Including Details Of Means Providing Product Movement (e.g., Shaft Guides, Servo Means) Patents (Class 117/218)
  • Publication number: 20090211520
    Abstract: A crystal-growing furnace system with an emergent pressure-release arrangement includes an isolated chamber and a furnace upper body. The top board is provided with an opening and three first guides, and the furnace upper body with a lower opening and three second guides, wherein the lower opening of the furnace upper body covers, correspondingly, on the opening of the top board. In case a crystal-growing furnace, combined oppositely by the furnace upper body and the furnace lower body, has an over-high internal pressure, the pressure will overcome the weight of, and lift up the furnace upper body. At this moment, the furnace upper body will slightly move upward and away from enclosing the furnace lower body, so that the over-high internal pressure in the furnace will be released immediately to prevent the furnace from being exploded and from resulting in public accidents.
    Type: Application
    Filed: July 28, 2008
    Publication date: August 27, 2009
    Applicant: Green Energy Technology Inc.
    Inventors: Shiow-Jeng Lew, Hur-Lon Lin
  • Publication number: 20090139444
    Abstract: Disclosed are a czochralski apparatus for growing crystals and a purification method of waste salts using the same. More particularly, the present invention provides a czochralski apparatus for growing crystals comprising screw thread for fixing salt crystals mounted on a pulling bar of the apparatus in order to prevent desorption of crystals caused by load thereof during a crystal growing process without requiring alternative seed crystals and, in addition, a method for purification of waste salts, which can isolate impurities from molten waste salts using a czochralski crystal growing process without alternative adsorption medium, does not generate secondary wastes and may continuously purify the waste salts.
    Type: Application
    Filed: April 3, 2008
    Publication date: June 4, 2009
    Inventors: Jong-Hyeon Lee, Han-Soo Lee, In-Tae Kim, Yoon-Sang Lee, Eung-Ho Kim
  • Patent number: 7455731
    Abstract: A polycrystalline silicon rod according to present invention has a structure for hanging of polycrystalline silicon rods to each other end-to-end, so that the efficiency of melting polycrystalline silicon can be increased considerably. A polycrystalline silicon rod obtained by entirely or partially removing a peripheral portion from the rod to leave a central portion, and processing the central portion, preferably, the peripheral portion is removed by grinding in an amount corresponding to 10 to 60% of the diameter of the rod, and then subjected to groove-forming processing. This makes annealing unnecessary.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: November 25, 2008
    Assignee: Mitsubishi Materials Corporation
    Inventors: Mamoru Nakano, Yukio Yamaguchi, Teruhisa Kitagawa, Rikito Sato, Naoki Hatakeyama
  • Patent number: 7427325
    Abstract: In a method for producing a high quality silicon single crystal by the Czochralski method, a lower portion of a solid-liquid interface of a single crystal growth is divided into a central part and a circumferential part, and the temperature gradient of the central part and the temperature gradient of the circumferential part are separately controlled. When a silicon melt located at a lower portion of a solid-liquid interface of a single crystal growth is divided into a central part melt and a circumferential part melt, the method controls the temperature gradient of the central part melt by directly controlling the temperature distribution of a melt and indirectly controls the temperature gradient of the circumferential part melt by controlling the temperature gradient of the single crystal, thereby effectively controlling the overall temperature distribution of the melt, thus producing a high quality single crystal ingot free of defects with a high growth velocity.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: September 23, 2008
    Assignee: Siltron, Inc.
    Inventor: Hyon-Jong Cho
  • Patent number: 7419545
    Abstract: The present invention provides a producing method with which large silicon carbide (SiC) single crystal can be produced at low cost. Silicon carbide single crystal is produced or grown by dissolving and reacting silicon (Si) and carbon (C) in an alkali metal flux. The alkali metal preferably is lithium (Li). With this method, silicon carbide single crystal can be produced even under low-temperature conditions of 1500° C. or lower, for example. The photograph of FIG. 3B is an example of a silicon carbide single crystal obtained by the method of the present invention.
