Shape Defined By A Solid Member Other Than Seed Or Product (e.g., Bridgman-stockbarger) Patents (Class 117/223)
  • Patent number: 8317920
    Abstract: A directional solidification furnace includes a crucible for holding molten silicon and a lid covering the crucible and forming an enclosure over the molten silicon. The crucible also includes an inlet in the lid for introducing inert gas above the molten silicon to inhibit contamination of the molten silicon.
    Type: Grant
    Filed: September 19, 2009
    Date of Patent: November 27, 2012
    Assignee: MEMC Singapore Pte. Ltd.
    Inventors: Steven L. Kimbel, Jihong (John) Chen, Richard G. Schrenker, Lee W. Ferry
  • Publication number: 20120260849
    Abstract: An apparatus and method for producing a crystalline ribbon continuously from a melt pool of liquid feed material, e.g. silicon. The silicon is melted and flowed into a growth tray to provide a melt pool of liquid silicon. Heat is passively extracted by allowing heat to flow from the melt pool up through a chimney. Heat is simultaneously applied to the growth tray to keep the silicon in its liquid phase while heat loss is occurring through the chimney. A template is placed in contact with the melt pool as heat is lost through the chimney so that the silicon starts to “freeze” (i.e. solidify) and adheres to the template. The template is then pulled from the melt pool thereby producing a continuous ribbon of crystalline silicon.
    Type: Application
    Filed: May 23, 2012
    Publication date: October 18, 2012
    Applicant: AMG IdealCast Solar Corporation
    Inventor: Roger F. Clark
  • Patent number: 8242420
    Abstract: An apparatus and process are provided for directional solidification of silicon by electric induction susceptor heating in a controlled environment. A susceptor vessel is positioned between upper and lower susceptor induction heating systems and a surrounding induction coil system in the controlled environment. Alternating current selectively applied to induction coils associated with the upper and lower susceptor heating systems, and the induction coils making up the surrounding induction coil system, result in melting of the silicon charge in the vessel and subsequent directional solidification of the molten silicon. A fluid medium can be directed from below the vessel towards the bottom, and then up the exterior sides of the vessel to enhance the directional solidification process.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: August 14, 2012
    Assignee: Inductotherm Corp.
    Inventor: Oleg S. Fishman
  • Patent number: 8221111
    Abstract: Disclosed is a mold wherein one bottom surface member (2) and four lateral surface members (3) are assembled. The sides of each lateral surface member (3) are respectively provided with a projection (5) and a recess (6) for combining the lateral surface members together, and the projection (5) of one lateral surface member (3) is engaged with the recess (6) of the adjacent lateral surface member (3). By using the one bottom surface member (2) and four lateral surface members (3), a mold can be assembled or disassembled without using screw or bolts. Consequently, the assembly or disassembly work of the mold is dramatically simplified, thereby improving work efficiency significantly.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: July 17, 2012
    Assignee: Kyocera Corporation
    Inventors: Youhei Sakai, Yoshiyuki Amano
  • Publication number: 20120174857
    Abstract: The present invention relates to a method and apparatus for growing sapphire single crystals, and more particularly to a method and apparatus for growing sapphire single crystals in which a high quality, long single crystal can be obtained within a short period of time upon the use of a long rectangular crucible and a long seed crystal extending in a c-axial direction. Use of the method and apparatus for growing sapphire single crystals according to the present invention can uniformly maintain the horizontal temperature at the inside of the crucible despite the use of a rectangular crucible, thereby obtaining a high-quality single crystal as well decreasing the possibility of a failure in the growth of the single crystal.
    Type: Application
    Filed: August 26, 2010
    Publication date: July 12, 2012
    Applicant: CRISTECH CO., LTD.
    Inventor: Jun Tae Ahn
  • Publication number: 20120174860
    Abstract: A template 100 for three-dimensional thin-film solar cell substrate formation for use in three-dimensional thin-film solar cells. The template 100 comprises a substrate which comprises a plurality of posts 102 and a plurality of trenches 104 between said plurality of posts 102. The template 100 forms an environment for three-dimensional thin-film solar cell substrate formation.
    Type: Application
    Filed: January 9, 2012
    Publication date: July 12, 2012
    Applicant: SOLEXEL, INC.
    Inventor: Mehrdad Moslehi
  • Publication number: 20120174861
    Abstract: A semiconductor template having a top surface aligned along a (100) crystallographic orientation plane and an inverted pyramidal cavity defined by a plurality of walls aligned along a (111) crystallographic orientation plane. A method for manufacturing a semiconductor template by selectively removing silicon material from a silicon template to form a top surface aligned along a (100) crystallographic plane of the silicon template and a plurality of walls defining an inverted pyramidal cavity each aligned along a (111) crystallographic plane of the silicon template.
