Crucible Or Evaporator Structure Patents (Class 118/726)
  • Patent number: 10836535
    Abstract: Various embodiments of the presented technology include the application of a low emissivity coating, such as a vacuum chemical vapor deposited aluminum coating, to: a) a paper substrate; b) a recyclable polymer substrate; c) a biodegradable polymer substrate; d) any biodegradable substrate; e) a polymer substrate; that is then laminated to a container, such as a disposable paper coffee or tea cup. In some embodiments, the low emissivity coated laminate may be applied to the container materials prior to the materials being formed, or they may be laminated after the disposable container has been formed. The final form is a container, such as a disposable paper coffee or tea cup that has a low emissivity coating applied to all surfaces facing away from the containers contents.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: November 17, 2020
    Inventor: Aaron Watts
  • Patent number: 10829851
    Abstract: A box coating apparatus for vacuum coating of substrates comprises a vacuum chamber which contains an evaporation source for evaporating coating material and a substrate holder disposed vis-à-vis to the evaporation source so that coating material evaporated by the evaporation source can impinge on substrates held by the substrate holder. An electric heating device is centrally arranged in the vacuum chamber, which is constructed to heat up the vacuum chamber during vacuum check and cleaning routines. So as to be removable from the vacuum chamber prior to the deposition processes, the heating device is provided with a stand having a plurality of leg portions mounted to a base plate, which are sized and constructed at the base plate so that the heating device can be placed over and above the evaporation source.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: November 10, 2020
    Assignee: Satisloh AG
    Inventors: Franco Moreni, Antonio Corea, Tiziano Deodato, Giuseppe Di Paola
  • Patent number: 10663228
    Abstract: A thermal evaporation sources are described. These thermal evaporation sources include a crucible configured to contain a volume of evaporant and a vapor space above the evaporant.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: May 26, 2020
    Assignee: JLN SOLAR, INC.
    Inventors: Robert W. Birkmire, Gregory M. Hanket
  • Patent number: 10644238
    Abstract: The embodiment provides a method and an apparatus for manufacturing a semiconductor element showing high conversion efficiency and having a perovskite structure. The embodiment is a method for manufacturing a semiconductor element comprising an active layer having a perovskite structure. Said active layer is produced by the steps of: forming a coating film by directly or indirectly coating a first or second electrode with a coating solution containing a precursor compound for the perovskite structure and an organic solvent capable of dissolving said precursor compound; and then starting to blow a gas onto said coating film before formation reaction of the perovskite structure is completed in said coating film. Another embodiment is an apparatus for manufacturing a semiconductor element according to the above method.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: May 5, 2020
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Gotanda, Shigehiko Mori, Akihiro Matsui, Haruhi Oooka
  • Patent number: 10612142
    Abstract: A film formation apparatus for forming a thin film having high gas barrier performance, such as a DLC (Diamond Like Carbon) film, a SiOx film, a SiOC film, a SiOCN film, a SiNx film, and an AlOx film, on an inner surface and/or an outer surface of a container such as a PET bottle. The film formation apparatus has: a vacuum chamber for forming, in a vacuum state, a film on a surface of a container using a heat generating element; a vacuum evacuation device for vacuumizing the vacuum chamber; and a relative shifting device for relatively shifting the container and the heat generating element in the vacuum chamber after the vacuumization of the vacuum chamber.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: April 7, 2020
    Assignee: KIRIN BEER KABUSHIKI KAISHA
    Inventors: Hiroyuki Ooshima, Keiichi Fujimoto, Hiroyasu Tabuchi, Masaki Nakaya
  • Patent number: 10597775
    Abstract: A film forming apparatus comprises a film forming vessel comprising a first mold and a second mold that is arranged to be opposed to the first mold. The first mold is configured to include a first recessed portion and a first planar portion arranged around the first recessed portion and an exhaust port in a bottom portion of the first recessed portion. The film forming apparatus also comprises a seal member placed between the first planar portion of the first mold and the second mold. The seal member is configured to keep inside of the film forming vessel airtight; and an exhaust device connected with the exhaust port. The work is placed away from the first planar portion such that a film formation target part of the work faces an internal space of the first recessed portion when the film forming vessel is closed.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: March 24, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kazutaka Iizuka
  • Patent number: 10593967
    Abstract: A thermal insulation device includes a first plate, a second plate formed to nest adjacent the first plate with a gap between the first and second plates, a porous material disposed in the gap between the plates, a sealing layer disposed between the first and second plates such that the porous material is sealed from ambient at a pressure less than ambient, and a vapor generating material disposed in the gap.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: March 17, 2020
    Assignee: Honeywell International Inc.