    Type: Grant
    Filed: December 26, 2005
    Date of Patent: September 2, 2008
    Assignees: Matsushita Electric Industrial Co., Ltd., Osaka University
    Inventors: Yasuo Kitaoka, Yusuke Mori, Takatomo Sasaki, Fumio Kawamura, Minoru Kawahara
  • Patent number: 7413609
    Abstract: A semiconductor single crystal manufacturing apparatus capable of lowering the local deterioration of a wire under high temperature atmosphere in the furnace of a chamber, wherein a crucible (24) in which silicon melt (28) is filled is installed in the furnace of the chamber (22), a pull-chamber (23) is disposed above the chamber (22), and a seed holder (32) lifting between the inside of the pull-chamber (23) and the inside of the furnace is suspended by a wire (50) through a coupling member (31). A collar (52) is fitted to the wire (50) so that, when the seed holder (32) is positioned to touch the melt, the exposed portion of the wire (50) near the tip thereof becomes a specified temperature or below under the high temperature atmosphere in the furnace.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: August 19, 2008
    Assignee: Sumco Techxiv Corporation
    Inventor: Toshirou Umeki
  • Patent number: 7390361
    Abstract: A semiconductor single crystal manufacturing apparatus which can manufacture a single crystal of high oxygen concentration to that of low oxygen concentration within a prescribed standard range of oxygen concentration, as a wafer material for semiconductor integrated circuits, with a high yield, is provided. Heat shields 20, 21 are provided in the entire annular area between respective adjacent heaters of the heaters 4a, 4b, 4c for heating the crucible 3 from the outside periphery side. By using the heat shields 20, 21 for localizing the respective heating regions for the heaters to actively control the temperature distribution for the crucible 3 and melt 8 in the crucible, a single crystal of high oxygen concentration to that of low oxygen concentration can be manufactured within a prescribed standard range of oxygen concentration with a high yield.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: June 24, 2008
    Assignee: Sumco Techxiv Corporation
    Inventors: Tetsuhiro Iida, Akiko Noda, Junsuke Tomioka
  • Patent number: 7384480
    Abstract: This apparatus for manufacturing a semiconductor single crystal includes: a crucible; a heater; a crucible driving unit; a chamber for housing the crucible and the heater; and a hydrogen mixed gas supplying device for supplying into the chamber a hydrogen mixed gas including an inert gas in admixture with a hydrogen-containing gas that contains hydrogen atoms, wherein the hydrogen mixed gas supplying device includes: a hydrogen-containing gas supply unit; an inert gas supply unit; a hydrogen-containing gas flow rate controller; an inert gas flow rate controller; and a gas mixing unit for uniformly mixing together the hydrogen-containing gas and the inert gas so as to form a hydrogen mixed gas.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: June 10, 2008
    Assignee: SUMCO Corporation
    Inventors: Wataru Sugimura, Toshiaki Ono, Masataka Hourai
  • Patent number: 7374614
    Abstract: The method for manufacturing a single crystal semiconductor achieves an object to reduce the impurity concentration nonuniformity within a semiconductor wafer plane and thus to improve the wafer planarity by introducing an impurity into the single crystal semiconductor more uniformly during the pulling of the single crystal semiconductor from a melt. In the course of pulling the single crystal semiconductor (6), the rotating velocity (?2) of the single crystal semiconductor (6) being pulled is adjusted to a predetermined value or higher, and a magnetic field having a strength in a predetermined range is applied to the melt (5). Particularly, the crystal peripheral velocity is adjusted to 0.126 m/sec or higher, and M/V1/3 is adjusted to 35.5?M/V1/3?61.3. More desirably, the crystal peripheral velocity is adjusted to 0.141 m/sec or higher, and M/V1/3 is adjusted to 40.3?M/V1/3?56.4.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: May 20, 2008
    Assignee: Komatsu Denshi Kinzoku Kabushiki Kaisha
    Inventors: Masafumi Ura, Hidetoshi Kurogi, Toshiharu Yubitani, Noboru Furuichi
  • Patent number: 7344595
    Abstract: The method for producing single crystals includes drying crystal raw material by removing water, reaction of impurities with a scavenger, preferably a metal halide, and homogenizing the melt. The method is performed with the raw material in a melt vessel with a variable-sized through-going opening, in which drying occurs at 100° C. to 600° C. for at least 20 hours with a geometric conductance value for the through-going opening of 2.00 to 30.00 mm2; the reacting occurs at 600° C. to 1200° C. for at least nine hours with a geometric conductance value of 0.0020 to 0.300 mm2 and the homogenizing occurs at above 1400° C. for at least six hours with a geometric conductance value of 0.25 to 1.1 mm2. Alternatively the geometric conductance value is the same during drying, reacting and homogenizing and takes a value between 0.25 and 1 mm2.
    Type: Grant
    Filed: January 24, 2005
    Date of Patent: March 18, 2008
    Assignee: Schott AG
    Inventors: Joerg Kandler, Lutz Parthier, Thomas Kaufhold, Gunther Wehrhan, Clemens Kunisch
  • Patent number: 7323053
    Abstract: It is an object of the present invention to provide a pulling-down apparatus that can breed a crystal having good characteristics of scintillation. The apparatus retains in a container that can control an atmosphere a melting pot having a narrow hole at the bottom side thereof, an induction heating device, and a seed-holding device that holds a seed and is pulled down so that a crystal formed successively to the seed is pulled down. Concurrently, imaging devices are arranged that can pick up images of a solid-liquid interface between the crystal and a melt material, from different directions, and the seed-holding device can be travel along directions perpendicular to respective image pickup directions in a horizontal plane.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: January 29, 2008
    Assignee: TDK Corporation
    Inventors: Kazushige Tohta, Kou Onodera, Takeshi Ito, Tsuguo Fukuda, Akira Yoshikawa
  • Patent number: 7314523
    Abstract: A method for manufacturing a SiC single crystal from a SiC seed crystal is provided. The method includes the steps of: measuring a diameter of the SiC single crystal during a crystal growth of the SiC single crystal; and controlling the diameter of the SiC single crystal to be a predetermined diameter on the basis of the measured diameter. The method provides the SiC single crystal with high quality and large size.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: January 1, 2008
    Assignee: DENSO CORPORATION
    Inventors: Kouki Futatsuyama, Yasuo Kitou
  • Patent number: 7314522
    Abstract: An apparatus having a crucible (1) for holding a raw material, a heating means (11) for heating the raw material in the crucible (1) and a crystal transporting means (17) for transporting a seed crystal (13) upwards from the inside of the crucible (1), which further comprises a heat conducting member (3) which extends upwards at least from the vicinity of the upper end of the crucible (1), surrounds a single crystal (15) formed, and is made of a material having heat conductivity, and an interface portion radiation heat blocking member (7) for blocking, at least during cooling after the formation of a single crystal, the radiation heat toward an upper portion above the interface between a taper portion (15a) of the formed single crystal (15) connecting with the seed crystal (13) and a straight bulge portion (15b) having a cylindrical shape connecting with the taper portion (15a) of the formed single crystal (15).