    Type: Application
    Filed: January 9, 2012
    Publication date: July 12, 2012
    Applicant: SOLEXEL, INC.
    Inventors: David Xuan-Qi Wang, Mehrdad M. Moslehi
  • Publication number: 20120137961
    Abstract: Materials of a nitride single crystal of a metal belonging to III group and a flux are contained in a crucible, which is contained in a reaction container, the reaction container is contained in an outer container, the outer container is contained in a pressure container, and nitrogen-containing atmosphere is supplied into the outer container and melt is generated in the crucible to grow a nitride single crystal of a metal belonging to III group. The reaction container includes a main body containing the crucible and a lid. The main body includes a side wall having a fitting face and a groove opening at the fitting face and a bottom wall. The lid has an upper plate part including a contact face for the fitting face of the main body and a flange part extending from the upper plate part and surrounding an outer side of said side wall.
    Type: Application
    Filed: December 9, 2011
    Publication date: June 7, 2012
    Inventors: Makoto Iwai, Shuhei Higashihara, Yusuke Mori, Yasuo Kitaoka, Naoya Miyoshi
  • Patent number: 8172944
    Abstract: The device for producing a block of crystalline material from a bath of molten material comprises a crucible having a bottom and heat extraction means arranged under the crucible. It also comprises means for modulating the thermal conductivity fitted between the bottom of the crucible and the heat extraction means. The means for modulating the thermal conductivity comprise a plurality of plates made from thermally conducting material of low emissivity, parallel to the bottom of the crucible, and means for moving said plates closer to and away from one another.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: May 8, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Florence Servant, Denis Camel, Benoit Marie, Damien Ponthenier
  • Publication number: 20120090537
    Abstract: Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 19, 2012
    Inventor: Nathan G. Stoddard
  • Publication number: 20120085279
    Abstract: A crystal growth apparatus comprises a reaction vessel holding a melt mixture containing an alkali metal and a group III metal, a gas supplying apparatus supplying a nitrogen source gas to a vessel space exposed to the melt mixture inside the reaction vessel, a heating unit heating the melt mixture to a crystal growth temperature, and a support unit supporting a seed crystal of a group III nitride crystal inside the melt mixture.
    Type: Application
    Filed: December 7, 2011
    Publication date: April 12, 2012
    Inventors: Seiji SARAYAMA, Hirokazu Iwata, Akihiro Fuse
  • Publication number: 20120055396
    Abstract: A system and method for growing crystals is described. The system includes a crucible, a shaft adapted to support the crucible, and an intermediate material between the crucible and the shaft having a coating directly applied to contact surfaces of the crucible and the shaft. The coating includes a compound, such as, a carbide, nitride, oxide, or boride. The method for growing a crystal includes providing an intermediate material between contact surfaces between a shaft and a crucible supported by the shaft prior to melting a charge material in the crucible.
    Type: Application
    Filed: October 21, 2011
    Publication date: March 8, 2012
    Applicant: ADVANCED RENEWABLEENERGY COMPANY LLC
    Inventors: Govindhan Dhanaraj, Chandra Khattak, Ben Korzeniowski, Carl Richard Schwerdtfeger, JR., Raj Shetty
  • Publication number: 20120048183
    Abstract: An apparatus for growth of uniform multi-component single crystals is provided. The single crystal material has at least three elements and has a diameter of at least 50 mm, a dislocation density of less than 100 cm?2 and a radial compositional variation of less than 1%.
    Type: Application
    Filed: November 4, 2011
    Publication date: March 1, 2012
    Inventor: Partha Dutta
  • Publication number: 20120048179
    Abstract: A method for preventing molten material breach in a crystal growth apparatus includes providing a chamber of the crystal growth apparatus which is coated with a ceramic material. The chamber can be coated on an interior surface to prevent damage to the chamber itself, which is made of steel, and to prevent steam explosions in the water-cooled chamber. Ceramic blanket layers also can be provided over the coated interior surface of the chamber. As a result, it is possible to produce high quality crystalline products while minimizing the hazards and costs in the event of a spill of molten material.
    Type: Application
    Filed: August 8, 2011
    Publication date: March 1, 2012
    Applicant: GT SOLAR, INC.
    Inventors: Bhuvaragasamy G. Ravi, Parthasarathy S. Raghavan, Chandra P. Khattak, Carl Chartier, Dave Lackey, Dean C. Skelton
  • Publication number: 20110308448
    Abstract: The invention relates to a method for producing oriented solidified blocks made of semi-conductor material, in addition to a device. Said device comprises a crucible, wherein melt is received, and has an insulation which surrounds the crucible at least from the top and from the side and which is arranged at a distance therefrom at least above the crucible, and at least one heating device which is arranged above said crucible. The region inside the insulation above the crucible is divided by an intermediate cover in a process chamber and a heating chamber is arranged there above, wherein at least one heating element is arranged.
