Having An Element In Common Patents (Class 117/65)
  • Patent number: 8945302
    Abstract: Method for crystal growth from a surfactant of a metal-nonmetal (MN) compound, including the procedures of providing a seed crystal, introducing atoms of a first metal to the seed crystal thus forming a thin liquid metal wetting layer on a surface of the seed crystal, setting a temperature of the seed crystal below a minimal temperature required for dissolving MN molecules in the wetting layer and above a melting point of the first metal, each one of the MN molecules being formed from an atom of a second metal and an atom of a first nonmetal, introducing the MN molecules which form an MN surfactant monolayer, thereby facilitating a formation of the wetting layer between the MN surfactant monolayer and the surface of the seed crystal, and regulating a thickness of the wetting layer, thereby growing an epitaxial layer of the MN compound on the seed crystal.
    Type: Grant
    Filed: March 4, 2012
    Date of Patent: February 3, 2015
    Assignee: Mosaic Crystals Ltd.
    Inventor: Moshe Einav
  • Patent number: 8926750
    Abstract: A method for synthesizing ZnO, comprising continuously circulating a growth solution that is saturated with ZnO between a warmer deposition zone, which contains a substrate or seed, and a cooler dissolution zone, which is contains ZnO source material.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: January 6, 2015
    Assignee: The Regents of the University of California
    Inventors: Jacob J. Richardson, Frederick F. Lange
  • Patent number: 8685163
    Abstract: A method for growing a silicon carbide single crystal on a single crystal substrate comprising the steps of heating silicon in a graphite crucible to form a melt, bringing a silicon carbide single crystal substrate into contact with the melt, and depositing and growing a silicon carbide single crystal from the melt, wherein the melt comprises 30 to 70 percent by atom, based on the total atoms of the melt, of chromium and 1 to 25 percent by atom, based on the total atoms of the melt, of X, where X is at least one selected from the group consisting of nickel and cobalt, and carbon. It is possible to improve morphology of a surface of the crystal growth layer obtained by a solution method.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: April 1, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yukio Terashima, Yasuyuki Fujiwara
  • Patent number: 8668774
    Abstract: A method for synthesizing ZnO, comprising continuously circulating a growth solution that is saturated with ZnO between a warmer deposition zone, which contains a substrate or seed, and a cooler dissolution zone, which is contains ZnO source material.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: March 11, 2014
    Assignee: The Regents of the University of California
    Inventors: Jacob J. Richardson, MaryAnn E. Lange
  • Patent number: 8388752
    Abstract: A method capable of stably manufacturing a SiC single crystal in the form of a thin film or a bulk crystal having a low carrier density of at most 5×1017/cm3 and preferably less than 1×1017/cm3 and which is suitable for use in various devices by liquid phase growth using a SiC solution in which the solvent is a melt of a Si alloy employs a Si alloy having a composition which is expressed by SixCryTiz wherein x, y, and z (each in atomic percent) satisfy 0.50<x<0.68, 0.08<y<0.35, and 0.08<z<0.35, or ??(1) 0.40<x?0.50, 0.15<y<0.40, and 0.15<z<0.35.??(2) x, y, and z preferably satisfy 0.53<x<0.65, 0.1<y<0.3, and 0.1<z<0.3.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: March 5, 2013
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Kazuhito Kamei, Kazuhiko Kusunoki, Nobuyoshi Yashiro, Akihiro Yauchi, Shinji Shimosaki
  • Patent number: 8287644
    Abstract: In a method for growing a silicon carbide single crystal on a silicon carbide single crystal substrate by contacting the substrate with a solution containing C by dissolving C into the melt that contains Si, Cr and X, which consists of at least one element of Sn, In and Ga, such that the proportion of Cr in the whole composition of the melt is in a range of 30 to 70 at. %, and the proportion of X is in a range of 1 to 25 at. %, and the silicon carbide crystal is grown from the solution.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: October 16, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yukio Terashima, Yasuyuki Fujiwara
  • Publication number: 20120042822
    Abstract: A method for fabricating a SiC substrate using metastable solvent epitaxy comprises a Si evaporation step of evaporating a Si melt at an intermediate temperature between a SiC crystal growth temperature and a Si melting point after a crystal growth step of growing an SiC crystal with a predetermined film thickness on the surface of the SiC substrate at the SiC crystal growth temperature. In the method for fabricating the SiC substrate, the ambient pressure in the crystal growth step is higher than the saturated vapor pressure of the Si melt, and the ambient pressure in the Si evaporation step is lower than the saturated vapor pressure of the Si melt. Single-crystal SiC with no large irregularities on the surface thereof can be obtained by using the method.