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: January 1, 2008
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Shigeki Hirasawa, Masato Ikegawa, Hiroyuki Ishibashi, Akihiro Gunji
  • Patent number: 7306676
    Abstract: This apparatus for manufacturing a semiconductor single crystal includes: a crucible; a heater; a crucible driving unit; a chamber for housing the crucible and the heater; and a hydrogen mixed gas supplying device for supplying into the chamber a hydrogen mixed gas including an inert gas in admixture with a hydrogen-containing gas that contains hydrogen atoms, wherein the hydrogen mixed gas supplying device includes: a hydrogen-containing gas supply unit; an inert gas supply unit; a hydrogen-containing gas flow rate controller; an inert gas flow rate controller; and a buffer tank for mixing together the hydrogen-containing gas and the inert gas so as to form a hydrogen mixed gas and for holding the hydrogen mixed gas.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: December 11, 2007
    Assignee: Sumco Corporation
    Inventors: Wataru Sugimura, Toshiaki Ono, Masataka Hourai
  • Patent number: 7294203
    Abstract: A heat shielding member is provided in a device pulling up a silicon single crystal rod from a silicon melt stored in a quartz crucible, and equipped with a tube portion which shields radiant heat from the heater surrounding the outer peripheral face of the silicon single crystal rod, a swelling portion provided at the lower portion of the tube portion, and a ring-shape heat accumulating portion provided at the inside of the swelling portion. The heat accumulating portion is a thermal conductivity of 5 W/(m·° C.) or less, its inner peripheral face is a height (H1) of 10 mm or more and d/2 or less when the diameter of the silicon single crystal rod is referred to as d and the minimum distance (W1) between the outer peripheral face of the silicon single crystal rod and the inner peripheral face of the heat accumulating portion is formed so as to be 10 mm or more and 0.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: November 13, 2007
    Assignee: Sumitomo Mitsubishi Silicon Corporation
    Inventors: Kazuhiro Harada, Yoji Suzuki, Senlin Fu, Hisashi Furuya, Hidenobu Abe
  • Patent number: 7291225
    Abstract: A heat shield and a crystal growth equipment are provided, in which the length-adjustable and hybrid-angle heat shield is provided for the crystal growth equipments. The heat shield is adapted for not only guiding the inert gas flow but also speeding up the flow rate of the gas and the cooling rate of the crystal so as to raise the axial temperature gradient at the solid-molten interface, the growth rate of the crystal and the productivity. The heat shield further can also reduce the possibility of microdefect nucleation to improve the quality of crystal at the same time. In addition, the length of heat shield can be adjusted according to the distance between the heat shield and the semiconductor material melt in different crucibles in case that the crucibles are made by different factories. This can reduce the cost of the heat shield manufacturing.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: November 6, 2007
    Assignee: National Central University
    Inventors: Jyh-Chen Chen, Bing-Jung Chen, Gwo-Jiun Sheu, Farn-Shiun Hwu
  • Patent number: 7282095
    Abstract: [Problem] A silicon single crystal ingot in which point defect agglomerates do not exist over a substantially entire length thereof is manufactured without reducing a pure margin. [Solving Means] A heat shielding member 36 comprises a bulge portion 41 which is provided to bulge in an in-cylinder direction at a lower portion of a cylindrical portion 37 and has a heat storage member 47 provided therein. A flow quantity of an inert gas flowing down between the bulge portion 41 in the heat shielding member 36 and an ingot 25 when pulling up a top-side ingot 25a of the silicon single crystal ingot 25 is set larger than a flow quantity of the inert gas flowing down between the bulge portion 41 and the ingot 25 when pulling up a bottom-side ingot 25b of the silicon single crystal ingot 25, thereby pulling up the ingot 25.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: October 16, 2007
    Assignee: Sumco Corporation
    Inventors: Kazuhiro Harada, Norihito Fukatsu, Senlin Fu, Yoji Suzuki
  • Patent number: 7244309
    Abstract: In a Czochralski (CZ) single crystal puller equipped with a cooler and a thermal insulation member, which are to be disposed in a CZ furnace, smooth recharge and additional charge of material are made possible. Further, elimination of dislocations from a silicon seed crystal by use of the Dash's neck method can be performed smoothly. To these ends, there is provided a CZ single crystal puller, wherein a cooler and a thermal insulation member are immediately moved upward away from a melt surface during recharge or additional charge of material or during elimination of dislocations from a silicon seed crystal by use of the Dash's neck method.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: July 17, 2007
    Assignee: Sumco TechXIV Corporation
    Inventors: Daisuke Ebi, Shigeo Morimoto
  • Patent number: 7232489
    Abstract: An apparatus for holding a crucible or other item is provided. The apparatus includes a first support member having a straight portion with two ends. A second support member having a shaped portion is connected to one of the ends of the first support member, wherein the shape of the shaped portion accommodates the crucible or other item. A support material covers the second support member, wherein the support material increases the coefficient of friction between the crucible or other item and the second support member. A spring is coupled to the other end of the first support member, and a third support member is coupled to the spring and configured so as to apply a force to the crucible or other item when the crucible or other item is placed in the shaped portion of the second support member.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: June 19, 2007