    Type: Application
    Filed: February 3, 2006
    Publication date: December 22, 2011
    Inventor: Franz Hugo
  • Patent number: 8062423
    Abstract: A crystal-growing furnace with a convectional cooling structure includes a furnace body, a heating room, and at least one heater. The heating room is accommodated in the furnace body, and includes an upper partition, a plurality of side partitions, and a lower partition. The upper partition is provided with an upper opening, and the lower partition with a central opening. Further, the heating room is provided with an upper door, a lower door, an upper driver, and a lower driver. When silicon slurry is to be cooled and solidified, cooling gaseous stream flows into a lower portion of the heating room through the central opening. Then the upper opening is opened by the upper door which is driven by the upper driver, so that heated gaseous stream is discharged from the upper opening and flows downward along furnace inside wall, and flows back to the heating room from the central opening.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: November 22, 2011
    Assignee: Green Energy Technology Inc.
    Inventor: Shiow-Jeng Lew
  • Publication number: 20110271901
    Abstract: A melt of a material is cooled and a sheet of the material is formed in the melt. This sheet is transported, cut into at least one segment, and cooled in a cooling chamber. The material may be Si, Si and Ge, Ga, or GaN. The cooling is configured to prevent stress or strain to the segment. In one instance, the cooling chamber has gas cooling.
    Type: Application
    Filed: July 20, 2011
    Publication date: November 10, 2011
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Peter L. Kellerman, Frederick Carlson, Frank Sinclair
  • Publication number: 20110271899
    Abstract: In one embodiment, a sheet production apparatus comprises a vessel configured to hold a melt of a material. A cooling plate is disposed proximate the melt and is configured to form a sheet of the material on the melt. A first gas jet is configured to direct a gas toward an edge of the vessel. A sheet of a material is translated horizontally on a surface of the melt and the sheet is removed from the melt. The first gas jet may be directed at the meniscus and may stabilize this meniscus or increase local pressure within the meniscus.
    Type: Application
    Filed: March 1, 2011
    Publication date: November 10, 2011
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Peter L. Kellerman, Gregory D. Thronson, Dawei Sun
  • Publication number: 20110259262
    Abstract: Systems and methods are provided for producing monocrystalline materials such as silicon, the monocrystalline materials being usable in semiconductor and photovoltaic applications. A crucible (50) is received in a furnace (10) for growing a monocrystalline ingot, the crucible (50) initially containing a single seed crystal (20) and feedstock material (90), where the seed crystal (20) is at least partially melted, and the feedstock material (90) is completely melted in the crucible (50), which is followed by a growth and solidification process. Growth of monocrystalline materials such as silicon ingots is achieved by directional solidification, in which heat extraction during growth phases is achieved using insulation (14) that is movable relative to a crucible (50) containing feedstock (90). A heat exchanger (200) also is provided to control heat extraction from the crucible (50) during the growth and solidification process to achieve monocrystalline growth.
    Type: Application
    Filed: June 15, 2009
    Publication date: October 27, 2011
    Applicant: GT SOLAR, INC.
    Inventors: Chandra P. Khattak, Santhana Raghavan Parthasarathy, Bhuvaragasamy G. Ravi
  • Publication number: 20110253033
    Abstract: Provided is a system and method for growing crystals. The method includes substantially fully covering a seed crystal in a charge material, using a heat source to melt the charge material, cooling the seed crystal to keep the seed crystal at least partially intact as the charge material melts, allowing at least a portion of the seed crystal to melt into the molten charge material, and continually growing the crystal by reducing the temperature of the heat source, moving the molten charge material and seed crystal from the heat source, and increasing a rate of cooling of the seed crystal.
    Type: Application
    Filed: April 27, 2011
    Publication date: October 20, 2011
    Applicant: ADVANCED RENEWABLEENERGY CO. LLC
    Inventors: Govindhan Dhanaraj, Chandra P. Khattak, Carl Richard Schwerdtfeger, JR., Kedar Prasad Gupta
  • Publication number: 20110239933
    Abstract: Device for the production of silicon blocks, the device comprising a vessel for receiving a silicon melt with a bottom, an inside, an outside and a central longitudinal axis and at least one support plate which is at least partially in direct contact with the bottom, and which forms a base together with the bottom, and means for generating an inhomogeneous temperature field on the inside of the bottom.
