Group Viii Noble Metal (ru, Rh, Pd, Os, Ir, Pt) Patents (Class 106/1.28)
  • Publication number: 20040134375
    Abstract: An electroless deposition solution of the invention for forming an alkali-metal-free coating on a substrate comprises a first-metal ion source for producing first-metal ions, a pH adjuster in the form of a hydroxide for adjusting the pH of the solution, a reducing agent, which reduces the first-metal ions into the first metal on the substrate, a complexing agent for keeping the first-metal ions in the solution, and a source of ions of a second element for generation of second-metal ions that improve the corrosion resistance of the aforementioned coating.
    Type: Application
    Filed: January 10, 2003
    Publication date: July 15, 2004
    Inventors: Artur Kolics, Nicolai Petrov, Chiu Ting, Igor Ivanov
  • Patent number: 6753437
    Abstract: The present invention relates to a raw material for CVD comprising an organic iridium compound as a main component, said organic iridium compound being tris(2,4-octanedionato)iridium represented by Formula 1. Particularly preferably, the raw material for CVD consists only of the trans isomer of tris(2,4-octanedionato)iridium.
    Type: Grant
    Filed: January 22, 2003
    Date of Patent: June 22, 2004
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Takeyuki Sagae, Jun-ichi Taniuchi
  • Patent number: 6743346
    Abstract: An aqueous electrolysis bath of acidic pH for the electrochemical deposition of palladium and its alloys, the bath containing a palladium compound and optionally at least one compound of a secondary metal to be co-deposited in the form of an alloy with the palladium. The bath also contains ethylenediamine as a palladium complexing agent, and an organic brightening agent, 3-(3-pyridyl)acrylic acid, 3-(3-quinolyl)acrylic acid or a salt thereof. The invention is also directed to a process for the electroplating of palladium or a palladium alloy utilizing an electrolysis bath as defined above by using current densities of between 0.5 and 150 A/dm2.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: June 1, 2004
    Assignee: Metalor Technologies France Sas a French Simplified Joint Stock Company
    Inventors: José Gonzalez, Lionel Chalumeau, Michel Limayrac
  • Patent number: 6736954
    Abstract: A metal plating bath and method of plating a metal on a substrate where the metal plating bath contains heteroatom organic compounds that prevent or inhibit the consumption of metal plating bath additives. The metal plating bath additives improve the brightness of plated metal as well as the ductility, micro-throwing power and macro-throwing power of the plating bath. The addition of the additive consumption inhibiting heteroatom organic compounds improves the physical properties of the plated metal as well as the efficiency of the plating process. The heteroatom organic compounds may contain sulfur, oxygen or nitrogen heteroatoms.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: May 18, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Patent number: 6712998
    Abstract: A process produces a transparent conductive layer forming coating liquid by combining a colloidal dispersion of fine silver particles, a reducing agent and at least one of an alkali metal aurate solution and/or an alkali metal platinate solution to obtain a colloidal dispersion of noble-metal-coated fine silver particles coated with gold and/or platinum. A cation exchanger is added to the combination. The colloidal dispersion of noble-metal-coated fine silver particles is obtained while any impurity ions formed as a result of reduction are removed through the cation exchanger. This process enables the raw-material concentration to be set at a higher concentration than the conventional process to enable production of the transparent conductive layer forming coating liquid at a low cost and a good productivity.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: March 30, 2004
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventor: Kenji Kato
  • Patent number: 6706420
    Abstract: The present invention relates to electroless plating of a platinum-rhodium alloy onto a substrate. More particularly, this invention pertains to an aqueous platinum and rhodium plating bath, a process for plating a uniform coating of a platinum-rhodium alloy onto various substrates using an electroless plating composition, and a platinum-rhodium plated article formed therefrom. This process is suitable for the deposition of a platinum-rhodium alloy on virtually any material of any geometrical shape, including fibers and powders.
    Type: Grant
    Filed: July 6, 2000
    Date of Patent: March 16, 2004
    Assignee: Honeywell International Inc.
    Inventors: Alexander S. Kozlov, Thirumalai Palanisamy, Dave Narasimhan
  • Publication number: 20040035316
    Abstract: The present invention relates to a cobalt electroless plating bath composition and method of using it for microelectronic device fabrication. In one embodiment, the present invention relates to cobalt electroless plating in the fabrication of interconnect structures in semiconductor devices.