    Inventors: Steven J. Eickhoff, Jeffrey Michael Klein
  • Patent number: 10547003
    Abstract: A deposition apparatus includes a chamber, a first stage and a second stage for supporting substrates within the chamber, an evaporating source assembly moving a first stage area corresponding to the first stage and a second stage area corresponding to the second stage, and including a plurality of nozzles through which a source material is spurted, and a photographing assembly which is disposed between the first stage and the second stage and photographs the plurality of nozzles.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: January 28, 2020
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Jae Wan Park, Ju Eel Mun, Seung Ki Kang, In Hyun Hwang
  • Patent number: 10539320
    Abstract: A system and method for generating combustion aerosols from liquid fuel. The system includes a furnace with an inner heating tube having a heating tape wrapped thereabout. Further, the system includes a fuel line extending through an inlet end of the heating tube and into the heating tube, and a means for dripping the liquid fuel onto a plurality of different locations on an inner surface of the heating tube. The system further includes a power supply to power the heating tape to heat the inner heating tube to a temperature which can ignite the liquid fuel dripped onto the inner surface of the inner heating tube whereby there is an immediate combustion to form combustion products. Finally, the system includes an air line connected to the heating tube for directing compressed air through the inner heating tube to mix with the combustion products and transport the formed combustion aerosols out of an outlet end of the inner heating tube.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: January 21, 2020
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: Jerold R. Bottiger, Jana S. Kesavan, Deborah R. Schepers
  • Patent number: 10541386
    Abstract: The invention provides an evaporation deposition equipment and method, applicable to vapor-depositing an organic light-emitting layer on an array substrate with a formed anode layer, the evaporation deposition equipment comprising: a first platform, disposed with an electrode plate; a second platform, disposed above the first platform, for carrying the array substrate; a vaporizing unit, disposed at the electrode plate, for generating charged vapor-depositing material particles and spraying the charged vapor-depositing material particles towards the array substrate; a mask carrier, for fixing a mask with opening pattern between the array substrate and the vaporizing unit; an electric field forming unit, electrically connected to the array substrate and the electrode plate, for forming an electric field between the anode layer and the electrode plate, the electric field guiding the charged vapor-depositing material particles towards the array substrate to deposit to form an organic light-emitting layer corresp
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: January 21, 2020
    Assignee: WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventor: Guoxia Yi
  • Patent number: 10526697
    Abstract: A solid source material is described for forming a tungsten-containing film. The solid source material is tungsten hexacarbonyl, wherein content of molybdenum is less than 1000 ppm. Such solid source material may be formed by a process including provision of particulate tungsten hexacarbonyl raw material of particles of size less than 5 mm, wherein particles of size greater than 1.4 mm are less than 15% of the particles, and wherein content of molybdenum is less than 1000 ppm, and sintering the particulate tungsten hexacarbonyl raw material at temperature below 100° C. to produce the solid source material as a sintered solid.
    Type: Grant
    Filed: February 28, 2016
    Date of Patent: January 7, 2020
    Assignee: ENTEGRIS, INC.
