Liquid Phase Epitaxial Growth (lpe) Patents (Class 117/54)
  • Patent number: 11075350
    Abstract: According to some embodiments of the present invention, a method of producing an organic-inorganic perovskite thin film includes depositing a layer of inorganic material on a substrate to form an inorganic film, and performing an organic vapor treatment of the inorganic film to produce an organic-inorganic perovskite thin film. The layer of inorganic material comprises an inorganic anion layer having a metal-ligand framework, and the organic vapor treatment provides organic cations capable of becoming inserted into the metal-ligand framework of the inorganic anion layer to form a perovskite structure.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: July 27, 2021
    Assignee: The Regents of the University of California
    Inventors: Yang Yang, Qi Chen, Huanping Zhou
  • Patent number: 10886164
    Abstract: An integrated circuit may be formed by forming an isolation recess in a single-crystal silicon-based substrate. Sidewall insulators are formed on sidewalls of the isolation recess. Thermal oxide is formed at a bottom surface of the isolation recess to provide a buried isolation layer, which does not extend up the sidewall insulators. A single-crystal silicon-based semiconductor layer is formed over the buried isolation layer and planarized to be substantially coplanar with the substrate adjacent to the isolation recess, thus forming an isolated semiconductor layer over the buried isolation layer. The isolated semiconductor layer is laterally separated from the substrate.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: January 5, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Daniel Nelson Carothers, Jeffrey R. Debord
  • Patent number: 10573814
    Abstract: Vacuum annealing-based techniques for forming perovskite materials are provided. In one aspect, a method of forming a perovskite material is provided. The method includes the steps of: depositing a metal halide layer on a sample substrate; and vacuum annealing the metal halide layer and methylammonium halide under conditions sufficient to form methylammonium halide vapor which reacts with the metal halide layer and forms the perovskite material on the sample substrate. A perovskite-based photovoltaic device and method of formation thereof are also provided.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: February 25, 2020
    Assignee: International Business Machines Corporation
    Inventors: Talia S. Gershon, Supratik Guha, Oki Gunawan, Teodor K. Todorov
  • Patent number: 10199579
    Abstract: Organic-inorganic hybrid perovskite (OIHP) based photo-responsive devices include an OIHP active layer disposed between a cathode layer and an anode layer, and an electron extraction layer disposed between the cathode layer and the active layer. The electron extraction layer includes a layer of C60 directly disposed on the active layer. The active layer includes an organometal trihalide perovskite layer (e.g., CH3NH3PbI2X, where X includes at least one of Cl, Br, or I).
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: February 5, 2019
    Assignee: NUtech Ventures
    Inventor: Jinsong Huang
  • Patent number: 10138570
    Abstract: A crystal growth apparatus includes a pressure-resistant vessel; a plurality of support tables arranged inside the pressure-resistant vessel; inner vessels each placed over the support tables, respectively; growth vessels contained the inner vessels, respectively; a heating means for heating the growth vessels; and a central rotating shaft connected to the support tables. The central rotating shaft is distant from central axes of the inner vessels, respectively. A seed crystal, a raw material of the Group 13 element and a flux are charged in each of the growth vessels, and the growth vessels are heated to form a melt and a nitrogen-containing gas is supplied to the melt to grow a crystal of a nitride of said Group 13 element while the central rotating shaft is rotated.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: November 27, 2018
    Assignee: NGK INSULATORS, LTD.
    Inventors: Takashi Yoshino, Katsuhiro Imai, Takanao Shimodaira, Takashi Wada
  • Patent number: 10141117
    Abstract: A process of forming a thin film photoactive layer of a perovskite photoactive device comprising: applying at least one coating of a perovskite precursor solution and a polymer additive to a substrate, wherein the at least one perovskite precursor solution comprises at least one reaction constituent for forming at least one perovskite compound having the formula AMX3 dissolved in a coating solvent selected from at least one polar aprotic solvent, the polymer additive being soluble in said coating solvent, and in which A comprises an ammonium group or other nitrogen containing organic cation, M is selected from Pb, Sn, Ge, Ca, Sr, Cd, Cu, Ni, Mn, Co, Zn, Fe, Mg, Ba, Si, Ti, Bi, or In, and X is selected from at least one of F, Cl, Br or I.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: November 27, 2018
    Assignee: COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION
    Inventor: Doojin Vak
  • Patent number: 10087366
    Abstract: Intrinsic broadband white-light emitting phosphors and a solution-state method for producing them are disclosed. Emitters in accordance with the present invention include layered perovskite-based phosphors that comprise metals and halides and have an emission spectrum that spans the entire visible-light spectrum.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: October 2, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Emma Rose Dohner, Hemamala Indivari Karunadasa
  • Patent number: 10059875
    Abstract: A perovskite-based photoelectric functional material having a general formula MzAyBXz+y+2. The matrix of the photoelectric functional material is a perovskite material ABX3, M is an organic amphipathic molecule used as a modification component of the matrix, 0<z?0.5, 0<y?1, and y+z?1.