    Type: Application
    Filed: April 30, 2009
    Publication date: February 23, 2012
    Applicant: ECOTRON CO., LTD.
    Inventors: Shinkichi Hamada, Nobuhiko Nakamura, Toru Matsunami
  • Publication number: 20110212013
    Abstract: A method for adding hydrogen-containing and/or nitrogen-containing compounds to a nitrogen-containing solvent used during ammonothermal growth of group-Ill nitride crystals to offset decomposition products formed from the nitrogen-containing solvent, in order to shift the balance between the reactants, i.e. the nitrogen-containing solvent and the decomposition products, towards the reactant side.
    Type: Application
    Filed: November 4, 2009
    Publication date: September 1, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Siddha Pimputkar, Derrick S. Kamber, James S. Speck, Shuji Nakamura
  • Publication number: 20100189619
    Abstract: Single, acentric, rhombohedral, fluoroberyllium borate crystals of a size sufficient for use in a variety of laser and non-optical applications are formed by a hydrothermal method.
    Type: Application
    Filed: March 1, 2010
    Publication date: July 29, 2010
    Inventors: Joseph W. Kolis, Colin D. McMillen
  • Patent number: 6716475
    Abstract: A materials system or dielectric structure, for example a photonic crystal, of the invention includes a plurality of materials that are biocompatible. The materials have different indices of refraction for the wavelength of operation and are assembled into a dielectric structure having a photonic band gap in one or more directions. The assembly process yields a structure with a particular spatial arrangement of materials with different indices of refraction which is completely biocompatible and has the property of reflecting light at a particular predetermined range of frequencies, as well as other properties associated with photonic band gaps. These structures can exhibit photonic band gaps that can be engineered to be broad or narrow and be centered on different parts of the spectrum UV, visible IR or longer wavelengths. The materials used can have microwave transparency or be made to reflect microwaves.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: April 6, 2004
    Assignee: Massachusetts Institute of Technology
    Inventors: Yoel Fink, John D. Joannopoulos, Edwin L. Thomas
  • Patent number: 6302958
    Abstract: A novel apparatus and process for crystallizing submicron-sized crystals of a pharmaceutical composition. The submicron-sized crystals, which have an average size of less than 1 micron, provide high surface area end product crystals with greatly improved stability and purity, and which afford crystals having improved bioavailability, higher dissolution, decreased decomposition rate and longer shelf-life.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: October 16, 2001
    Assignee: Bristol-Myers Squibb Company
    Inventors: Mark D. Lindrud, Soojin Kim, Chenkou Wei
  • Patent number: 5846319
    Abstract: A system and method for isothermally growing HgCdTe having improved material uniformity and run-to-run repeatability employs a growth solution vessel in which a substrate may be inserted. The growth solution is heated and maintained at a constant temperature while causing Hg to vaporize and rise within the growth solution vessel. A water-cooling jacket causes the Hg to condense and form on the walls of the growth solution vessel. The Hg condensate is directed into a calibrated reservoir. HgCdTe growth continues as the Hg is depleted from the growth solution and fills the reservoir. The reservoir is calibrated to hold the specific amount of Hg condensate corresponding to the desired layer of HgCdTe. The reservoir overflows when full and directs the overflow into the growth solution, causing HgCdTe formation to cease. The volume of the reservoir may be altered to capture more or less Hg condensate, as desired, in order to change the amount of HgCdTe formed on the CdTe substrate.
    Type: Grant
    Filed: March 13, 1996
    Date of Patent: December 8, 1998
    Assignee: Amber Engineering, Inc.
    Inventor: Jeffrey Brian Barton
  • Patent number: 5517942
    Abstract: A process for producing optoelectric articles, in which an optoelectric single crystal film is formed on an optoelectric single crystal substrate, is disclosed. The optoelectric single crystal substrate is exposed to a liquid phase in a supercooling state of a melt including a solute and a melting medium, and the optoelectric single crystal film is formed by a liquid phase epitaxial process. In this case, a viscosity of the liquid phase is set to 75%.about.95% preferably 75%.about.90% with respect to a viscosity at which a degree of supercooling of the liquid phase is zero.
    Type: Grant
    Filed: March 22, 1995
    Date of Patent: May 21, 1996
    Assignee: NGK Insulators, Ltd.
    Inventors: Tsuguo Fukuda, Yasunori Okano, Tatsuo Kawaguchi, Minoru Imaeda