    Inventors: Thomas H. Baum, Robert L. Wright, Jr., Scott L. Battle, John M. Cleary
  • Patent number: 10513771
    Abstract: A vaporizer body (1) having a vaporizing surface (3) for vaporizing metal in a PVD-metallization installation, wherein the vaporizing surface (3) comprises a plurality of recesses (5, 5?, 5?), with an opening of the respective recess having an area/perimeter-ratio of greater than or equal to 1.5 mm.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: December 24, 2019
    Assignee: KENNAMETAL SINTEC KERAMIK GMBH
    Inventors: Michael Nürnberger, Rudolf Grau, Hubert Schweiger
  • Patent number: 10501847
    Abstract: In a device and a method for generating vapor in a CVD or PVD device, particles are vaporized by bringing the particles into contact with a first heat transfer surface of a vaporization device. The vapor generated by vaporizing the particles is transported by a carrier gas out of the vaporization device and into a single or multistage modulation device. In a vapor transfer phase, second heat transfer surfaces of the modulation device are adjusted to a first modulation temperature, at which the vapor passes through the modulation device without condensing on the second heat transfer surfaces. At an intermission phase, the second heat transfer surfaces are adjusted to a second modulation temperature, at which at least some of the vapor condenses on the second heat transfer surfaces.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: December 10, 2019
    Assignee: AIXTRON SE
    Inventors: Michael Long, Birgit Irmgard Beccard, Claudia Cremer, Karl-Heinz Trimborn, Andy Eichler, Andreas Poqué
  • Patent number: 10458017
    Abstract: A film forming apparatus includes a spray nozzle, a first chamber, a first gas supply port, a second chamber, a through hole, and a mist outlet. A solution transformed into droplets that is to be sprayed from the spray nozzle is housed in the first chamber and transformed into a mist in the first chamber by gas injected from the first gas supply port. The solution in mist form moves from the first chamber through the through hole to the second chamber and is misted onto a substrate from the mist outlet of the second chamber.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: October 29, 2019
    Assignee: TOSHIBA MITSUBISHI-ELECTRIC INDUSTRIAL SYSTEMS CORPORATION
    Inventors: Takahiro Shirahata, Hiroyuki Orita, Takahiro Hiramatsu
  • Patent number: 10458014
    Abstract: In various embodiments, evaporation sources for deposition processes have disposed therearound an insulation material configurable to fit snugly around the source body of the evaporation source and to be at least partially distanced away from the source body to expedite heat transfer therefrom.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: October 29, 2019
    Assignee: SIVA POWER, INC.
    Inventors: Markus Eberhard Beck, Ulrich Alexander Bonne
  • Patent number: 10396120
    Abstract: A semiconductor epitaxial wafer production method that can increase the peak concentration of hydrogen in a surface portion of a semiconductor wafer after epitaxial layer formation is provided. A method of producing a semiconductor epitaxial wafer comprises: a first step of irradiating a surface of a semiconductor wafer with cluster ions containing hydrogen as a constituent element, to form a modifying layer formed from, as a solid solution, a constituent element of the cluster ions including hydrogen in a surface portion of the semiconductor wafer; a second step of, after the first step, irradiating the semiconductor wafer with electromagnetic waves of a frequency of 300 MHz or more and 3 THz or less, to heat the semiconductor wafer; and a third step of, after the second step, forming an epitaxial layer on the modifying layer of the semiconductor wafer.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: August 27, 2019
    Assignee: SUMCO CORPORATION
    Inventors: Takeshi Kadono, Kazunari Kurita
  • Patent number: 10385452
    Abstract: Systems, reagent support trays, particle suppression devices, and methods are disclosed. In one aspect, a system includes a vaporizer vessel having one or more interior walls enclosing an interior volume and a plurality of reagent support trays configured to be vertically stackable within the interior volume. Each of the plurality of reagent support trays is configured to be vertically stackable within the interior volume to form a stack of reagent support trays. One or more of the plurality of reagent support trays is configured to redirect a flow of a gas passing between adjacent reagent support trays in the stack of reagent support trays to cause the flow of gas to interact with the source reagent material in a particular reagent support tray before passing into a next of the plurality of reagent support trays in the stack of reagent support trays.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: August 20, 2019
    Assignee: ENTEGRIS, INC.
    Inventors: Bryan C. Hendrix, John N. Gregg, Scott L. Battle, Donn K. Naito, Kyle Bartosh, John M. Cleary, Sebum Cheon, Jordan Hodges
  • Patent number: 10376960
    Abstract: An additively manufactured alloy component has a first portion formed of the alloy and having a first grain size, and a second portion formed of the alloy and having a second grain size smaller than the first grain size. In an embodiment, the alloy component is an alloy turbine disk, the first portion is a rim region of the alloy turbine disk, and the second portion is a hub region of the alloy turbine disk. The first and second grain sizes may be achieved by controllably varying the laser power and/or scan speed during additive manufacturing.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: August 13, 2019
    Assignee: United Technologies Corporation
    Inventors: John A. Sharon, Daniel V. Viens, Tahany Ibrahim El-Wardany, Gajawalli V. Srinivasan, Joseph J. Sangiovanni, Ranadip Acharya
  • Patent number: 10364488
    Abstract: A linear evaporation source and a deposition apparatus having the same are disclosed. In one aspect, the linear evaporation source includes i) a crucible being open on one side thereof and configured to store a deposition material and ii) a plurality of partitions dividing an internal space of the crucible, wherein each of the partitions has at least one opening in a lower portion thereof. The source further includes i) a nozzle section located on the open side of the crucible and comprising a plurality of nozzles, ii) a heater configured to heat the crucible and iii) a housing configured to accommodate the crucible, the nozzle section, and the heater.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: July 30, 2019
    Assignee: Samsung Display Co., Ltd.