    Type: Application
    Filed: August 26, 2003
    Publication date: February 26, 2004
    Inventors: Ramanan V. Chebiam, Valery M. Dubin
  • Publication number: 20030233960
    Abstract: A method for electroless plating a metallic layer on the surface of a non-metallic substrate. The method comprises (a) exposing the non-metallic substrate to a solution comprising non-precious metal ions so as to obtain a non-metallic substrate covered with a layer of non-precious metal ions; and (b) exposing the covered non-metallic substrate obtained in step (a) to a reducing solution comprising a reducing agent capable of reducing the metal ions that cover the substrate from their oxidation state in step (a) to a lower oxidation state, preferably to zero valence state. In a preferred embodiment, metallization is accomplished by inducing precipitation of metal, e.g. copper, on the surface to be metallized (this effect also being referred to as “plate-out”), via decomposition of the electroless solution. The inventive process contrasts with the prior art, wherein electroless copper deposition is predominantly initiated or triggered through a Pd-bearing layer.
    Type: Application
    Filed: December 2, 2002
    Publication date: December 25, 2003
    Inventor: John Grunwald
  • Publication number: 20030148024
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
    Type: Application
    Filed: October 4, 2002
    Publication date: August 7, 2003
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron D. Stump, Allen B. Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20030124259
    Abstract: A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a viscosity of at least about 1000 centipoise and can be deposited by screen printing. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver and/or copper metal for the formation of highly conductive features.
    Type: Application
    Filed: October 4, 2002
    Publication date: July 3, 2003
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron D. Stump, Allen B. Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20030102226
    Abstract: A metal plating bath containing alcohol compounds that inhibit or retard the consumption of plating bath additives. The additives are chemical compounds that improve the brightness of the plated metal, the physical properties of the plated metal especially with respect to ductility and the micro-throwing power as well as the macro-throwing power of the plating bath. The alcohol compounds that inhibit or retard the consumption of additives increases the life of the plating bath and improves the efficiency of the plating process. The plating baths containing the alcohol compounds that inhibit or retard additive consumption can be employed to plate copper, gold, silver, palladium, platinum, cobalt, cadmium, chromium, bismuth, indium, rhodium, ruthenium, and iridium.
    Type: Application
    Filed: October 2, 2001
    Publication date: June 5, 2003
    Applicant: Shipley Company, L.L.C.
    Inventors: David R. Gabe, Andrew J. Cobley, Leon R. Barstad, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Thomas Buckley
  • Patent number: 6558581
    Abstract: A transparent electro-conductive structure comprising a transparent substrate and formed successively thereon a transparent electro-conductive layer and a transparent coat layer, which is used in, e.g., front panels of display devices such as CRTs. The transparent electro-conductive layer is composed chiefly of i) noble-metal-coated fine silver particles having an average particle diameter of from 1 nm to 100 nm, the fine silver particles being surface-coated with gold or platinum alone or a composite of gold and platinum, and ii) a binder matrix. A transparent electro-conductive layer forming coating fluid used in the production of this transparent conductive structure comprises a solvent and noble-metal-coated fine silver particles dispersed in the solvent and having an average particle diameter of from 1 nm to 100 nm, the fine silver particles being surface-coated with gold or platinum alone or a composite of gold and platinum.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: May 6, 2003
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Masaya Yukinobu, Kenji Kato
  • Patent number: 6555497
    Abstract: An ammine solution which can be provided at low production cost, as compared with conventional ones. The ammine solution contains an ammine compound which contains at least one of platinum and palladium, and at least one kind of amine compound. By using the amine compound of which the boiling point is raised, as compared with that of ammonia, due to the substitution of substitution radicals for some of hydrogens in ammonia molecules, the volatilizing speed from the ammine solution can be restrained.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: April 29, 2003
    Assignee: Cataler Corporation
    Inventors: Toshiyuki Nanami, Eisaku Kondo
  • Publication number: 20030070934
    Abstract: A metal plating bath and method of plating a metal on a substrate where the metal plating bath contains heteroatom compounds that prevent or inhibit the consumption of metal plating bath additives. The metal plating bath additives improve the brightness of plated metal as well as the ductility, micro-throwing power and macro-throwing power of the plating bath. The addition of the additive consumption inhibiting heteroatom organic compounds improves the physical properties of the plated metal as well as the efficiency of the plating process. The heteroatom organic compounds may contain sulfur, oxygen or nitrogen heteroatoms.