    Type: Application
    Filed: March 30, 2011
    Publication date: October 6, 2011
    Inventors: Bernhard FREUDENBERG, Günter RADEL, Matthias TREMPA, Kaspars DADZIS, Marc DIETRICH, Doreen NAUERT, Stefan PROSKE, Christian REIMANN, Jochen FRIEDRICH
  • Publication number: 20110220012
    Abstract: A crystal growth apparatus includes a crucible arranged on a support mechanism, and at least two plates formed below the support mechanism and movable in a coordinated manner to form a symmetrical aperture centered with respect to an ingot being formed in the crucible, and a drive mechanism for driving the plates with one degree of freedom. The plates open in a plurality of discrete positions to form an aperture that is load centered with respect to the ingot being formed, in order to promote directional solidification of the ingot being formed, and thus achieve a desired convex profile of the ingot.
    Type: Application
    Filed: March 11, 2011
    Publication date: September 15, 2011
    Applicant: GT SOLAR, INCORPORATED
    Inventors: Zhenming Wu, Dean C. Skelton, Brett C. Forlano
  • Publication number: 20110203517
    Abstract: A device for the production of silicon blocks comprising a vessel for receiving a silicon melt with at least one vessel wall, with the at least one vessel wall comprising a nucleation-inhibiting coating on at least part of an inside or with the at least one vessel wall consisting of a nucleation-inhibiting material.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 25, 2011
    Inventors: Bernhard Freudenberg, Mark Hollatz, Matthias Trempa, Christian Reimann, Jochen Friedrich
  • Publication number: 20110174214
    Abstract: To provide a crystal growing apparatus and a crystal growing method capable of enabling use of a quartz crucible for a longer period of time and improving operation rate. A crystal growing apparatus according to the invention includes a crystal growing furnace equipped with a quartz crucible, a raw material melting furnace, and a supply unit for repeatedly supplying a molten raw material from the raw material melting furnace to the quartz crucible. The crystal growing furnace may include a supply port for allowing supply of the molten raw material therethrough, and the supply port may be configured to be movable close to or away from the raw material melting furnace. A plurality of the crystal growing furnaces may be disposed around the raw material melting furnace. The raw material melting furnace may include an insoluble material separating unit. A crystal growing method according to the invention includes supplying a molten raw material melted in advance to a quartz crucible.
    Type: Application
    Filed: November 20, 2009
    Publication date: July 21, 2011
    Applicant: MITSUBISHI MATERIALS TECHNO CORPORATION
    Inventor: Yukichi Horioka
  • Publication number: 20110146566
    Abstract: To reduce the heat input to the bottom of the crucible and to control heat extraction independently of heat input, a shield can be raised between a heating element and a crucible at a controlled speed as the crystal grows. Other steps could include moving the crucible, but this process can avoid having to move the crucible. A temperature gradient is produced by shielding only a portion of the heating element; for example, the bottom portion of a cylindrical element can be shielded to cause heat transfer to be less in the bottom of the crucible than at the top, thereby causing a stabilizing temperature gradient in the crucible.
    Type: Application
    Filed: March 1, 2011
    Publication date: June 23, 2011
    Applicant: GT CRYSTAL SYSTEMS, LLC
    Inventors: Frederick SCHMID, Chandra P. KHATTAK, David B. JOYCE
  • Patent number: 7959730
    Abstract: Embodiments of the present invention relate to a process for obtaining silicon crystals from silicon. The method includes contacting silicon powder with a solvent metal to provide a mixture containing silicon, melting the silicon under submersion to provide a first molten liquid, contacting the first molten liquid with a first gas to provide dross and a second molten liquid, separating the dross and the second molten liquid, cooling the second molten liquid to form first silicon crystals and a first mother liquid and separating the first silicon crystals and the first mother liquid.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: June 14, 2011
    Assignee: 6N Silicon Inc.
    Inventor: Scott Nichol
  • Patent number: 7959729
    Abstract: A production method is provided in which Group-III-element nitride single crystals that have a lower dislocation density and a uniform thickness and are transparent, high quality, large, and bulk crystals can be produced with a high yield. The method for producing Group-III-element nitride single crystals includes: heating a reaction vessel containing at least one metal element selected from the group consisting of an alkali metal and an alkaline-earth metal and at least one Group III element selected from the group consisting of gallium (Ga), aluminum (Al), and indium (In) to prepare a flux of the metal element; and feeding nitrogen-containing gas into the reaction vessel and thereby allowing the Group III element and nitrogen to react with each other in the flux to grow Group-III-element nitride single crystals, wherein the single crystals are grown, with the flux being stirred by rocking the reaction vessel, for instance.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: June 14, 2011
    Assignee: Osaka University
    Inventors: Takatomo Sasaki, Yusuke Mori, Masashi Yoshimura, Fumio Kawamura, Hidekazu Umeda
  • Publication number: 20110000424
    Abstract: The disclosure relates to a method for the crystallogenesis of a material that is electrically conducting at the molten state, by drawing from a molten mass of the material in a crucible, that comprises: progressively subjecting the molten material to a decreasing temperature so that a liquid-solid interface is formed; controlling the flatness of the liquid-solid interface of the material; subjecting the molten material, before and during solidification, to an electromagnetic kneading; the method including that the electromagnetic kneading is obtained by applying an alternating magnetic field. The disclosure also relates to a device for implementing the method.