    Inventors: Min-Gyu Seo, Sang-Jin Han, Cheol-Lae Roh, Jae-Hong Ahn
  • Patent number: 10319602
    Abstract: A substrate treatment apparatus which can more efficiently regenerate phosphoric acid which is able to be returned to etching treatment along with such etching treatment as much as possible without using a large facility, that is, a substrate treatment apparatus which treats a silicon substrate W on which a nitride film is formed by a liquid etchant which contains phosphoric acid, which comprises an etching treatment unit (the spin treatment unit 30) which gives a suitable quantity of liquid etchant to each substrate which is fed one at a time so as to etch the substrate and remove the nitride film, a phosphoric acid regenerating unit (the spin treatment unit 30) which mixes liquid etchant used for treatment of one substrate and a suitable quantity of liquid hydrofluoric acid for the amount of the used liquid etchant under a predetermined temperature environment to regenerate the phosphoric acid, and a phosphoric acid recovery unit (the pump 38, phosphoric acid recovery tank 50, and pump 52) which returns the
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: June 11, 2019
    Assignee: SHIBAURA MECHATRONICS CORPORATION
    Inventors: Nobuo Kobayashi, Koichi Hamada, Yoshiaki Kurokawa, Masaaki Furuya, Hideki Mori, Yasushi Watanabe, Yoshinori Hayashi
  • Patent number: 10319950
    Abstract: An evaporation method and an evaporation device for an organic light-emitting diode substrate are proposed. The evaporation method includes: step 1, regulating a distance between a supporting module for supporting a substrate and a crucible platform of an evaporation device; step 2, adjusting a direction of opening of a crucible disposed on the crucible platform; and step 3, placing a substrate to be evaporated on the supporting module and volatizing an evaporation source in the crucible and attaching the volatized evaporation source onto a surface of the substrate.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: June 11, 2019
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd
    Inventor: Youyuan Kuang
  • Patent number: 10282626
    Abstract: An identity recognition device and a method for manufacturing the same, and an identity recognition method are provided. The identity recognition device includes a display panel including a backlight source, a foot type and dermatoglyph recognition layer, located at a light-outputting side of the display panel and configured to detect a light-shielding condition of a light-outputting surface and acquire sole outline information and sole dermatoglyph information of a target user standing with bare foot, a pressure sensing detection layer, located at a non-light-outputting side of the display panel or between the display panel and the foot type and dermatoglyph recognition layer and configured to acquire sole pressure information of the target user, and an identity recognition module, configured to recognize an identity of the target user based on the sole outline information, the sole dermatoglyph information and the sole pressure information.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: May 7, 2019
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Jian Gao
  • Patent number: 10280502
    Abstract: A crucible structure including a crucible body and a crucible cover. The crucible body includes a crucible bottom wall and a crucible side wall. One end of the crucible side wall is connected to the crucible bottom wall, and the other end of the crucible side wall is provided with the crucible cover. An included angle between the crucible cover and an axial direction of the crucible is an acute angle. The crucible cover is provided with an opening structure.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: May 7, 2019
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Dejiang Zhao, Hao Wang
  • Patent number: 10208377
    Abstract: An atmospheric, Laser-based Chemical Vapor Deposition (LCVD) technique provides highly localized deposition of material to mitigate damage sites on an optical component. The same laser beam can be used to deposit material as well as for in-situ annealing of the deposited material. The net result of the LCVD process is in-filling and planarization of a treated site, which produces optically more damage resistant surfaces. Several deposition and annealing steps can be interleaved during a single cycle for more precise control on amount of deposited material as well as for increasing the damage threshold for the deposited material.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: February 19, 2019
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Manyalibo Joseph Matthews, Selim Elhadj
  • Patent number: 10184168
    Abstract: An IMC evaporator boat-thermal insulation cartridge assembly that includes an IMC evaporator boat and a thermal insulation cartridge, which has a container containing a thermal insulation body containing a cavity. The IMC evaporator boat is received within the cavity so as to define an air space between the IMC evaporator boat and the thermal insulation body. A heater is contained within the air space.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: January 22, 2019
    Assignee: KENNAMETAL INC.