    Type: Grant
    Filed: December 27, 2015
    Date of Patent: August 28, 2018
    Assignee: WONDER SOLAR LIMITED LIABILITY COMPANY
    Inventors: Hongwei Han, Anyi Mei
  • Patent number: 9793056
    Abstract: A method for making a layered perovskite structure comprises: a) performing a vapor assisted surface treatment (VAST) of a substrate with a surface passivating agent; b) applying a layer of PbI2 to the passivating agent; c) exposing the PbI2 to methylammonium iodide (CH3NH3I) in an orthogonal solvent; and d) annealing the structure. A PEDOT:PSS coated ITO glass substrate may be used. The surface passivation agent may be one a chalcogenide-containing species with the general chemical formula (E3E4)N(E1E2)N?C?X where any one of E1, E2, E3 and E4 is independently selected from C1-C15 organic substituents comprising from 0 to 15 heteroatoms or hydrogen, and X is S, Se or Te, thiourea, thioacetamide, selenoacetamide, selenourea, H2S, H2Se, H2Te or LXH wherein L is a Cn organic substituent comprising heteroatoms and X?S, Se, or Te. The passivating agent may be applied by spin-coating, inkjet-printing, slot-die-coating, aerosol-jet printing, PVD, CVD, and electrochemical deposition.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: October 17, 2017
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Santanu Bag, Michael F Durstock
  • Patent number: 9701696
    Abstract: An aspect of the present invention is a method that includes contacting a metal halide and a first alkylammonium halide in a solvent to form a solution and maintaining the solution at a first temperature, resulting in the formation of at least one alkylammonium halide perovskite crystal, where the metal halide includes a first halogen and a metal, the first alkylammonium halide includes the first halogen, the at least one alkylammonium halide perovskite crystal includes the metal and the first halogen, and the first temperature is above about 21° C.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: July 11, 2017
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Kai Zhu, Yixin Zhao
  • Patent number: 9673044
    Abstract: Group III nitride substrate having a first side of nonpolar or semipolar plane and a second side has more than one stripe of metal buried, wherein the stripes are perpendicular to group III nitride's c-axis. More than 90% of stacking faults exist over metal stripes. Second side may expose a nonpolar or semipolar plane. Also disclosed is a group III nitride substrate having a first side of nonpolar or semipolar plane and a second side with exposed nonpolar or semipolar plane. The substrate contains bundles of stacking faults with spacing larger than 1 mm. The invention also provides methods of fabricating the group III nitride substrates above.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: June 6, 2017
    Assignee: SixPoint Materials, Inc.
    Inventor: Tadao Hashimoto
  • Patent number: 9502522
    Abstract: A process of manufacture of high voltage (300-600V) and high current (10-100 A) Schottky diode, which includes the following steps in sequence: provide a N-type silicon wafer; process phosphor deposition and high-concentration N+ phosphorus diffusion; cutting and chemical mechanical polishing; classifying into different voltage groups; processing primary oxidation and lithography; processing boron diffusion, secondary lithography and wiring; process ion implantation and metal spluttering to form the Schottky barrier; process metal evaporation and lithography for front metal; and finally process etching and metal evaporation for rear metal. Instead of the conventional epitaxial process, a diffusion process is employed to form the N+ layer. The final product is equipped with the advantages of Schottky diode and is applicable for high voltage of 300-600V and high current of 10-100 A. The current leakage and defect rate are dramatically lowered while the cost is lowered, thus mass production is facilitated.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: November 22, 2016
    Assignee: Chongqing Pingwei Enterprise Co., Ltd.