    Inventor: Olivia Webb
  • Patent number: 7201801
    Abstract: The present invention provides a heater for manufacturing a crystal by the Czochralski method comprising at least terminal portions supplied with current and a heat generating portion by resistance heating, and being arranged so as to surround a crucible containing a raw material melt, wherein the heater has a uniform heat generation distribution to the raw material melt after deformation while in use during crystal manufacture. It is thus possible to prevent hindrance of monocrystallization and unstable crystal quality caused by ununiform temperature in the raw material melt due to deformation of the shape of the heater's heat generating portion while in use during crystal manufacture.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: April 10, 2007
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Susumu Sonokawa, Ryoji Hoshi, Wataru Sato, Tomohiko Ohta
  • Patent number: 7195671
    Abstract: An apparatus for growing crystals includes a sealed chamber having a crucible assembly and a seed holder disposed therein. The crucible assembly is adapted to contain a melt therein and the seed holder is selectively positionable within the chamber from a first position relative to the crucible assembly to at least one subsequent position within the crucible assembly. A heater is configured and dimensioned to heat the melt disposed within the crucible assembly and an insulator is included for insulating the heater and the crucible. An actuator rotates at least one of the crucible assembly and the seed holder relative to the other and a support ring suspends the crucible assembly within the sealed chamber. A ceramic thermal shield is disposed atop the support ring and regulates the heat loss from the crucible assembly to an upper portion of the chamber.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: March 27, 2007
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Olexy V. Radkevich, Dennis Persyk, Volodimir Protsenko
  • Patent number: 7160386
    Abstract: A single crystal semiconductor manufacturing apparatus in which the concentration of oxygen in a single crystal semiconductor is controlled while pulling up a single crystal semiconductor such as single crystal silicon by the CZ method, a single crystal semiconductor manufacturing method, and a single crystal ingot manufactured by the method are disclosed. The natural convection (20) in the melt (5) in a quartz crucible (3) is controlled by regulating the temperatures at a plurality of parts of the melt (5). A single crystal semiconductor (6) can have a desired diameter by regulating the amount of heat produced by heating means (9a) on the upper side. Further the ratio between the amount of heat produced by the upper-side heating means (9a) and that by the lower-side heating means (9b) is adjusted to vary the process condition. In the adjustment, the amount of heat produced by the lower-side heating means (9b) is controlled to a relatively large proportion.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: January 9, 2007
    Assignee: Komatsu Denshi Kinzoku Kabushiki Kaisha
    Inventors: Yutaka Shiraishi, Jyunsuke Tomioka, Takuji Okumura, Tadayuki Hanamoto, Takehiro Komatsu, Shigeo Morimoto
  • Patent number: 7125450
    Abstract: The present invention is directed to a process for preparing single crystal silicon, in ingot or wafer form, wherein crucible rotation is utilized to control the average axial temperature gradient in the crystal, G0, as a function of radius (i.e., G0(r)), particularly at or near the central axis. Additionally, crucible rotation modulation is utilized to obtain an axially uniform oxygen content therein.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: October 24, 2006
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Zheng Lu, Steven L. Kimbel, Ying Tao
  • Patent number: 7077905
    Abstract: An apparatus for pulling the single crystal has a radiation shield. The apparatus can improve the ratio of single crystallization, even if the radiation shield is made of graphite base material and covered with silicon carbide. The apparatus can be manufactured by low cost and can improve heat insulating characteristic. The apparatus does not generate cracks by heat stress even in a large size. In the apparatus for Czochralski method having the radiation shield, the radiation shield is formed of graphite base material covered with silicon carbide. An inside corner of a curvature formed on the base material is formed of a curved surface.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: July 18, 2006
    Assignee: Toshiba Ceramics Co., Ltd.
    Inventors: Makoto Shimosaka, Sunao Abe
  • Patent number: 7063743
    Abstract: The present invention teaches an apparatus for pulling a single crystal, whereby a radial temperature gradient of a seed crystal and/or a neck is reduced to a minimum so as to inhibit occurrence of thermal stress and prevent induction of dislocations, thereby resulting in an improvement in dislocation-free rate of single crystals to be pulled in cases where a single crystal is pulled with a seed crystal and/or a neck being heated using an auxiliary heating device. The apparatus comprises a crucible to be charged with a melt, a heater located around the crucible, and an auxiliary heating device including a heating section which can be located so as to surround a seed crystal in a position near and above the melt, a transfer mechanism for withdrawing the heating section from a passing area of a single crystal, and a covering section to cover a clearance between the heating section and the seed crystal extending from the heating section.