    Inventor: Robinson E. Lattimer
  • Patent number: 10167571
    Abstract: A wafer carrier and methods of making the same for use in a system for growing epitaxial layers on one or more wafers by chemical vapor deposition. The wafer carrier includes wafer retention pockets recessed in its body. A thermally-insulating spacer is situated at least partially in the at least one wafer retention pocket and arranged to maintain a spacing between the peripheral wall surface and the wafer, the spacer being constructed from a material having a thermal conductivity less than a thermal conductivity of the wafer carrier such that the spacer limits heat conduction from portions of the wafer carrier body to the wafer. The wafer carrier further includes a spacer retention feature that engages with the spacer and includes a surface oriented to prevent centrifugal movement of the spacer when subjected to rotation about the central axis.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 1, 2019
    Assignee: Veeco Instruments Inc.
    Inventors: Sandeep Krishnan, William E. Quinn, Jeffery S. Montgomery, Joshua Mangum, Lukas Urban
  • Patent number: 10113227
    Abstract: The present invention provides a crucible, and belongs to the field of evaporation technology, for solving such problems of an existing crucible that evaporation material loss occurs in evaporation process, the crucible is inconvenient to clean, and the evaporation material filled in the crucible is not uniform. The crucible of the present invention includes a main cavity and a plurality of sub-cavities which are used for containing evaporation material and are arranged in the main cavity, each sub-cavity being provided with an opening. The crucible of the present invention may be used in preparation of an OLED device.
    Type: Grant
    Filed: September 28, 2014
    Date of Patent: October 30, 2018
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventor: Ang Xiao
  • Patent number: 10100397
    Abstract: A vapor deposition unit (1) includes: a vapor deposition mask (10); a limiting plate unit (20) having limiting plates (22); and a vapor deposition source (30). The vapor deposition source (30) includes: a plurality of first openings (31) for injection of vapor deposition particles; and at least one second opening (32) for pressure release, wherein each of the first openings (31) is provided in a corresponding one of limiting plate openings (23) between the limiting plates (22) in a plan view, and the at least one second opening (32) is provided in such a position as not to face the limiting plate openings (23) in a plan view.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: October 16, 2018
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Yuhki Kobayashi, Shinichi Kawato
  • Patent number: 10098185
    Abstract: A method for heating an object, where the method includes the steps of choosing one or more elongated heating member or members, adapting one or more elongated heating member or members to form an elongated combined heating member having a length within a predetermined length interval and providing a predetermined constant current through the elongated combined heating member by connecting a constant current source to a first end and a second end of the elongated combined heating member, such that the combined heating member generating a power per unit length when the constant current flowing through the combined heating member between the first end and the second end. A device for heating an object and a kit of parts for assembling such a heating device is also disclosed.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: October 9, 2018
    Assignee: KIMA HEATING CABLE AB
    Inventor: Jan Anders Nilsson
  • Patent number: 10081867
    Abstract: A linear evaporation source and a deposition apparatus having the same are disclosed. In one embodiment, the linear evaporation source includes i) a crucible being open on one side thereof and configured to store a deposition material and ii) a plurality of partitions dividing an internal space of the crucible, wherein each of the partitions has at least one opening in a lower portion thereof. The source further includes i) a nozzle section located on the open side of the crucible and comprising a plurality of nozzles, ii) a heater configured to heat the crucible and iii) a housing configured to accommodate the crucible, the nozzle section, and the heater.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: September 25, 2018
    Assignee: Samsung Display Co., Ltd.