    Type: Application
    Filed: October 2, 2001
    Publication date: April 17, 2003
    Applicant: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Publication number: 20030047460
    Abstract: The invention relates to a novel complex salt of palladium sulfate and ethylenediamine which contains 31 to 41% by weight of palladium and in which the molar ratio [SO4]:[Pd] is between 0.9 and 1.15 and the ratio [ethylenediamine]:[Pd] is between 0.8 and 1.2.
    Type: Application
    Filed: October 3, 2002
    Publication date: March 13, 2003
    Inventors: Jose Gonzalez, Lionel Chalumeau, Michel Limayrac
  • Patent number: 6524499
    Abstract: The transparent conductive film of the present invention is formed to have a conductive layer containing at least ruthenium fine particles, gold fine particles and silver fine particles, the weight ratio of ruthenium fine particles and gold fine particles in the conductive layer being within the range of 40:60 to 99:1. As a result, this transparent conductive film and a display device having this transparent conductive film have superior electromagnetic wave shielding effects and anti-reflection effects, high chemical stability and superior visibility.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: February 25, 2003
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Naoki Takamiya, Hideki Horikoshi, Kazutomo Mori, Tadashi Neya
  • Patent number: 6508959
    Abstract: A process is provided for the preparation of a metallic oxide composite including mixing an aqueous solution of a water-soluble metal compound and colloidal silica, depositing the mixture upon a substrate, heating the mixture-coated substrates at temperatures from about 150° C. to about 300° C. for time sufficient to form a metallic oxide film, and, removing the silica from the metallic oxide film whereby a porous metal oxide structure is formed.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: January 21, 2003
    Assignee: The Regents of the University of California
    Inventors: Lin Song Li, Quanxi Jia
  • Publication number: 20020152925
    Abstract: A process used during manufacture of printed circuit boards comprises protecting metal pads and/or through-holes to provide a tarnish-resistant and solderable coating. In the method, the pads and/or through-holes are bright-etched, metal plated, preferably by an immersion process, and treated with a tarnish inhibitor. The tarnish inhibitor may be incorporated into the immersion plating bath. The metal plating is usually with silver or bismuth and the pads and/or through-holes comprise copper.
    Type: Application
    Filed: April 8, 2002
    Publication date: October 24, 2002
    Inventors: Andrew McIntosh Soutar, Peter Thomas McGrath
  • Publication number: 20020150692
    Abstract: A process used during manufacture of printed circuit boards comprises protecting metal pads and/or through-holes to provide a tarnish-resistant and solderable coating. In the method, the pads and/or through-holes are bright-etched, metal plated, preferably by an immersion process, and treated with a tarnish inhibitor. The tarnish inhibitor may be incorporated into the immersion plating bath. The metal plating is usually with silver or bismuth and the pads and/or through-holes comprise copper.
    Type: Application
    Filed: March 13, 2002
    Publication date: October 17, 2002
    Inventors: Andrew McIntosh Soutar, Peter Thomas McGrath
  • Publication number: 20020144909
    Abstract: The present invention provides a palladium plating solution comprising at least 1 to 60 g/L, in terms of the amount of palladium, of a soluble palladium salt and 0.1 to 300 g/L of a sulfamic acid or its salt, the palladium plating solution being substantially free from a brightening agent. This plating solution can be used to form, on a substrate, a palladium plating having on its surface an acicular crystal, and, thus, a plating having excellent adhesion to resin can be provided on the surface of a substrate.
    Type: Application
    Filed: September 5, 2001
    Publication date: October 10, 2002
    Applicant: MATSUDA SANGYO CO., LTD.
    Inventor: Shinji Ueki
  • Publication number: 20020147106
    Abstract: An ammine solution which can be provided at low production cost, as compared with conventional ones. The ammine solution contains an ammine compound which contains at least one of platinum and palladium, and at lease one kind of amine compound. By using the amine compound of which the boiling point is raised, as compared with that of ammonia, due to the substitution of substitution radicals for some of hydrogens in ammonia molecules, the volatilizing speed from the ammine solution can be restrained.