    Type: Application
    Filed: February 27, 2009
    Publication date: January 6, 2011
    Inventors: Thierry Duffar, Gilbert Vian
  • Publication number: 20100294198
    Abstract: A crystal growing system having multiple rotatable crucibles and using a temperature gradient method comprises a crystal furnace, a plurality of crucibles, a supporting device, and a temperature control device. The crystal furnace includes a furnace body, a heater, and a hearth, wherein the furnace body from outer to inner includes an outer shell, a fiber insulation layer, an insulation brick layer, and a refractory layer. The crucible supporting device includes an elevator, a plurality of crucible guiding tubes, and a plurality of tube holders each capable of supporting a crucible guiding tube, a moving device that is connected to the elevator, a motor with electrical power that is connected to the moving device, wherein there is an affixing device between each pair of guiding tube and guiding tube holder. Each crucible is located in a corresponding crucible guiding tube. The crucible supporting device is a rotatable device.
    Type: Application
    Filed: December 27, 2007
    Publication date: November 25, 2010
    Inventor: Youbao Wan
  • Patent number: 7811383
    Abstract: The device for production of a monocrystalline or a multicrystalline material blank, especially a silicon multicrystalline blank, using the VGF method has a crucible with a rectangular or square cross section. A flat heating device, especially a jacket heater, which generates an inhomogeneous temperature profile, is arranged around the crucible. This temperature profile corresponds to the temperature gradient formed in the center of the crucible. The heat output of the flat heating device decreases from the top to the bottom end of the crucible. The flat heating device includes parallel heating webs, which extend in a meandering course. The heat outputs from the heating webs differ according to their different conductor cross sections. To avoid local overheating in corner areas of the crucible, constrictions of the cross sections of the heating webs are provided at inversion zones of their meandering course.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: October 12, 2010
    Assignee: Schott AG
    Inventors: Matthias Mueller, Markus Finkbeiner, Uwe Sahr, Ingo Schwirtlich, Michael Clauss
  • Patent number: 7794539
    Abstract: A method for producing Group-III-element nitride crystals by which an improved growth rate is obtained and large high-quality crystals can be grown in a short time, a producing apparatus used therein, and a semiconductor element obtained using the method and the apparatus are provided. The method is a method for producing Group-III-element nitride crystals that includes a crystal growth process of subjecting a material solution containing a Group III element, nitrogen, and at least one of alkali metal and alkaline-earth metal to pressurizing and heating under an atmosphere of a nitrogen-containing gas so that the nitrogen and the Group III element in the material solution react with each other to grow crystals.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: September 14, 2010
    Assignees: Panasonic Corporation
    Inventors: Hisashi Minemoto, Yasuo Kitaoka, Isao Kidoguchi, Yusuke Mori, Fumio Kawamura, Takatomo Sasaki, Yasuhito Takahashi
  • Patent number: 7780784
    Abstract: A molding assembly for forming an ingot, including side members each having engaging end portions, the engaging end portions of the side members being engaged with respective ones of the side members such that the side members form a polygonal prism having sides, corners, a top opening and a bottom opening, the engaging end portions of the side members engaging to form connecting portions positioned in the sides, and a bottom member fitted to close the bottom opening of the polygonal prism so as to form a molding device for molding a molten material into an ingot.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: August 24, 2010
    Assignee: Kyocera Corporation
    Inventor: Junichi Atobe
  • Publication number: 20100203350
    Abstract: Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With these methods, an ingot can be grown that is low in carbon and whose crystal growth is controlled to increase the cross-sectional area of seeded material during casting.
    Type: Application
    Filed: July 16, 2008
    Publication date: August 12, 2010
    Applicant: BP CORPORATION NOTH AMERICA INC.