    Inventors: Min-Gyu Seo, Sang-Jin Han, Cheol-Lae Roh, Jae-Hong Ahn
  • Patent number: 10066287
    Abstract: Liquid precursor material of a coating substance and a solvent is provided in a reservoir (STEP1, STEP1?). In one variant the liquid precursor material is distilled (STEP2), the resultant liquid coating substance is vaporized (STEP3) and ejected through a vapor distribution nozzle arrangement (7) into a vacuum recipient (3) and onto substrate 5 to be coated. Alternatively, the liquid precursor material is directly vaporized (STEP3?). From the two-component vapor coating substance vapor is applied to substrate 5? to be coated. In this variant separation of solvent vapor and coating substance vapor is performed especially downstream vaporizing (STEP2?).
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: September 4, 2018
    Assignee: EVATEC AG
    Inventors: Stephan Voser, Fabio Antonio Ravelli, Bruno Gaechter
  • Patent number: 10066289
    Abstract: Embodiments of the present disclosure provide an evaporation crucible and an evaporation device. The evaporation crucible includes a crucible body and a fluid guide member communicated with the crucible body, and a plurality of gas inlet nozzles being distributed on a side wall of the fluid guide member.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: September 4, 2018
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Yongfeng Zhang
  • Patent number: 10017848
    Abstract: A crucible includes a tank and an inner cover. The tank has a cavity. The inner cover is disposed in the cavity of the tank and has a first bottom surface and at least one hole. The first bottom surface faces a bottom of the tank and protrudes toward the bottom of the tank. A vertical distance between the bottom of the tank and the first bottom surface of the inner cover is gradually decreased from an edge toward a center of the first bottom surface.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: July 10, 2018
    Assignee: AU OPTRONICS CORPORATION
    Inventor: Kelvin Yen-Kuang Tan
  • Patent number: 9982347
    Abstract: A cleaning method includes: removing deposits adhered to an inside of a processing vessel by forming a film on a substrate in the processing vessel, and thereafter, supplying a cleaning gas into the processing vessel, wherein the removing the deposits includes: a first step of supplying the cleaning gas into the processing vessel at a first flow rate when a temperature of a connection portion connecting an exhaust pipe that exhausts the interior of the processing vessel and the processing vessel is lower than a first temperature; and a second step of supplying the cleaning gas to the processing vessel while gradually decreasing the flow rate of the cleaning gas from the first flow rate to a second flow rate lower than the first flow rate when the temperature of the connection portion reaches a first temperature.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: May 29, 2018
    Assignee: Hitachi Kokusai Electric, Inc.
    Inventors: Takatomo Yamaguchi, Takafumi Sasaki, Koei Kuribayashi
  • Patent number: 9960041
    Abstract: A deposition apparatus including a crucible to receive the deposition material and in which a deposition material is evaporated; a linear deposition source having a sprayer to spray the evaporated deposition material; a first connection portion and a second connection portion spaced apart from each other by a predetermined interval, the first connection portion and the second connection portion connecting the linear deposition source to the crucible at an upper surface of the crucible; and a heater in the crucible to apply heat to the deposition material, wherein the upper surface of the crucible has a first convex portion and a second convex portion successively formed between the first connection portion and the second connection portion.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: May 1, 2018
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventor: Jaebum Pahk
  • Patent number: 9945025
    Abstract: An evaporation coating apparatus comprising a heating unit (3) and a cylindrical member (1) disposed within the heating unit (3), wherein the cylindrical member (1) comprises a hollow sleeve (13) and a barrel (12) disposed at an inner side of the hollow sleeve (13) in a fitting manner; wherein a top end area of the hollow sleeve (13) is provided with a first evaporation hole (131), and an external surface of the hollow sleeve (13) is provided with an internal heater strip (4) connected to a control unit; wherein an external surface of the barrel (12) is provided with a groove (1?) extending along an axial central line of the barrel (12), the groove (1?) is provided with a plurality of compartments (11) arranged at interval space, and each of the compartments (11) is provided with a crucible (2); wherein the crucible (2) comprises a main body (21) which is disposed within the compartment (11) and sealed all around with one side opened, and a cover (22) which is connected to the main body (21) in a fitting mann
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: April 17, 2018
    Assignee: BOE Technology Group Co., Ltd.
    Inventors: Dejiang Zhao, Lu Wang, Seiji Fujino
  • Patent number: 9932666
    Abstract: In various embodiments, evaporation sources for deposition systems are heated and/or cooled via a fluid-based thermal management system.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: April 3, 2018
    Assignee: SIVA POWER, INC.