    Type: Grant
    Filed: April 9, 2004
    Date of Patent: June 20, 2006
    Assignee: Sumitomo Mitsubishi Silicon Corporation
    Inventors: Hideki Watanabe, Isamu Miyamoto, Toshiyuki Fujiwara
  • Patent number: 7060133
    Abstract: A single crystal pulling apparatus for a metal fluoride comprising a crucible provided in a chamber for filling with a molten solution of a single crystal material, a melting heater provided to surround the crucible, a vertically movable single crystal pulling bar for attaching a seed crystal on a tip thereof for coming in contact with the molten solution of the single crystal material in the crucible, a heat insulating wall provided in the chamber to surround at least a peripheral side portion of a single crystal pulling region in an upper part of the crucible, a ceiling board for closing an opening portion of an upper end in an upper part of the heat insulating wall, and a single crystal pulling chamber surrounded by the heat insulating wall and the ceiling board, wherein the ceiling board is provided with at least an inserting hole for inserting the single crystal pulling bar, and wherein a coefficient of thermal conductivity in a direction of a thickness of the ceiling board is 1000 to 50000 W/m2·K.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: June 13, 2006
    Assignee: Tokuyama Corporation
    Inventors: Teruhiko Nawata, Hidetaka Miyazaki, Hiroyuki Yanagi, Shinichi Nitta, Harumasa Ito, Isao Yamaga
  • Patent number: 6989059
    Abstract: In a production method for producing a compound semiconductor single crystal by LEC method using a crystal growth apparatus with a double crucible structure, it was made to grow up a crystal by covering the second crucible with a plate-like member having a pass-through slot for being capable of introducing a crystal pulling-up shaft having a seed crystal holding part at a tip into the second crucible and creating a state where an atmosphere within the second crucible scarcely changes (a semi-sealed structure).
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: January 24, 2006
    Assignee: Nikko Materials Co., Ltd.
    Inventors: Toshiaki Asahi, Kenji Sato, Takayuki Yabe, Atsutoshi Arakawa
  • Patent number: 6984264
    Abstract: A single crystal pulling device is composed of a cylindrical pulling furnace, a crucible disposed in the pulling furnace in which a single crystal material for a semiconductor is poured, a cylindrical vacuum vessel coaxially disposed around the pulling furnace, and a superconducting magnet composed of a plurality pairs of coils arranged inside the vacuum vessel so as to generate magnetic field. The superconducting coils are arranged on the same horizontal plane of the cylindrical vacuum vessel, and each of the paired superconducting coils includes coils set so as to oppose to each other with respect to a central axis of the cylindrical vacuum vessel so that one coil of one pair of coils and one coil of another pair of coils adjacent to that one pair of coils constitutes a set angle, directing towards the inside of the cylindrical vessel, in a range of 100° to 130°.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: January 10, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tsutomu Shimonosono, Yoshihiro Koguchi, Takashi Sasaki
  • Patent number: 6977010
    Abstract: In a Czochralski (CZ) single crystal puller equipped with a cooler and a thermal insulation member, which are to be disposed in a CZ furnace, smooth recharge and additional charge of material are made possible. Further, elimination of dislocations from a silicon seed crystal by use of the Dash's neck method can be performed smoothly. To these ends, there is provided a CZ single crystal puller, wherein a cooler and a thermal insulation member are immediately moved upward away from a melt surface during recharge or additional charge of material or during elimination of dislocations from a silicon seed crystal by use of the Dash's neck method.
    Type: Grant
    Filed: January 7, 2003
    Date of Patent: December 20, 2005
    Assignee: Komatsu Denshi Kinzoku Kabushiki Kaisha
    Inventors: Hiroshi Inagaki, Shigeki Kawashima, Makoto Kamogawa, Toshirou Kotooka, Toshiaki Saishoji, Daisuke Ebi, Kentaro Nakamura, Kengo Hayashi, Yoshinobu Hiraishi, Shigeo Morimoto, Hiroshi Monden, Tadayuki Hanamoto, Tadashi Hata
  • Patent number: 6899760
    Abstract: A silicon single crystal growing apparatus supplemented with a low melting point dopant feeding instrument and a low melting point dopant feeding method thereof for producing a heavily doped silicon single crystal with a dopant of low melting point. The apparatus includes a quartz crucible containing molten silicon liquid, a heating unit supplying the quartz crucible with a radiant heat, a crystal pulling lifter pulling up a silicon single crystal from a molten silicon liquid contained in the quartz crucible, and a low melting point dopant feeding instrument. The low melting point dopant feeding instrument includes a sidewall portion, an upper portion, and an open bottom portion with net-like structure having many holes, the sidewall and upper portions being vacuum-tight sealed.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: May 31, 2005
    Assignee: Siltron, Inc.