    Inventors: Xinglong Wang, Shuzhou Li, Li Zhang, Xiangtao Xu
  • Patent number: 9356171
    Abstract: A method for forming single crystal or large-crystal-grain thin-film layers deposits a thin-film amorphous, nanocrystalline, microcrystalline, or polycrystalline layer, and laser-heats a seed spot having size on the order of a critical nucleation size of the thin-film layer. The single-crystal seed spot is extended into a single-crystal seed line by laser-heating one or more crystallization zones adjacent to the seed spot and drawing the zone across the thin-film layer. The single-crystal seed line is extended across the thin-film material layer into a single-crystal layer by laser-heating an adjacent linear crystallization zone and drawing the crystallization zone across the thin-film layer. Photovoltaic cells may be formed in or on the single-crystal layer. Tandem photovoltaic devices may be formed using one or several iterations of the method. The method may also be used to form single-crystal semiconductor thin-film transistors, such as for display devices, or to form single-crystal superconductor layers.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: May 31, 2016
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Jifeng Liu, Xiaoxin Wang
  • Publication number: 20150103855
    Abstract: A laser gain element including an undoped layer of a monoclinic double tungstate (MDT) crystal, and a method of forming a laser gain element are provided. The laser gain element includes a layer of doped MDT crystal adjacent to the undoped layer, the doped MDT layer including a pre-selected concentration of rare earth ions. The layer of doped MDT crystal has an absorption peak at a first wavelength and an emission peak at a second wavelength longer than the first wavelength; and the layer of doped MDT crystal has a fluorescence emission with a weighted average at a third wavelength shorter than the first wavelength. A laser resonator cavity formed with a plurality of composite gain elements as above is also provided.
    Type: Application
    Filed: May 11, 2012
    Publication date: April 16, 2015
    Inventors: Barry A. Wechsler, Michael P. Scripsick, David S. Sumida, Thomas G. Crow
  • Patent number: 8999059
    Abstract: A growth apparatus is used having a plurality of crucibles each for containing the solution, a heating element for heating the crucible, and a pressure vessel for containing at least the crucibles and the heating element and for filling an atmosphere comprising at least nitrogen gas. One seed crystal is put in each of the crucibles to grow the nitride single crystal on the seed crystal.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: April 7, 2015
    Assignees: NGK Insulators, Ltd., Osaka University
    Inventors: Katsuhiro Imai, Makoto Iwai, Takanao Shimodaira, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura
  • Patent number: 8986446
    Abstract: This invention provides an Si doped GaAs single crystal ingot, which has a low crystallinity value as measured in terms of etch pit density (EPD) per unit area and has good crystallinity, and a process for producing the same. An Si-doped GaAs single crystal wafer produced in a latter half part in the growth of the Si doped GaAs single crystal ingot is also provided. A GaAs compound material is synthesized in a separate synthesizing oven (a crucible). An Si dopant is inserted into the compound material to prepare a GaAs compound material with the Si dopant included therein. The position of insertion of the Si dopant is one where, when the GaAs compound material is melted, the temperature is below the average temperature. After a seed crystal is inserted into a crucible for an apparatus for single crystal growth, the GaAs compound material with the Si dopant included therein and a liquid sealing compound are introduced into the crucible.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: March 24, 2015
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventor: Yoshikazu Oshika
  • Publication number: 20150069015
    Abstract: In a method of generating a nanocrystal with a core-frame structure, a seed crystal, including a first substance, is exposed to a capping agent. The seed nanocrystal has a plurality of first portions that each has a first characteristic and a plurality of second portions that each has a second characteristic, different from the first characteristic. The capping agent has a tendency to adsorb to portions having the first characteristic and has a tendency not to adsorb to portions having the second characteristic. As a result, a selectively capped seed nanocrystal is generated. The selectively capped seed nanocrystal is exposed to a second substance that has a tendency to nucleate on the plurality of second portions and that does not have a tendency to nucleate on portions that have adsorbed the capping agent, thereby generating a frame structure from the plurality of second portions of the seed nanocrystal.
    Type: Application
    Filed: September 9, 2014
    Publication date: March 12, 2015
    Applicant: GEORGIA TECH RESEARCH CORPORATION
    Inventors: Younan Xia, Shuifen Xie
  • Patent number: 8945302
    Abstract: Method for crystal growth from a surfactant of a metal-nonmetal (MN) compound, including the procedures of providing a seed crystal, introducing atoms of a first metal to the seed crystal thus forming a thin liquid metal wetting layer on a surface of the seed crystal, setting a temperature of the seed crystal below a minimal temperature required for dissolving MN molecules in the wetting layer and above a melting point of the first metal, each one of the MN molecules being formed from an atom of a second metal and an atom of a first nonmetal, introducing the MN molecules which form an MN surfactant monolayer, thereby facilitating a formation of the wetting layer between the MN surfactant monolayer and the surface of the seed crystal, and regulating a thickness of the wetting layer, thereby growing an epitaxial layer of the MN compound on the seed crystal.