    Type: Application
    Filed: June 4, 2001
    Publication date: October 10, 2002
    Applicant: CATALER CORPORATION
    Inventors: Toshiyuki Nanami, Eisaku Kondo
  • Patent number: 6451433
    Abstract: A fine metal particle-dispersion solution and a method for the solution are disclosed which enables to form a transparent conductive film having an uniform distribution of at least two kinds of metals and is produced by mixing an aqueous solution (A) of at lest one metal salt, the metal comprising one or more metals selected from the group consisting of Au, Pt, Ir, Pd, Ag, Rh, Ru, Os, Re and Cu and an aqueous solution (B) including citrate ion and ferrous ion under an atmosphere having substantially no oxygen to produce fine metal particles. A multi-layers conductive film having a low reflectivity, a low resistance and an excellent durability is available by using the dispersion solution of the present invention comprising Ag—Pd fine particles.
    Type: Grant
    Filed: September 14, 1999
    Date of Patent: September 17, 2002
    Assignee: Mitsubishi Materials Corporation
    Inventors: Tomoko Oka, Toshiharu Hayashi, Daisuke Shibuta
  • Patent number: 6395402
    Abstract: Provided are methods of preparing an electrically conductive polymeric foam. The methods include the following steps: (a) contacting a polymeric foam with a surfactant solution; (b) contacting the polymeric foam with a sensitizing solution; (c) contacting the polymeric foam with an activation solution; and (d) forming at least one metallic layer on the polymeric foam with an electroless plating process. Also provided are electrically conductive polymeric foams formed by such methods. The present methods and foams have particular applicability to the manufacture of EMI (electromagnetic interference) shielding devices.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: May 28, 2002
    Assignee: Laird Technologies, Inc.
    Inventors: Michael Lambert, Satish Chandra, Tony Sosnowski
  • Patent number: 6391477
    Abstract: This invention relates to electroless autocatalytic plating of platinum onto a substrate, an aqueous platinum plating bath, a process for plating a uniform coating of platinum onto various substrates using an electroless autocatalytic plating composition, and a platinum plated article formed therefrom. The plating bath of this invention allows direct autocatalytic plating of platinum on catalytically active and inactive, conductive and non-conductive substrates, avoiding the extra costs of activating a catalytically inactive substrate.
    Type: Grant
    Filed: July 6, 2000
    Date of Patent: May 21, 2002
    Assignee: Honeywell International Inc.
    Inventors: Alexander S. Koslov, Thirumalai Palanisamy, Dave Narasimhan
  • Publication number: 20020053299
    Abstract: A method is provided for forming a film of ruthenium or ruthenium oxide to the surface of a substrate by employing the techniques of chemical vapor deposition to decompose ruthenium precursor formulations. The ruthenium precursor formulations of the present invention include a ruthenium precursor compound and a solvent capable of solubilizing the ruthenium precursor compound. A method is further provided for making a vaporized ruthenium precursor for use in the chemical vapor deposition of ruthenium and ruthenium-containing materials onto substrates, wherein a ruthenium precursor formulation having a ruthenium-containing precursor compound and a solvent capable of solubilizing the ruthenium-containing precursor compound is vaporized.
    Type: Application
    Filed: October 30, 2001
    Publication date: May 9, 2002
    Inventors: Eugene P. Marsh, Stefan Uhlenbrock
  • Patent number: 6346222
    Abstract: This invention provides a process of making a palladium replenisher comprising a complex of palladium tetraammine sulfate. The process includes distilling a palladium nitrate solution at a temperature maintained at or below about 115° C. Palladium sulfate and ammonium hydroxide are then added to make the palladium tetraamine sulfate replenisher from solution. The replenisher of the invention is used to replenish depleted palladium during palladium electroplating to maintain the palladium concentration in the bath within from about 5 to about 10 weight percent of recommended plating bath levels.
    Type: Grant
    Filed: June 1, 1999
    Date of Patent: February 12, 2002
    Assignee: Agere Systems Guardian Corp.
    Inventors: Joseph Anthony Abys, Conor Anthony Dullaghan, Peter Epstein, Joseph John Maisano, Jr.
  • Publication number: 20020014414
    Abstract: The use of alkali metal, alkaline earth metal, ammonium and substituted ammonium salts of alkyl and alkanol sulfonic acids as additives in pure metal and metal alloy sulfate electroplating baths has a number of unexpected benefits including wider useful current density range, improved appearance and in the case of tin improved oxidative stability. The metals and alloys include but are not limited to tin, nickel, copper, chromium, cadmium, iron, rhodium, ruthenium, iron/zinc and tin/zinc.