    Inventors: Markus Eberhard Beck, Ulrich Alexander Bonne, Robert G. Wendt
  • Patent number: 9932692
    Abstract: A vitreous silica crucible includes: a substantially cylindrical straight body portion having an opening on a top end and extending in a vertical direction; a curved bottom portion; and a corner portion connecting the straight body portion with the bottom portion and a curvature of which is greater than that of the bottom portion, wherein an inner surface of the crucible has a concavo-convex structure in which groove-shaped valleys are interposed between ridges, and an average interval of the ridges is 5-100 ?m.
    Type: Grant
    Filed: June 30, 2013
    Date of Patent: April 3, 2018
    Assignee: SUMCO CORPORATION
    Inventors: Toshiaki Sudo, Tadahiro Sato, Ken Kitahara, Eriko Kitahara
  • Patent number: 9875915
    Abstract: Disclosed is a method for removing metal contamination present on an inner wall of a fluorine-based resin used in a chemical liquid supply line that supplies a chemical liquid to a workpiece. The method includes bringing some or all of a cleaning material reactive to a metal forming the metal contamination into a gaseous state; supplying the gaseous cleaning material to the chemical liquid supply line; and removing the metal contamination by reacting the gaseous cleaning material with the metal contamination present on the inner wall of the fluorine-based resin used in the chemical liquid supply line.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: January 23, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Yudai Ito, Kazuya Dobashi, Misako Saito, Shigeyoshi Kojima, Hideki Nishimura
  • Patent number: 9855350
    Abstract: A fluid dispersal system with integrated UV lighting includes a reservoir of fluid, a sprayer head connected to the fluid reservoir, a nozzle, and an ultraviolet lighting element. The nozzle is supported by the sprayer head and is in fluid communication with the reservoir to disperse fluid from the reservoir in a spray direction. The ultraviolet lighting element is supported by the sprayer head adjacent the spray nozzle, and directs ultraviolet light in a direction generally parallel to the spray direction. The nozzle and the lighting element may be actuated such that ultraviolet light is directed onto a surface while fluid is simultaneously dispersed onto the surface.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: January 2, 2018
    Inventor: Kevin James Dahlquist
  • Patent number: 9816175
    Abstract: In various embodiments, evaporation sources are heated and/or cooled via a fluid-based thermal management system during deposition of thin films.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: November 14, 2017
    Assignee: SIVA POWER, INC.
    Inventors: Markus Eberhard Beck, Ulrich Alexander Bonne, Robert G. Wendt
  • Patent number: 9818586
    Abstract: Provided is an arc evaporation source equipped with a target, a ring-shaped magnetic field guide magnet and a back side magnetic field generation source. The magnetic field guide magnet is aligned in a direction perpendicular to the evaporation face of the target and has a polarity that is the magnetization direction facing forward or backward. The back side magnetic field generation source is disposed at the rear of the magnetic field guide magnet, which is at the side of the back side of the target, and forms magnetic force lines running in the direction of magnetization of the magnetic field guide magnet. The target is disposed such that the evaporation face is positioned in front of the magnetic field guide magnet.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: November 14, 2017
    Assignee: Kobe Steel, Ltd.
    Inventors: Shinichi Tanifuji, Kenji Yamamoto
  • Patent number: 9797593
    Abstract: An apparatus and method for generating a vapor with a compact vaporizer design and exposing the gas and liquid mixture for vaporization to a reduced maximum temperature. A gas and liquid droplet flow through a metal housing configured to heat the gas and liquid droplet mixture flow for vaporization includes directing the gas and liquid droplet mixture through an inlet of the metal housing and flowing the gas through a tortious flow path defined by a plurality of tubular flow passageways arranged around a central axis for vaporization. Residual liquid droplets may be further vaporized by flowing through a second metal housing configured to heat the gas and liquid droplet mixture for vaporization and having a similar construction to the first metal housing and providing a second tortious flow path.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: October 24, 2017
    Assignee: MSP Corporation
    Inventors: Thuc M. Dinh, Yamin Ma, Benjamin Y. H. Liu
  • Patent number: 9790588
    Abstract: The present invention provides a heating device for evaporation of an OLED material, which includes a crucible (1) for receiving and containing therein an OLED material (10), a lower heating coil (2) surrounding outside an outer circumference of the body section (11) of the crucible (1), an upper heating coil (3) surrounding outside an outer circumference of the top cover section (13) of the crucible (1), a lower thermally conductive temperature homogenizing sleeve (4) arranged between the body section (11) and the lower heating coil (2), an upper thermally conductive temperature homogenizing sleeve (5) arranged between the top cover section (13) and the upper heating coil (3), and a thermal insulation ring (6) arranged between the upper and lower thermally conductive temperature homogenizing sleeves (5, 4). The upper and lower heating coils (3, 2) are each connected to a power supply for individually controlling a heating temperature of each of the top cover section (13) and the body section (11).