    Type: Grant
    Filed: March 4, 2012
    Date of Patent: February 3, 2015
    Assignee: Mosaic Crystals Ltd.
    Inventor: Moshe Einav
  • Patent number: 8940095
    Abstract: An apparatus for growth of uniform multi-component single crystals is provided. The single crystal material has at least three elements and has a diameter of at least 50 mm, a dislocation density of less than 100 cm?2 and a radial compositional variation of less than 1%.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: January 27, 2015
    Assignee: Rensselaer Polytechnic Institute
    Inventor: Partha Dutta
  • Publication number: 20150014586
    Abstract: Quantum dots and methods of making quantum dots are provided.
    Type: Application
    Filed: May 21, 2014
    Publication date: January 15, 2015
    Applicant: QD VISION, INC.
    Inventors: WENHAO LIU, CRAIG BREEN
  • Publication number: 20150013589
    Abstract: Quantum dots and methods of making quantum dots are provided.
    Type: Application
    Filed: May 21, 2014
    Publication date: January 15, 2015
    Applicant: QD VISION, INC.
    Inventors: WENHAO LIU, CRAIG BREEN
  • Patent number: 8926750
    Abstract: A method for synthesizing ZnO, comprising continuously circulating a growth solution that is saturated with ZnO between a warmer deposition zone, which contains a substrate or seed, and a cooler dissolution zone, which is contains ZnO source material.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: January 6, 2015
    Assignee: The Regents of the University of California
    Inventors: Jacob J. Richardson, Frederick F. Lange
  • Patent number: 8815011
    Abstract: The present invention relates to a magnetic garnet single crystal prepared by the liquid phase epitaxial (LPE) process and an optical element using the same as well as a method of producing the single crystal, for the purpose of providing a magnetic garnet single crystal at a reduced Pb content and an optical element using the same, as well as a method of producing the single crystal. The magnetic garnet single crystal is grown by the liquid phase epitaxial process and is represented by the chemical formula BixNayPbzM13-x-y-zFe5-wM2wO12 (M1 is at least one element selected from Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; and M2 is at least one element selected from Ga, Al, In, Ti, Ge, Si and Pt, provided that 0.5<x?2.0, 0<y?0.8, 0?z<0.01, 0.19?3-x-y-z<2.5, and 0?w?1.6).
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: August 26, 2014
    Assignee: TDK Corporation
    Inventor: Atsushi Ohido
  • Patent number: 8758508
    Abstract: The invention relates to a method for forming a thin film of molecular organic semiconductor material (OSCM), said film being intended to be integrated into a device for applications in electronics or optoelectronics, which includes the following steps: step (c) of supplying a defined quantity of the molecular OSCM in the form of a melt to the surface of a substrate so as to form a thin film; and a step (d) of cooling according to a defined temperature profile in order to solidify the thin film, characterized in that the temperature of the substrate surface is equal to or above the melting point of the molecular OSCM at the moment of implementing step (a) and in that the temperature profile of step (b) comprises: a first part corresponding to a sufficiently slow controlled cooling of the molecular OSCM down to a temperature close to the crystallization temperature of the molecular OSCM, so as to cause only a single seed to appear in the thin film in melt form; and a second part corresponding to controlled coo
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: June 24, 2014
    Assignees: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Patrice Rannou, Benjamin Grevin
  • Patent number: 8735905
    Abstract: Provided is a method for producing inexpensive and high-quality aluminum nitride crystals. Gas containing N atoms is introduced into a melt of a Ga—Al alloy, whereby aluminum nitride crystals are made to epitaxially grow on a seed crystal substrate in the melt of the Ga—Al alloy. A growth temperature of aluminum nitride crystals is set at not less than 1000 degrees C. and not more than 1500 degrees C., thereby allowing GaN to be decomposed into Ga metal and nitrogen gas.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: May 27, 2014
    Assignees: Sumitomo Metal Mining Co., Ltd., Tohoku University
    Inventors: Hiroyuki Fukuyama, Masayoshi Adachi, Akikazu Tanaka, Kazuo Maeda
  • Publication number: 20140113232
    Abstract: A block copolymer, adapted to self-assemble to form an ordered pattern on a substrate, has first and second blocks with a terminal moiety covalently bonded to the end of the first block. The molecular weight of the terminal moiety is 20% or less than that of the block copolymer and the terminal moiety has a low chemical affinity for the first block. The terminal moiety can assist the accurate positional placement of the domains of the ordered array and lead to improved critical dimension uniformity and/or reduced line edge roughness. The polymer may be useful in combination with a graphoepitaxy template, where the terminal moiety is chosen to associate with a sidewall of the template. This may reduce undesired aggregation of polymer domains at a sidewall and/or assist in domain placement accuracy.