    Inventors: Ill Soo Choi, Hyun Kyo Choi
  • Patent number: 6899759
    Abstract: A single crystal production method based on the Czochralski method comprises controlling a number of crucible rotations and crystal rotations so that a number of vibrations for driving a melt, determined on the basis of the number of crucible and crystal rotations during a single crystal growing procedure, is outside a range from 95% to 105% of a number of sloshing resonance vibrations of the melt. In another embodiment, the method comprises controlling a number of rotations of a crystal and crucible, so that when a number of vibrations for driving a melt, determined by the number of crucible and crystal rotations during a single crystal growing procedure, is within a range from 95% to 105% of a number of sloshing resonance vibrations of the melt, the number of vibrations of the melt due to sloshing does not exceed 2000 times during a period when the number of vibrations is within that range.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: May 31, 2005
    Assignee: Siltronic AG
    Inventors: Yutaka Kishida, Teruyuki Tamaki, Seiki Takebayashi, Wataru Ohashi
  • Patent number: 6896732
    Abstract: A raw material feeder apparatus for industrial crystal growth systems includes a hopper disposed within a vacuum chamber and adapted to hold a quantity of raw material therein. A slide is disposed adjacent to an opening of the hopper and configured to receive the raw material from the hopper thereon. The slide is selectively moved between an open feeding position and a closed non-feeding position. The slide and a door cooperatively close the opening of the hopper, or in their open state, control the flow of raw material from the hopper. A vibrator associated with the slide feeds the raw material from the slide into an outlet tube for conveyance of the raw material to the crystal growth system.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: May 24, 2005
    Inventors: Bryan Fickett, Robert Bushman
  • Patent number: 6875269
    Abstract: Methods and apparatuses are useful to add polycrystalline rod material to the crucible of a CZ furnace and thereby increase utilization of crucible volume in the production of large diameter CZ silicon ingots. Multiple silicon rods are melted in the CZ furnace, and the subsequent production of a single crystal silicon ingot can occur without operating the isolation valve or opening the upper chamber of the furnace.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: April 5, 2005
    Assignee: Advanced Silicon Materials LLC
    Inventors: Torsten H. Hartmann, Henry Dare Wood
  • Patent number: 6860940
    Abstract: An automated macromolecular crystallization screening system wherein a multiplicity of reagent mixes are produced. A multiplicity of analysis plates is produced utilizing the reagent mixes combined with a sample. The analysis plates are incubated to promote growth of crystals. Images of the crystals are made. The images are analyzed with regard to suitability of the crystals for analysis by x-ray crystallography. A design of reagent mixes is produced based upon the expected suitability of the crystals for analysis by x-ray crystallography. A second multiplicity of mixes of the reagent components is produced utilizing the design and a second multiplicity of reagent mixes is used for a second round of automated macromolecular crystallization screening. In one embodiment the multiplicity of reagent mixes are produced by a random selection of reagent components.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: March 1, 2005
    Assignee: The Regents of the University of California
    Inventors: Brent W. Segelke, Bernhard Rupp, Heike I. Krupka
  • Patent number: 6835247
    Abstract: A system is disclosed for efficient utilization of charge replenishment rods in Czochralski silicon crystal growing processes.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: December 28, 2004
    Assignee: Advanced Silicon Materials LLC
    Inventors: Henry D. Wood, John Peter Hill, Jay Curtis Nelson, William John Juhasz, Jr., Howard J. Dawson
  • Publication number: 20040255847
    Abstract: A fluid sealing system is provided for use in a crystal puller for growing a monocrystalline ingot. The crystal puller has a housing, a fluid flow path contained in the housing, and a fluid passage through a wall of the housing for passage of fluid. The fluid sealing system includes a fluid connector head adapted for connection to the fluid passage and to the fluid flow path to establish fluid communication between the fluid flow path and the outside of the housing. The head has a port adapted for fluid communication with the fluid passage through the wall of the housing. First and second seals around the port are adapted for sealing engagement with the head. A space is defined generally between the first and second seals, and a leak detector is arranged to monitor the space for detecting fluid leakage past at least one of the seals.
    Type: Application
    Filed: June 19, 2003
    Publication date: December 23, 2004
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Carl F. Cherko, Robert D. Cook
  • Patent number: 6821344
    Abstract: A silicon wafer is provided having controlled distribution of defects, in which denuded zones having a sufficient depth inward from the surface of the wafer are combined with a high gettering effect in a bulk region of the wafer. In the silicon wafer, oxygen precipitates, which act as intrinsic gettering sites, show vertical distribution. The oxygen precipitate concentration profile from the top to the bottom surfaces of the wafer includes first and second peaks at first and second predetermined depths from the top and bottom surfaces of the wafer, denuded zones between the top and bottom surfaces of the wafer and each of the first and second peaks, and a concave region between the first and second peaks, which corresponds to a bulk region of the wafer. For such an oxygen precipitate concentration profile, the wafer is exposed to a rapid thermal annealing process in a gas mixture atmosphere containing nitrogen (N2) and argon (Ar) or N2 and hydrogen (H2), in a donor killing step during a wafering process.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: November 23, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jea-gun Park
  • Publication number: 20040211359
    Abstract: A single crystal semiconductor manufacturing apparatus in which the concentration of oxygen in a single crystal semiconductor is controlled while pulling up a single crystal semiconductor such as single crystal silicon by the CZ method, a single crystal semiconductor manufacturing method, and a single crystal ingot manufactured by the method are disclosed. The natural convection (20) in the melt (5) in a quartz crucible (3) is controlled by regulating the temperatures at a plurality of parts of the melt (5). A single crystal semiconductor (6) can have a desired diameter by regulating the amount of heat produced by heating means (9a) on the upper side. Further the ratio between the amount of heat produced by the upper-side heating means (9a) and that by the lower-side heating means (9b) is adjusted to vary the process condition. In the adjustment, the amount of heat produced by the lower-side heating means (9b) is controlled to a relatively large proportion.
