C. Ivanov
  • Patent number: 6911068
    Abstract: A metal plating bath containing organic compounds that inhibit or retard the consumption of plating bath additives. The additives are chemical compounds that improve the brightness of the plated metal, the physical properties of the plated metal especially with respect to ductility and the micro-throwing power as well as the macro-throwing power of the plating bath. The organic compounds that inhibit or retard the consumption of additives increases the life of the plating bath and improves the efficiency of the plating process. The plating baths containing the organic compounds that inhibit or retard additive consumption can be employed to copper, gold, silver, palladium, platinum, cobalt, cadmium, chromium, bismuth, indium, rhodium, ruthenium, and iridium.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: June 28, 2005
    Assignee: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Patent number: 6908504
    Abstract: The present invention relates to a cobalt electroless plating bath composition and method of using it for microelectronic device fabrication. In one embodiment, the present invention relates to cobalt electroless plating in the fabrication of interconnect structures in semiconductor devices.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: June 21, 2005
    Assignee: Intel Corporation
    Inventors: Ramanan V. Chebiam, Valery M. Dubin
  • Patent number: 6878411
    Abstract: The invention concerns a bath for the electrochemical deposition of high-gloss white rhodium coatings and a whitening agent for the same. The brightness or degree of whiteness of the deposited coatings is significantly increased by means of compounds having the formula R—SOm—H, wherein m is the numbers 3 or 4 and R is a straight-chain or branched chain or cyclic alkyl group having up to 20 C atoms, as a whitening agent. The thickness of the coating that can be deposited without a bloom is also significantly increased.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: April 12, 2005
    Assignee: Umicore Galvanotechnik GmbH
    Inventor: Uwe Manz
  • Patent number: 6860925
    Abstract: A process used during manufacture of printed circuit boards comprises protecting metal pads and/or through-holes to provide a tarnish-resistant and solderable coating. In the method, the pads and/or through-holes are bright-etched, metal plated, preferably by an immersion process, and treated with a tarnish inhibitor. The tarnish inhibitor may be incorporated into the immersion plating bath. The metal plating is usually with silver or bismuth and the pads and/or through-holes comprise copper.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: March 1, 2005
    Assignee: Enthone Incorporated
    Inventors: Andrew McIntosh Soutar, Peter Thomas McGrath
  • Publication number: 20040247920
    Abstract: A halide based stress reducing agent is added to the bath of a rhodium plating solution. The stress reducing agent reduces stress in the plated rhodium, increasing the thickness of the rhodium that can be plated without cracking. In addition, the stress reducing agent does not appreciably decrease the wear resistance or hardness of the plated rhodium.
    Type: Application
    Filed: June 6, 2003
    Publication date: December 9, 2004
    Applicant: FormFactor, Inc.
    Inventors: Michael Armstrong, Gayle Herman, Greg Omweg, Ravindra V. Shenoy
  • Publication number: 20040219377
    Abstract: A surface of copper is brought into contact with an aqueous solution for forming a bonding layer for bonding resin comprising: (a) at least one type of acid selected from inorganic acid and organic acid; (b) tin salt or tin oxide; (c) salt or oxide of at least one type of metal selected from the group consisting of: silver, zinc, aluminum, titanium, bismuth, chromium, iron, cobalt, nickel, palladium, gold, and platinum; (d) a reaction accelerator; and (e) a diffusive retaining solvent, so that an alloy layer of tin and the at least one type of metal selected in (c) is formed on the surface of the copper.
    Type: Application
    Filed: April 16, 2004
    Publication date: November 4, 2004
    Applicant: MEC COMPANY LTD.
    Inventors: Mutsuyuki Kawaguchi, Satoshi Saito, Jun Hisada, Naomi Kanda, Toshiko Nakagawa
  • Patent number: 6811674
    Abstract: The present invention provides a palladium plating solution comprising at least 1 to 60 g/L, in terms of the amount of palladium, of a soluble palladium salt and 0.1 to 300 g/L of a sulfamic acid or its salt, the palladium plating solution being substantially free from a brightening agent. This plating solution can be used to form, on a substrate, a palladium plating having on its surface an acicular crystal, and, thus, a plating having excellent adhesion to resin can be provided on the surface of a substrate.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: November 2, 2004
    Assignee: Matsuda Sangyo Co., Ltd.
    Inventor: Shinji Ueki
  • Publication number: 20040156999
    Abstract: A composition and method for providing a blank chromate conversion coating is provided. The composition is substantially free of hexavolent chromium and provides a black finish, on zinc or zinc alloy coatings. The composition includes trivalent chromium ions, phosphorous anions, anions selected from the group consisting of sulfate ions, nitrate ions and combinations thereof, at least one of a transition metal or metalloid from Groups III, IVa, Va or VIII, and an organic chelate selected from the group consisting of carboxylic acids, polycarboxylic acids and combinations thereof.
    Type: Application
    Filed: February 9, 2004
    Publication date: August 12, 2004
    Applicant: Pavco, Inc.
    Inventors: Clifford F. Biddulph, Leonard L. Diaddario, Michael Marzano, Antonino Oriti
  • Patent number: 6773573
    Abstract: A metal plating bath containing alcohol compounds that inhibit or retard the consumption of plating bath additives. The additives are chemical compounds that improve the brightness of the plated metal, the physical properties of the plated metal especially with respect to ductility and the micro-throwing power as well as the macro-throwing power of the plating bath. The alcohol compounds that inhibit or retard the consumption of additives increases the life of the plating bath and improves the efficiency of the plating process. The plating baths containing the alcohol compounds that inhibit or retard additive consumption can be employed to plate copper, gold, silver, palladium, platinum, cobalt, cadmium, chromium, bismuth, indium, rhodium, ruthenium, and iridium.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: August 10, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: David R. Gabe, Andrew J. Cobley, Leon R. Barstad, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Thomas Buckley
  • Patent number: 6773495
    Abstract: In one aspect, the invention encompasses a semiconductor processing method of forming a metal-comprising layer over a substrate. A substrate is provided within a reaction chamber, and a source of a metal-comprising precursor is provided external to the reaction chamber. The metal-comprising precursor comprises a metal coordinated with at least one Lewis base to form a complex having a stoichiometric ratio of the at least one Lewis base to the metal. An amount of the at least one Lewis base is distributed within the source to an amount that is in excess of the stoichiometric ratio. At least some of the metal-comprising precursor is transported from the source to the reaction chamber. A metal is deposited from the metal-comprising precursor and onto the substrate within the reaction chamber. In another aspect, the invention encompasses a method of storing a metal-comprising material. A metal-comprising material is dispersed within a solution.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: August 10, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Stefan Uhlenbrock, Brian A. Vaartstra