    Type: Application
    Filed: June 7, 2012
    Publication date: April 24, 2014
    Applicant: ASML Netherlands B.V.
    Inventors: Aurelie Marie Andree Brizard, Sander Frederik Wuister, Roel Koole, Emiel Peeters
  • Patent number: 8702864
    Abstract: In a method for growing a silicon carbide single crystal on a silicon carbide single crystal substrate by contacting the substrate with a solution containing C prepared by dissolving C into the melt that contains Cr and X, which consists of at least one element of Ce and Nd, such that a proportion of Cr in a whole composition of the melt is in a range of 30 to 70 at. %, and a proportion of X in the whole composition of the melt is in a range of 0.5 at. % to 20 at. % in the case where X is Ce, or in a range of 1 at. % to 25 at. % in the case where X is Nd, and the silicon carbide single crystal is grown from the solution.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: April 22, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yukio Terashima, Yasuyuki Fujiwara
  • Patent number: 8696812
    Abstract: Thin films of ferroelectric material with a high mole fraction of Pb(A2+1/3B5+2/3)O3 substantially in a perovskite phase, wherein A is zinc or a combination of zinc and magnesium, and B is a valence 5 element such as niobium or tantalum, have been prepared. Typically, the mole fraction of Pb(A2+1/3B5+2/3)O3 in the ferroelectric material is >0.7. The method for preparing the thin films of ferroelectric material comprises providing a precursor solution containing lead, A2+, and B5+; modifying the precursor solution by addition of a polymer species thereto; applying the modified precursor solution to a surface of a substrate and forming a coating thereon; and (d) subjecting the coating to a heat treatment and forming the film in the perovskite phase. Optimal results have been obtained with PEG200 as the polymer species.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: April 15, 2014
    Assignee: Agency for Science, Technology and Research
    Inventors: Kui Yao, Shuhui Yu, Francis Eng Hock Tay
  • Patent number: 8691362
    Abstract: An apparatus includes a substrate having a top surface, a substantially regular array of raised structures located over the top surface, and a layer located on the top surface between the structures. Distal surfaces of the structures are farther from the top surface than remaining portions of the structures. The layer is able to contract such that the distal surfaces of the structures protrude through the layer. The layer is able to swell such that the distal surfaces of the structures are closer to the top surface of the substrate than one surface of the layer.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: April 8, 2014
    Assignee: Alcatel Lucent
    Inventors: Joanna Aizenberg, Thomas N. Krupenkin, Oleksandr Sydorenko, Joseph Ashley Taylor
  • Patent number: 8685163
    Abstract: A method for growing a silicon carbide single crystal on a single crystal substrate comprising the steps of heating silicon in a graphite crucible to form a melt, bringing a silicon carbide single crystal substrate into contact with the melt, and depositing and growing a silicon carbide single crystal from the melt, wherein the melt comprises 30 to 70 percent by atom, based on the total atoms of the melt, of chromium and 1 to 25 percent by atom, based on the total atoms of the melt, of X, where X is at least one selected from the group consisting of nickel and cobalt, and carbon. It is possible to improve morphology of a surface of the crystal growth layer obtained by a solution method.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: April 1, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yukio Terashima, Yasuyuki Fujiwara
  • Publication number: 20140069325
    Abstract: According to one embodiment, a pattern forming method includes forming a graphoepitaxy on a substrate, a process of forming a first self-assembly material layer that contains a first segment and a second segment in a depressed portion of the graphoepitaxy, a process of forming a first self-assembly pattern that has a first region containing the first segment, and a second region containing the second segment by performing a phase separation of the first self-assembly material layer, a process of forming a second self-assembly material layer containing a third segment and a fourth segment on a projected portion of the graphoepitaxy, and the first self-assembly pattern, a process of forming a second self-assembly pattern that has a third region containing the third segment, and a fourth region containing the fourth segment by performing a phase separation of the second self-assembly material layer.