    Inventors: Nathan G. Stoddard, Roger F. Clark, James A. Cliber
  • Publication number: 20100147210
    Abstract: An improved high pressure apparatus and related methods for processing supercritical fluids. In a specific embodiment, the present apparatus includes a capsule, a release sleeve, a heater, at least one ceramic segment or ring but can be multiple segments or rings, optionally, with one or more scribe marks and/or cracks present. In a specific embodiment, the apparatus optionally has a metal sleeve containing each ceramic ring. The apparatus also has a high-strength enclosure, end flanges with associated insulation, and a power control system. In a specific embodiment, the apparatus is capable of accessing pressures and temperatures of 0.2-2 GPa and 400-1200° C., respectively. Following a run, the release sleeve may be at least partially dissolved or etched to facilitate removal of the capsule from the apparatus.
    Type: Application
    Filed: December 12, 2008
    Publication date: June 17, 2010
    Applicant: Soraa, Inc.
    Inventor: MARK P. D'EVELYN
  • Patent number: 7704324
    Abstract: An apparatus and method for processing materials in supercritical fluids is disclosed. The apparatus includes a capsule configured to contain a supercritical fluid, a high strength enclosure disposed about the capsule and a sensor configured to sense pressure difference between an interior and an exterior of the capsule. The apparatus also includes a pressure control device configured to adjust pressure difference of the capsule in response to the pressure difference sensed by the sensor. The apparatus further includes at least one dividing structure disposed within the capsule that divides the capsule into a seed growing chamber and a nutrient chamber.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: April 27, 2010
    Assignee: General Electric Company
    Inventors: Mark Philip D'Evelyn, Robert Arthur Giddings, Fred Sharifi, Subhrajit Dey, Huicong Hong, Joseph Alexander Kapp, Ashok Kumar Khare
  • Patent number: 7686888
    Abstract: Disclosed herein is a cooling system for a chamber of an ingot growth apparatus. In the present invention, guide blades (180) are provided in a base plate (100) at positions adjacent to unevenly curved parts of a guide line (170), which is the base plate (100), and along which cooling water flows. Furthermore, guide blades (360) are provided in a lid (300) at positions adjacent to ports, which are provided in the lid (300) and interfere with the flow of cooling water. As such, in the present invention, the guide blades are provided in the base plate (100) and the lid (300), which define the chamber, at positions at which cooling water creates stationary vortices, thus solving a problem of water stagnation, thereby increasing a cooling effect.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: March 30, 2010
    Assignee: Qualiflownaratech Co., Ltd.
    Inventor: Jong Gu Lee
  • Publication number: 20100068122
    Abstract: A multiple anvil press can be configured for gem-quality growth. The press can include a plurality of opposing anvils, where the anvils are configured for simultaneous movement within a tolerance of less than about 0.5 mm as measured at each anvil surface, and each anvil can be aligned to a common center of all the anvils where the alignment is tuned to a tolerance of less than about 0.1 mm during use. The press can also include a reaction volume formed by the enclosure of all anvils, where the reaction volume has a size configured to facilitate single crystal growth per cycle time.
    Type: Application
    Filed: August 13, 2009
    Publication date: March 18, 2010
    Inventor: Chien-Min Sung
  • Publication number: 20090320745
    Abstract: An improved heater for processing materials or growing crystals in supercritical fluids is provided. In a specific embodiment, the heater is scalable up to very large volumes and is cost effective. In conjunction with suitable high pressure apparatus, the heater is capable of processing materials at pressures and temperatures of 0.2-2 GPa and 400-1200° C., respectively.
    Type: Application
    Filed: June 12, 2009
    Publication date: December 31, 2009
    Applicant: SORAA, INC.
    Inventors: Mark P. D'Evelyn, James S. Speck, Michael T. Coulter, Shuji Nakamura
  • Publication number: 20090320744
    Abstract: A high pressure apparatus and related methods for processing supercritical fluids. In a specific embodiment, the present apparatus includes a capsule, a heater, at least one ceramic ring but can be multiple rings, optionally, with one or more scribe marks and/or cracks present. In a specific embodiment, the apparatus optionally has a metal sleeve containing each ceramic ring. The apparatus also has a high-strength enclosure, end flanges with associated insulation, and a power control system. In a specific embodiment, the apparatus is capable of accessing pressures and temperatures of 0.2-2 GPa and 400-1200° C., respectively.
    Type: Application
    Filed: June 4, 2009
    Publication date: December 31, 2009
    Applicant: SORAA, INC.
    Inventor: MARK P. D' EVELYN
  • Publication number: 20090314198
    Abstract: This invention relates to a device and method for production of ingots of semiconductor grade silicon, including solar grade silicon, where the presence of oxygen in the hot zone is substantially reduced or eliminated by employing materials void of oxides in the hot zone of the melting and crystallisation process. The method may be employed for any known process including for ciystallising semiconductor grade silicon ingots, including solar grade silicon ingots, such as the Bridgman process, the block-casting process, and the CZ-process for growth of monocrystalline silicon crystals. The invention also relates to devices for carrying out the melting and crystallisation processes, where the materials of the hot zone are void of oxides.