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: October 17, 2017
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd
    Inventor: Yawei Liu
  • Patent number: 9777377
    Abstract: STEP 1 (Pressure increasing step) increases pressure within a raw material container to first pressure by supplying carrier gas to the inside of the raw material container by PCV. STEP 2 (Pressure decreasing step) decreases the pressure within the raw material container to second pressure by operating an exhaust device and discarding the raw material gas from a raw material gas supply pipe via an exhaust bypass pipe. STEP 3 (Stabilization step) stabilizes the vaporization efficiency for vaporizing the raw material inside the raw material container by operating the exhaust device and discarding the raw material gas while introducing the carrier gas into the raw material container. STEP 4 (Film forming step) supplies the raw material gas to the inside of the processing container via the raw material gas supply pipe and deposits a thin film on a wafer by CVD.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: October 3, 2017
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Shigeyuki Okura, Hajime Yamanaka
  • Patent number: 9738966
    Abstract: Methods of forming chemically pure metal films are provided. The methods use electron beam deposition at a high mean deposition rate to form high purity metal films on deposition substrates. By using a high mean deposition rate, the melting point of the metal to be deposited is reached at the metal source surface during the deposition. As a result, the rate of transfer of impurities present in the metal source to the surface of the deposition substrate is so small that the deposited metal films are substantially free of impurity elements.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: August 22, 2017
    Assignee: Northwestern University
    Inventors: Franz M. Geiger, Danielle Faurie-Wisniewski
  • Patent number: 9738530
    Abstract: The deposition of polycrystalline silicon onto heated filament rods in a Siemens process is improved by supplying reaction gas at least partially through nozzles in the vertical wall of the deposition reactor, at an angle of 0° to 45° to the reactor wall, towards the base plate of the reactor.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: August 22, 2017
    Assignee: WACKER CHEMIE AG
    Inventors: Goeran Klose, Heinz Kraus, Tobias Weiss
  • Patent number: 9726430
    Abstract: A thermal evaporation sources are described. These thermal evaporation sources include a crucible configured to contain a volume of evaporant and a vapor space above the evaporant.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: August 8, 2017
    Assignee: JLN SOLAR, INC.
    Inventors: Robert W. Birkmire, Gregory M. Hanket
  • Patent number: 9714466
    Abstract: A vapor deposition device (50) in accordance with the present invention is a vapor deposition device for forming a film on a film formation substrate (60), the vapor deposition device including a vapor deposition source (80) that has an injection hole (81) from which vapor deposition particles are injected, a vapor deposition particle crucible (82) for supplying the vapor deposition particles to the vapor deposition source (80), and a rotation motor (86) for changing a distribution of the injection amount of the vapor deposition particles by rotating the vapor deposition source (80).
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: July 25, 2017
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tohru Sonoda, Shinichi Kawato, Satoshi Inoue, Satoshi Hashimoto
  • Patent number: 9702629
    Abstract: A retaining bar to be used in combination with a heat furnace supporting assembly for supporting at least one receptacle. The retaining bar comprises at least one single piece elongated body having a finite length and at least one receptacle receiving cavity defined therein and extending along a section of the length of the body. Each one of the at least one receptacle receiving cavity is configured to receive therein one of a bottom section and an upper section of one of the at least one receptacle. A heat furnace receptacle supporting assembly comprising such a retaining bar and a heat furnace provided with the heat furnace receptacle supporting assembly are further provided.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: July 11, 2017
    Assignee: SPECTRIS CANADA INC.
    Inventor: Steve Forest