    Type: Application
    Filed: March 4, 2013
    Publication date: March 13, 2014
    Inventor: Ayako KAWANISHI
  • Patent number: 8668774
    Abstract: A method for synthesizing ZnO, comprising continuously circulating a growth solution that is saturated with ZnO between a warmer deposition zone, which contains a substrate or seed, and a cooler dissolution zone, which is contains ZnO source material.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: March 11, 2014
    Assignee: The Regents of the University of California
    Inventors: Jacob J. Richardson, MaryAnn E. Lange
  • Publication number: 20140065368
    Abstract: This disclosure relates to methods that include depositing a first component and a second component to form a film including a plurality of nanostructures, and coating the nanostructures with a hydrophobic layer to render the film superhydrophobic. The first component and the second component can be immiscible and phase-separated during the depositing step. The first component and the second component can be independently selected from the group consisting of a metal oxide, a metal nitride, a metal oxynitride, a metal, and combinations thereof. The films can have a thickness greater than or equal to 5 nm; an average surface roughness (Ra) of from 90 to 120 nm, as measured on a 5 ?m×5 ?m area; a surface area of at least 20 m2/g; a contact angle with a drop of water of at least 120 degrees; and can maintain the contact angle when exposed to harsh conditions.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 6, 2014
    Applicant: UT-BATTELLE, LLC
    Inventors: Tolga AYTUG, Mariappan Parans PARANTHAMAN, John T. SIMPSON, Daniela Florentina BOGORIN
  • Publication number: 20140048012
    Abstract: Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With these methods, an ingot can be grown that is low in carbon and whose crystal growth is controlled to increase the cross-sectional area of seeded material during casting.
    Type: Application
    Filed: October 18, 2013
    Publication date: February 20, 2014
    Inventors: Nathan G. Stoddard, Roger F. Clark
  • Patent number: 8501139
    Abstract: One embodiment of the present invention is a method for producing a silicon (Si) and/or germanium (Ge) foil, the method including: dissolving a Si and/or Ge source material in a molten metallic bath at an elevated temperature T2, wherein the density of Si and/or Ge is smaller than the density of the molten metallic bath; cooling the molten metallic bath to a lower temperature T1, thereby causing Si and/or Ge to separate out of the molten metallic bath and to float and grow as a Si and/or Ge foil on a top surface of the molten metallic bath; and separating the floating Si and/or Ge foil from the top surface of the molten metallic bath.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: August 6, 2013
    Inventor: Uri Cohen
  • Publication number: 20130192516
    Abstract: A method of preparing a silicon melt in a crucible for use in the manufacture of cast silicon, wherein the crucible comprises an opening, an opposing bottom surface, and at least one sidewall joining the opening and the bottom surface. The method comprises charging a silicon spacer to the bottom surface of the crucible; arranging a monocrystalline silicon seed crystal on the silicon spacer such that no surface of the monocrystalline silicon material is in contact with the bottom surface of the crucible; charging polycrystalline silicon feedstock to the crucible; and applying heat through at least one of the opening and the at least one sidewall in order to form a partially melted charge of silicon in the crucible.
    Type: Application
    Filed: January 27, 2012
    Publication date: August 1, 2013
    Applicant: MEMC SINGAPORE PTE. LTD. (UEN200614794D)
    Inventors: Jihong Chen, Aditya Deshpande
  • Patent number: 8454747
    Abstract: A method for producing a single-crystal thin film includes, for example, applying a chemical solution containing raw materials for a single-crystal thin film composed of (BaxSryCaz)TiO3 (wherein x+y+z=1.0) by spin coating on a thin film composed of BaZrO3 formed on a MgO(100) surface of a MgO(100) substrate and subjecting the applied chemical solution to heat treatment at a temperature at which orientation occurs, thereby epitaxially growing a single-crystal thin film composed of (BaxSryCaz)TiO3.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: June 4, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Tadasu Hosokura
  • Publication number: 20130136918
    Abstract: A crystalline silicon ingot and a method of fabricating the same are provided. The method utilizes a nucleation promotion layer to facilitate a plurality of silicon grains to nucleate on the nucleation promotion layer from a silicon melt and grow in a vertical direction into silicon grains until the silicon melt is completely solidified. The increment rate of defect density in the silicon ingot along the vertical direction has a range of 0.01%/mm˜10%/mm.