    Type: Application
    Filed: June 20, 2007
    Publication date: December 24, 2009
    Applicant: REC ScanWafer AS
    Inventors: Stein Julsrud, Tyke Laurence Naas
  • Patent number: 7635414
    Abstract: An improved system based on the Czochralski process for continuous growth of a single crystal ingot comprises a low aspect ratio, large diameter, and substantially flat crucible, including an optional weir surrounding the crystal. The low aspect ratio crucible substantially eliminates convection currents and reduces oxygen content in a finished single crystal silicon ingot. A separate level controlled silicon pre-melting chamber provides a continuous source of molten silicon to the growth crucible advantageously eliminating the need for vertical travel and a crucible raising system during the crystal pulling process. A plurality of heaters beneath the crucible establish corresponding thermal zones across the melt. Thermal output of the heaters is individually controlled for providing an optimal thermal distribution across the melt and at the crystal/melt interface for improved crystal growth. Multiple crystal pulling chambers are provided for continuous processing and high throughput.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: December 22, 2009
    Assignee: Solaicx, Inc.
    Inventor: David L. Bender
  • Publication number: 20090249999
    Abstract: This invention relates to reusable crucibles for production of ingots of semiconductor grade silicon made of nitride bonded silicon nitride (NBSN). The crucibles may be made by mixing silicon nitride powder with silicon powder, forming a green body of the crucible, and then heating the green body in an atmosphere containing nitrogen such that the silicon powder is nitrided forming the NBSN-crucible. Alternatively the crucibles may assembled by plate elements of NBSN-material that are to be the bottom and walls of a square cross-section crucible, and optionally sealing the joints by applying a paste comprising silicon powder and optionally silicon nitride particles, followed by a second heat treatment in a nitrogen atmosphere.
    Type: Application
    Filed: June 20, 2007
    Publication date: October 8, 2009
    Applicant: REC SCANWAFER AS
    Inventors: Rune Roligheten, Gjertrud Rian, Stein Julsrud
  • Publication number: 20090241829
    Abstract: This invention includes a system and a method for growing crystals including a batch auto-feeding mechanism. The proposed system and method provide a minimization of compositional segregation effect during crystal growth by controlling growth rate involving a high-temperature flow control system operable in an open and a closed loop crystal growth process. The ability to control the growth rate without corresponding loss of volatilize-able elements enables significantly improvement in compositional homogeneity and a consequent increase in crystal yield. This growth system and method can be operated in production scale, simultaneously for a plurality of growth crucibles to further the reduction of manufacturing costs, particularly for the crystal materials of binary or ternary systems with volatile components, such as Lead (Pb) and Indium (In).
    Type: Application
    Filed: July 12, 2007
    Publication date: October 1, 2009
    Inventors: Pengdi Han, Jian Tian
  • Publication number: 20090188427
    Abstract: The device for production of a monocrystalline or a multicrystalline material blank, especially a silicon multicrystalline blank, using the VGF method has a crucible with a rectangular or square cross section. A flat heating device, especially a jacket heater, which generates an inhomogeneous temperature profile, is arranged around the crucible. This temperature profile corresponds to the temperature gradient formed in the center of the crucible. The heat output of the flat heating device decreases from the top to the bottom end of the crucible. The flat heating device includes parallel heating webs, which extend in a meandering course. The heat outputs from the heating webs differ according to their different conductor cross sections. To avoid local overheating in corner areas of the crucible, constrictions of the cross sections of the heating webs are provided at inversion zones of their meandering course.
    Type: Application
    Filed: April 9, 2009
    Publication date: July 30, 2009
    Inventors: Matthias Mueller, Markus Finkbeiner, Uwe Sahr, Ingo Schwirtlich, Michael Clauss
  • Publication number: 20090165703
    Abstract: A method of and apparatus for growing single crystal silicon ingots is disclosed. The apparatus includes a charge structure with one or more charge units that are substantially multi-crystalline or single crystal silicon. The silicon charge structure is preferably coupled to a single crystal seed structure that can be used to grow a silicon ingot after the silicon charge unit is melted into a quartz growing crucible. The silicon charge units can be linked together through silicon linking structures that are threaded into or otherwise secured to the silicon charge units. In accordance with the method of the invention a crucible holding poly-silicon stock and the silicon charge structure are isolated within a process chamber. A process melt is formed and charged with the silicon charge structure, and a silicon ingot is formed without exposing the crystal growing chamber to an outside environment.