    Type: Application
    Filed: February 20, 2004
    Publication date: October 28, 2004
    Inventors: Yutaka Shiraishi, Jyunsuke Tomioka, Takuji Okumura, Tadayuki Hanamoto, Takehiro Komatsu, Shigeo Morimoto
  • Publication number: 20040206301
    Abstract: The present invention teaches an apparatus for pulling a single crystal, whereby the radial temperature gradient of a seed crystal and/or a neck is reduced to a minimum so as to inhibit the occurrence of thermal stress and prevent induction of dislocations, resulting in an improvement in dislocation-free rate of single crystals to be pulled in cases where a single crystal is pulled with the seed crystal and/or the neck being heated using an auxiliary heating device, comprising a crucible charged with a melt, a heater located around the crucible and an auxiliary heating device including a heating section which can be located so as to surround a seed crystal in a position near above the melt and a transfer mechanism for withdrawing the heating section from a passing area of a single crystal, wherein a covering section to cover a clearance between the heating section and the seed crystal is extended from the heating section.
    Type: Application
    Filed: April 9, 2004
    Publication date: October 21, 2004
    Inventors: Hideki Watanabe, Isamu Miyamoto, Toshiyuki Fujiwara, Shuichi Inami
  • Publication number: 20040200408
    Abstract: In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.
    Type: Application
    Filed: April 29, 2004
    Publication date: October 14, 2004
    Inventors: Tihu Wang, Theodore F Ciszek
  • Patent number: 6797062
    Abstract: A heat shield assembly is disclosed for use in a crystal puller for growing a monocrystalline ingot from molten semiconductor source material. The heat shield assembly has a central opening sized and shaped for surrounding the ingot as the ingot is pulled from the molten source material. In one aspect, the heat shield assembly includes a multi-sectioned outer shield and a multi-sectioned inner shield. The sections of at least one of the inner and outer shields may be releasably connected to one another so that, in the event a section is damaged, the sections may be separated to allow replacement with an undamaged section. In another aspect the heat shield assembly includes an upper section and a lower section extending generally downward from the upper section toward the molten material. The lower section has a height equal to at least about 33% of a height of the heat shield assembly.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: September 28, 2004
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Lee W. Ferry, Richard G. Schrenker, Hariprasad Sreedharamurthy
  • Patent number: 6767400
    Abstract: In the CZ process using a cooling member surrounding a single crystal, the cooling member is permitted to effectively serve to increase a pulling speed. Cracks of the single crystal due to excessive cooling are prevented to occur. A high crystal quality is acquired. In order to realize these objects, the temperature of the inner peripheral surface of the cooling member 6 opposing to the outer peripheral surface of the single crystal 4 is restricted to 500° C. or below, even in the lower end, the temperature of which becomes the highest. To achieve this restriction, the thickness T of the cooling member 5 is 10 to 50 mm. The height H of the cooling member 6 is 0.1 to 1.5 times the diameter D of the single crystal 4.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: July 27, 2004
    Assignee: Sumitomo Mitsubishi Silicon Corporation
    Inventors: Takayuki Kubo, Fumio Kawahigashi, Hiroshi Asano, Shinichiro Miki, Manabu Nishimoto
  • Patent number: 6764547
    Abstract: An apparatus for growing a crystal, using the cooler 10 surrounding the single crystal 8 for high speed pulling. The cooler 10 is prepared using a copper-based metal and is water cooled. The supporting arm 12 that supports the cooler 10 is prepared using stainless steel or the like, which is higher in mechanical strength than copper-based metals and is inferior in thermal conductivity, and is detachably connected to the cooler 10. Excessive cooling of the supporting arm 12 and disposition due to precipitation of silicon oxide are prevented, leading to improvement in disposition free pulling rate without the prevention of speed-up. The cost of manufacture of the cooler 10 is saved. The support strength of the cooler is improved.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: July 20, 2004
    Assignee: Sumitomo Mitsubishi Silicon Corporation
    Inventors: Takayuki Kubo, Fumio Kawahigashi, Hiroshi Asano, Naohiro Takaoka
  • Patent number: 6764548
    Abstract: The present invention provides an apparatus and a method for producing a silicon semiconductor single crystal which can stabilize and homogenize an amount of precipitated oxygen in the direction of the crystal growth axis when growing a silicon semiconductor single crystal. The apparatus for producing a silicon semiconductor single crystal by the Czochralski method comprises a main growth furnace having a crucible retaining silicon melt disposed therein for growing a silicon semiconductor single crystal, and an upper growth furnace for housing therein and cooling the silicon semiconductor single crystal pulled from the silicon melt, wherein the upper growth furnace communicated to a ceiling section of the main growth furnace is provided with an upper insulating member for surrounding a pulled silicon semiconductor single crystal.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: July 20, 2004