    Type: Application
    Filed: March 9, 2012
    Publication date: May 30, 2013
    Applicant: SINO-AMERICAN SILICON PRODUCTS INC.
    Inventors: Wen-Huai YU, Cheng-Jui YANG, Yu-Min YANG, Kai-Yuan PAI, Wen-Chieh LAN, Chan-Lu SU, Yu-Tsung CHIANG, Sung-Lin HSU, Wen-Ching HSU, Chung-Wen LAN
  • Publication number: 20130118400
    Abstract: The present invention is directed to a method of forming an epitaxial zinc oxide film on a substrate. The method includes forming an array of nanorods at least substantially perpendicular to the substrate in an aqueous solution; and growing the array of nanorods in an at least substantially lateral direction in the aqueous solution such that adjacent nanorods coalesce to form the epitaxial film. The present invention also relates to the films thus obtained and devices containing said films.
    Type: Application
    Filed: June 3, 2011
    Publication date: May 16, 2013
    Inventor: Kia Liang Gregory Goh
  • Publication number: 20130118399
    Abstract: The present invention generally relates to methods and systems relating to the selection of substrates comprising crystalline templates for the controlled crystallization of molecular species. In some embodiments, the methods and systems allow for the controlled crystallization of a molecular species in a selected polymorphic form. In some embodiments, the molecular species is a small organic molecule (e.g., pharmaceutically active agent).
    Type: Application
    Filed: November 15, 2012
    Publication date: May 16, 2013
    Applicant: Massachusetts Institute of Technology
    Inventor: Massachusetts Institute of Technology
  • Patent number: 8425828
    Abstract: An apparatus includes a substrate having a top surface, a substantially regular array of raised structures located over the top surface, and a layer located on the top surface between the structures. Distal surfaces of the structures are farther from the top surface than remaining portions of the structures. The layer is able to contract such that the distal surfaces of the structures protrude through the layer. The layer is able to swell such that the distal surfaces of the structures are closer to the top surface of the substrate than one surface of the layer.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: April 23, 2013
    Assignee: Alcatel Lucent
    Inventors: Joanna Aizenberg, Thomas Nikita Krupenkin, Oleksander Sydorenko, Joseph Ashley Taylor
  • Publication number: 20130095305
    Abstract: Provided are a graphene pattern and a process of preparing the same. Graphene is patterned in a predetermined shape on a substrate to form the graphene pattern. The graphene pattern can be formed by forming a graphitizing catalyst pattern on a substrate, contacting a carbonaceous material with the graphitizing catalyst and heat-treating the resultant.
    Type: Application
    Filed: November 20, 2012
    Publication date: April 18, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Patent number: 8409348
    Abstract: A production method of a zinc oxide single crystal, comprising depositing a crystal of zinc oxide on a seed crystal from a mixed melt of zinc oxide and a solvent capable of melting zinc oxide and having a higher average density than zinc oxide in the melt. Preferably, a zinc oxide single crystal is continuously pulled while supplying the same amount of a zinc oxide raw material as that of the pulled zinc oxide. A single crystal excellent in the crystal quality and long in the pulling direction can be continuously produced.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: April 2, 2013
    Assignee: Ube Industries, Ltd.
    Inventors: Yoshizumi Tanaka, Itsuhiro Fujii
  • Publication number: 20130068156
    Abstract: A method for growing II-VI semiconductor crystals and II-VI semiconductor layers as well as crystals and layers of their ternary or quaternary compounds from the liquid or gas phase is proposed. To this end, the solid starting materials are introduced into a growing chamber for the growing of crystals. Inside the growing chamber, carbon monoxide is supplied by way of reducing agent. At least certain zones of the growing chamber are heated to a temperature at which a first-order phase transition of the starting materials takes place and the starting materials pass into the liquid or gas phase. The starting materials are then cooled down accompanied by the formation of a semiconductor crystal or semiconductor layer, again with a first-order phase transition taking place. The oxygen present in the growing chamber is bound by the carbon monoxide and the formation of an oxide layer at the phase boundary of the growing semiconductor crystal or semiconductor layer is prevented.