    Type: Application
    Filed: December 31, 2007
    Publication date: July 2, 2009
    Inventors: Paul Maloney, Carlos Dizon
  • Publication number: 20090139445
    Abstract: The device comprises a crucible (1) having a bottom (2) and side walls (3). The crucible (1) comprises at least one lateral slit (4) arranged horizontally at a bottom part of the side walls (3). The lateral slit (4) presents a width of more than 50 mm and preferably comprised between 100 mm and 500 mm. The height (H) of the slit (4) is comprised between 50 and 1000 micrometers. The crystalline material is output from the crucible via the lateral slit (4) so as to form a crystalline ribbon (R). The method comprises a step of bringing a crystallization seed into contact with the material output via the lateral slit (4) and a horizontal displacement step of the ribbon (R).
    Type: Application
    Filed: October 19, 2006
    Publication date: June 4, 2009
    Applicants: APOLLON SOLAR, CYBERSTAR
    Inventors: Roland Einhaus, Francois Lissalde, Hubert Lauvray
  • Publication number: 20080311417
    Abstract: An arrangement for manufacturing a crystal of the melt of a raw material comprises: a furnace having a heating device with one or more heating elements, which are configured to generate a gradient temperature field directed along a first direction, a plurality of crucibles for receiving the melt, which are arranged within the gradient temperature field side by side, and a device for homogenizing the temperature field within a plane perpendicular to the first direction in the at least two crucibles. The arrangement further has a filling material inserted within a space between the crucibles wherein the filling shows an anisotropic heat conductivity. Additionally or alternatively, the arrangement may comprise a device for generating magnetic migration fields, both the filling material having the anisotropic heat conductivity and the device for generating magnetic migration fields being suited to compensate or prevent the formation of asymmetric phase interfaces upon freezing of the raw melt.
    Type: Application
    Filed: June 5, 2008
    Publication date: December 18, 2008
    Inventors: Stefan Eichler, Thomas Bunger, Michael Butter, Rico Ruhmann, Max Scheffer-Czygan
  • Publication number: 20080271666
    Abstract: A method and an apparatus for producing crystals wherein crystal quality can be kept and a crystal composition is uniformed from a growth early stage to a growth last stage are provided. In an apparatus for producing crystals wherein the crystals 13 are grown from a liquefying raw material 12 in a crucible retained in a furnace and slowly cooling the raw material 12 in the crucible 11 from below upward, the apparatus comprises a raw material supply apparatus 18 which supplies a resupply raw material, and a reflection plate 20 placed above the crucible 11, which liquefies the resupply raw material 19 supplied from the raw material supply apparatus 18 and drops it as a liquid into the crucible.
    Type: Application
    Filed: June 10, 2005
    Publication date: November 6, 2008
    Inventors: Masahiro Sasaura, Hiroki Kohda, Kazuo Fujiura, Takashi Kobayashi, Tadayuki Imai, Takashi Kurihara
  • Publication number: 20080178793
    Abstract: Techniques for the formation of a higher purity semiconductor ingot using a low purity semiconductor feedstock include associating within a crucible a low-grade silicon feedstock, which crucible forms a process environment of said molten silicon. The process associates with the low-grade silicon feedstock, a quantity of the at least one metal and includes forming within the crucible a molten solution (e.g., a binary or ternary solution) of molten silicon and the metal at a temperature below the melting temperature of said low-grade silicon feedstock. A silicon seed crystal associates with the molten solution within the crucible for inducing directional silicon crystallization. The process further forms a silicon ingot from a portion of the molten solution in association with the silicon seed. The silicon ingot includes at least one silicon crystalline formation grown in the induced directional silicon crystallization process.
    Type: Application
    Filed: January 31, 2007
    Publication date: July 31, 2008
    Inventors: Matthias Heuer, Fritz Kirscht, Dieter Linke, Jean Patrice Rakotoniana, Kamel Ounadjela
  • Publication number: 20080138927
    Abstract: Systems and methods that utilize semiconductor molecules to form crystalline thin-films by depositing the molecules into a substrate at a lateral growth front. Techniques embodied in corresponding ones of the disclosed systems and methods include a submersion technique in which a substrate is submerged in a precursor solution containing the molecules and a film is grown at a meniscus formed between the free surface of the solution and the substrate. Another disclosed technique is a mask technique in which a film is grown on a substrate through an aperture of a moving mask be exposing the aperture to the molecules. Yet another technique disclosed is a writing technique in which a pen is used to deliver to a substrate a precursor solution containing the molecules and the film is grown as the solvent evaporates from the delivered solution.
    Type: Application
    Filed: January 2, 2008
    Publication date: June 12, 2008
    Applicant: The University of Vermont and State Agricultural College
    Inventor: Randall L. Headrick