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Ryoji Hoshi, Takahiro Yanagimachi, Izumi Fusegawa, Tomohiko Ohta, Yuuichi Miyahara, Tetsuya Igarashi
  • Patent number: 6758901
    Abstract: The invention relates to a method and to a device for supporting a crystal ingot while pulling a single crystal, in particular such a crystal composed of silicon, according to the Czochralski method. To this end, a crystal support is provided which engages with a specialized bead, which is formed on the neck of the single crystal ingot and which has the shape of a bicone, by means of bearings in a housing. A support of the crystal ingot is thus achieved which may be disengaged at any time, and which has no disruptive effects on crystal growth and which acts independently of the length of the grown crystal. The bearings are moved into the support position on the bicone by a central pulling element which can be independently displaced relative to a second pulling element.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: July 6, 2004
    Assignee: Crystal Growing Systems GmbH
    Inventors: Winfried Schulmann, Helmut Kaiser
  • Patent number: 6755910
    Abstract: A method capable of securely pulling up a heavy single crystal is described.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: June 29, 2004
    Assignee: Sumitomo Mitsubishi Silicon Corporation
    Inventors: Hiroshi Morita, Hideki Watanabe
  • Publication number: 20040099210
    Abstract: A single crystal pulling apparatus for a metal fluoride comprising a crucible provided in a chamber and filling a molten solution of a single crystal manufacturing material, a melting heater provided to surround the crucible, a vertically movable single crystal pulling bar including a seed crystal on a tip and coming in contact with the molten solution of the single crystal manufacturing material filled in the crucible, a heat insulating wall provided in the chamber to surround at least a peripheral side portion of a single crystal pulling region in an upper part of the crucible, a ceiling board for closing an opening portion of an upper end in an upper part of the heat insulating wall, and a single crystal pulling chamber surrounded by the heat insulating wall and the ceiling board, wherein the ceiling board is provided with at least an inserting hole for inserting the single crystal pulling bar, and a coefficient of thermal conductivity in a direction of a thickness of the ceiling board is 1000 to 50000 W/m
    Type: Application
    Filed: November 19, 2003
    Publication date: May 27, 2004
    Applicant: TOKUYAMA CORPORATION
    Inventors: Teruhiko Nawata, Hidetaka Miyazaki, Hiroyuki Yanagi, Shinichi Nitta, Harumasa Ito, Isao Yamaga
  • Patent number: 6740160
    Abstract: In a high rate pulling with a cooler 10 surrounding a single crystal 8, steam explosion by leakage from the cooler 10 is prevented. Flow rates La, Lb of cooling water are measured by flowmeters 14a, 14b on a cooling water inflow side and cooling water outflow side of the cooler 10. When flow rate difference &Dgr;L (La−Lb) determined from the flow rates La, Lb exceeds 20 cc/minute, open/close valves 15a, 15b, 15c are operated to stop water supply to the cooler 10 and drain outward the cooing water in the cooler 10.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: May 25, 2004
    Assignee: Sumitomo Mitsubishi Silicon Corporation
    Inventors: Takayuki Kubo, Hiroshi Asano, Fumio Kawahigashi, Akira Tsujino
  • Publication number: 20040055531
    Abstract: A heat shield assembly is disclosed for use in a crystal puller for growing a monocrystalline ingot from molten semiconductor source material. The heat shield assembly has a central opening sized and shaped for surrounding the ingot as the ingot is pulled from the molten source material. In one aspect, the heat shield assembly includes a multi-sectioned outer shield and a multi-sectioned inner shield. The sections of at least one of the inner and outer shields may be releasably connected to one another so that, in the event a section is damaged, the sections may be separated to allow replacement with an undamaged section. In another aspect the heat shield assembly includes an upper section and a lower section extending generally downward from the upper section toward the molten material. The lower section has a height equal to at least about 33% of a height of the heat shield assembly.
    Type: Application
    Filed: September 20, 2002
    Publication date: March 25, 2004
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Lee W. Ferry, Richard G. Schrenker, Hariprasad Sreedharamurthy
  • Patent number: 6676753
    Abstract: A silicon wafer is provided having controlled distribution of defects, in which denuded zones having a sufficient depth inward from the surface of the wafer are combined with a high gettering effect in a bulk region of the wafer. In the silicon wafer, oxygen precipitates, which act as intrinsic gettering sites, show vertical distribution. The oxygen precipitate concentration profile from the top to the bottom surfaces of the wafer includes first and second peaks at first and second predetermined depths from the top and bottom surfaces of the wafer, denuded zones between the top and bottom surfaces of the wafer and each of the first and second peaks, and a concave region between the first and second peaks, which corresponds to a bulk region of the wafer. For such an oxygen precipitate concentration profile, the wafer is exposed to a rapid thermal annealing process in a gas mixture atmosphere comprising ammonia (NH3) and argon (Ar) at temperatures below about 1200° C.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: January 13, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jea-gun Park