    Type: Application
    Filed: May 30, 2011
    Publication date: March 21, 2013
    Applicant: Albert-Ludwigs-Universitaet Freiburg
    Inventor: Alex Fauler
  • Patent number: 8388752
    Abstract: A method capable of stably manufacturing a SiC single crystal in the form of a thin film or a bulk crystal having a low carrier density of at most 5×1017/cm3 and preferably less than 1×1017/cm3 and which is suitable for use in various devices by liquid phase growth using a SiC solution in which the solvent is a melt of a Si alloy employs a Si alloy having a composition which is expressed by SixCryTiz wherein x, y, and z (each in atomic percent) satisfy 0.50<x<0.68, 0.08<y<0.35, and 0.08<z<0.35, or ??(1) 0.40<x?0.50, 0.15<y<0.40, and 0.15<z<0.35.??(2) x, y, and z preferably satisfy 0.53<x<0.65, 0.1<y<0.3, and 0.1<z<0.3.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: March 5, 2013
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Kazuhito Kamei, Kazuhiko Kusunoki, Nobuyoshi Yashiro, Akihiro Yauchi, Shinji Shimosaki
  • Publication number: 20120329658
    Abstract: Provided is a method of forming a ceramic wire. In the method, a ceramic precursor film is deposited on a wire substrate. Then, the wire substrate on which the ceramic precursor film is deposited is treated by heating. For treating the wire substrate by heating, a temperature of the wire substrate and/or an oxygen partial pressure of the wire substrate are controlled such that the ceramic precursor film is in a liquid state and an epitaxy ceramic film is formed from the liquid ceramic precursor film on the wire substrate.
    Type: Application
    Filed: August 3, 2010
    Publication date: December 27, 2012
    Inventors: Seung-Hyun Moon, Hun-Ju Lee, Sang-Im Yoo, Hong-Soo Ha
  • Patent number: 8328937
    Abstract: A seed crystal axis used in a solution growth of single crystal production system is provided to prevent formation of polycrystals and grow a single crystal with a high growth rate. The seed crystal axis includes a seed crystal bonded to a seed crystal support member between which is interposed a laminated carbon sheet having a high thermal conductivity in a direction perpendicular to a solution surface of a solvent. The laminated carbon sheet includes a plurality of carbon thin films laminated with an adhesive or a plurality of pieces with differing lamination directions arranged in a lattice. Alternatively, a wound carbon sheet including a carbon strip wound concentrically from the center or a wound carbon sheet including a plurality of carbon strips with differing thicknesses which are wound and laminated from the center may be provided.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: December 11, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hidemitsu Sakamoto, Yasuyuki Fujiwara
  • Patent number: 8323404
    Abstract: A group III nitride crystal containing therein an alkali metal element comprises a base body, a first group III nitride crystal formed such that at least a part thereof makes a contact with the base body, the first group III nitride crystal deflecting threading dislocations in a direction different from a direction of crystal growth from the base body and a second nitride crystal formed adjacent to the first group III nitride crystal, the second nitride crystal having a crystal growth surface generally perpendicular to the direction of the crystal growth.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: December 4, 2012
    Assignee: Ricoh Company, Ltd.
    Inventors: Hirokazu Iwata, Seiji Sarayama, Akihiro Fuse
  • Patent number: 8293009
    Abstract: A pressure differential is applied across a mold sheet and a semiconductor (e.g. silicon) wafer (e.g. for solar cell) is formed thereon. Relaxation of the pressure differential allows release of the wafer. The mold sheet may be cooler than the melt. Heat is extracted almost exclusively through the thickness of the forming wafer. The liquid and solid interface is substantially parallel to the mold sheet. The temperature of the solidifying body is substantially uniform across its width, resulting in low stresses and dislocation density and higher crystallographic quality. The mold sheet must allow flow of gas through it. The melt can be introduced to the sheet by: full area contact with the top of a melt; traversing a partial area contact of melt with the mold sheet, whether horizontal or vertical, or in between; and by dipping the mold into a melt. The grain size can be controlled by many means.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: October 23, 2012
    Assignee: 1366 Technologies Inc.
    Inventors: Emanuel M. Sachs, Richard L. Wallace, Eerik T. Hantsoo, Adam M. Lorenz, G. D. Stephen Hudelson, Ralf Jonczyk
  • Patent number: 8287644
    Abstract: In a method for growing a silicon carbide single crystal on a silicon carbide single crystal substrate by contacting the substrate with a solution containing C by dissolving C into the melt that contains Si, Cr and X, which consists of at least one element of Sn, In and Ga, such that the proportion of Cr in the whole composition of the melt is in a range of 30 to 70 at. %, and the proportion of X is in a range of 1 to 25 at. %, and the silicon carbide crystal is grown from the solution.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: October 16, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yukio Terashima, Yasuyuki Fujiwara