    Type: Application
    Filed: May 21, 2001
    Publication date: February 7, 2002
    Inventors: Hyman D. Gillman, Brenda Fernandes, Kazimierz Wikiel
  • Patent number: 6277180
    Abstract: A method to make volumetric additions of dilute aqueous acid solutions to a colloidal catalyst bath that will retard the salt crystallization. The process includes the steps of measuring the volumetric loss of water by physical measurements and adding dilute aqueous acid solution to the bath in the amount of the loss or by measuring the density or specific gravity of the solution and adding dilute aqueous acid solutions to maintain the specific gravity in the desired range.
    Type: Grant
    Filed: July 12, 1999
    Date of Patent: August 21, 2001
    Assignee: Oliver Sales Company
    Inventors: Richard Carroll Condra, Paul Christopher Healey
  • Patent number: 6273943
    Abstract: An electroless composite plating solution comprising metal ions, a complexing agent for said metal ions, a hypophosphite serving as a reducing agent, a surface active agent, and a water-insoluble composite material, said surface active agent comprising a quaternary ammonium salt surface active agent which has two or more ethylene oxide groups and an alkyl group or a fluorine-substituted alkyl or alkenyl group, said quaternary ammonium salt surface active agent being cationic in nature or exhibiting substantially cationic properties under pH conditions of said plating solution.
    Type: Grant
    Filed: January 12, 2000
    Date of Patent: August 14, 2001
    Assignee: C. Uyemura & Co., Ltd.
    Inventors: Tadashi Chiba, Koji Monden
  • Patent number: 6235093
    Abstract: An aqueous solution for obtaining a noble metal by chemical reduction containing at least one water-soluble compound or complex of a metal selected from the group consisting of gold, platinum, silver, and palladium as a source of the metal to be deposited, and at least one mercapto compound or sulfide compound or a salt thereof as a reducing agent. The reducing agent is typically mercaptoacetic acid, 2-mercaptopropionic acid, 2-aminoethanethiol, 2-mercaptoethanol, glucose cysteine, 1-thioglycerol, sodium mercaptopropanesulfonate, N-acetylmethionine, thiosalicylic acid, 2-thiazoline-2-thiol, 2,5-dimercapto-1,3,4-thiadiazole, 2-benzothiazolethiol, or 2-benzimidazolethiol. They may be used singly or in combination.
    Type: Grant
    Filed: June 28, 1999
    Date of Patent: May 22, 2001
    Assignee: Daiwa Fine Chemicals Co., Ltd.
    Inventors: Yoshiaki Okuhama, Takao Takeuchi, Keigo Obata, Yasuhito Kohashi, Hidemi Nawafune
  • Patent number: 6197366
    Abstract: According to the present invention, a metal paste comprising an organo- or inorganometallic compound of a metal that is a solid at ordinary temperature and belongs to group 3 through 15 of the periodic table, and an amino compound as medium, and which exhibits coatable viscosity, is provided. By using the metal paste, metal films of various types of metals or alloys can be formed inexpensively with an industrially simple process and apparatus even on various types of general-purpose, inexpensive substrates having a low softening point such as a glass, plastic, film and so forth, in addition to a ceramic substrate. In particular, the metal film can be formed easily in an ordinary pressure onto a printed wiring board or a substrate to be coated with a metal, which has a poor heat resistance.
    Type: Grant
    Filed: November 5, 1999
    Date of Patent: March 6, 2001
    Assignee: Takamatsu Research Laboratory
    Inventor: Hideki Takamatsu
  • Patent number: 6183545
    Abstract: An aqueous solution for the reductive deposition of metals comprising, besides water, (A) a phosphine of the general formula (1)  in which R1, R2, and R3 denote lower alkyl groups, at least one of which being hydroxy-or amino-substituted lower alkyl group, and (B) a soluble compound of a metal or a compound of a metal solubilized through the formation of a soluble complex by said phosphine.
    Type: Grant
    Filed: June 28, 1999
    Date of Patent: February 6, 2001
    Assignee: Daiwa Fine Chemicals Co., Ltd.
    Inventors: Yoshiaki Okuhama, Takao Takeuchi, Masakazu Yoshimoto, Shigeru Takatani, Emiko Tanaka, Masayuki Nishino, Yuji Kato, Yasuhito Kohashi, Kyoko Kuba, Tetsuya Kondo, Keiji Shiomi, Keigo Obata, Mitsuo Komatsu, Hidemi Nawafune