Selenium Or Tellurium Containing Patents (Class 136/264)
  • Patent number: 8415559
    Abstract: Precursor layers and methods of forming Group IBIIIAVIA solar cell absorbers with bandgap grading using such precursor layers are described. The Group IBIIIAVIA absorber includes a top surface with a Ga/(Ga+In) molar ratio in the range of 0.1-0.3. The Group IBIIIAVIA solar cell absorber is formed by reacting the layers of a multilayer material structure which includes a metallic film including Cu, In and Ga formed on a base, a layer of Se formed on the metallic film, and a second metallic layer substantially including Ga formed on the layer of Se.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: April 9, 2013
    Assignee: SoloPower, Inc.
    Inventor: Bulent M. Basol
  • Patent number: 8410357
    Abstract: Disclosed is a novel thin film photovoltaic device and a process of making. The device comprises an interface layer between the absorber layer and the electrode resulting in an improved back contact and improved device efficiency. The interface layer comprises a material comprising a Ma-(Group VIA)b compound, where M is a transition metal the Group VIA designates Te, Se and/or S.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: April 2, 2013
    Assignee: Solexant Corp.
    Inventors: Puthur D. Paulson, Craig Leidholm, Damoder Reddy, Charlie Hotz
  • Publication number: 20130074915
    Abstract: A method of fabricating a flexible photovoltaic film cell with an iron diffusion barrier layer. The method includes: providing a foil substrate including iron; forming an iron diffusion barrier layer on the foil substrate, where the iron diffusion barrier layer prevents the iron from diffusing; forming an electrode layer on the iron diffusion barrier layer; and forming at least one light absorber layer on the electrode layer. A flexible photovoltaic film cell is also provided, which cell includes: a foil substrate including iron; an iron diffusion barrier layer formed on the foil substrate to prevent the iron from diffusing; an electrode layer formed on the iron diffusion barrier layer; and at least one light absorber layer formed on the electrode layer.
    Type: Application
    Filed: September 26, 2011
    Publication date: March 28, 2013
    Applicant: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Lian Guo, Marinus Johannes Petrus Hopstaken, Maurice Mason, Lubomyr T. Romankiw
  • Publication number: 20130068301
    Abstract: A method and apparatus provide for a roughened back surface of a semiconductor absorber layer of a photovoltaic device to improve adhesion. The roughened back surface may be achieved through an etching process.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 21, 2013
    Inventors: Jianjun Wang, Oleh P. Karpenko, Thomas A. Sorenson
  • Patent number: 8395043
    Abstract: A solar cell includes a photoactive, semiconductive absorber layer configured to generate excess charge carriers of opposed polarity by light incident on a front of the absorber layer during operation. The absorber layer is configured to separate and move, via at least one electric field formed in the absorber layer, the photogenerated excess charge carriers of opposed polarity over a minimal effective diffusion length Leff,min. The absorber layer has a thickness Lx of 0<Lx?Leff,min. First contact elements are configured to remove the excess charge carriers of a first polarity on a rear of the absorber layer. Second contact elements are configured remove the excess charge carriers of a second polarity on the rear of the absorber layer. At least one undoped, electrically insulating second passivation region is disposed in an alternating, neighboring arrangement with a first passivation region on the rear of the absorber layer.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: March 12, 2013
    Assignee: Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH
    Inventors: Rolf Stangl, Bernd Rech
  • Patent number: 8389321
    Abstract: A solar cell includes a substrate, a protective layer located over a first surface of the substrate, a first electrode located over a second surface of the substrate, at least one p-type semiconductor absorber layer located over the first electrode, an n-type semiconductor layer located over the p-type semiconductor absorber layer, and a second electrode over the n-type semiconductor layer. The p-type semiconductor absorber layer includes a copper indium selenide (CIS) based alloy material, and the second electrode is transparent and electrically conductive. The protective layer has an emissivity greater than 0.25 at a wavelength of 2 ?m, has a reactivity with a selenium-containing gas lower than that of the substrate, and may differ from the first electrode in at least one of composition, thickness, density, emissivity, conductivity or stress state. The emissivity profile of the protective layer may be uniform or non-uniform.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: March 5, 2013
    Assignee: MiaSole
    Inventors: Chris Schmidt, John Corson
  • Patent number: 8389852
    Abstract: An electrode structure is provided for use in an electronic device. In certain example embodiments, an electrode structure includes a supporting glass substrate (e.g., soda-lime silica based float glass), a buffer layer (e.g., SixNy), and a conductive electrode (e.g., Mo) provided in this order. The buffer layer is advantageous in that it prevents or reduces sodium (Na) migration from the glass substrate into semiconductor layer(s) of the electronic device.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: March 5, 2013
    Assignee: Guardian Industries Corp.
    Inventor: Alexey Krasnov
  • Patent number: 8383451
    Abstract: In particular embodiments, a method is described for depositing thin films, such as those used in forming a photovoltaic cell or device. In a particular embodiment, the method includes providing a substrate suitable for use in a photovoltaic device and plasma spraying one or more layers over the substrate, the grain size of the grains in each of the one or more layers being at least approximately two times greater than the thickness of the respective layer.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: February 26, 2013
    Assignee: AQT Solar, Inc.
    Inventors: Brian Josef Bartholomeusz, Michael Bartholomeusz
  • Patent number: 8377736
    Abstract: The present invention provides methods for fabricating a copper indium diselenide semiconductor film. The method includes providing a plurality of substrates having a copper and indium composite structure, and including a peripheral region, the peripheral region including a plurality of openings, the plurality of openings including at least a first opening and a second opening. The method includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the furnace including a holding apparatus. The method further includes introducing a gaseous species into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to at least initiate formation of a copper indium diselenide film on each of the substrates.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: February 19, 2013
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting
  • Publication number: 20130037110
    Abstract: Techniques for fabrication of kesterite Cu—Zn—Sn—(Se,S) films and improved photovoltaic devices based on these films are provided. In one aspect, a method of forming metal chalcogenide nanoparticles is provided. The method includes the following steps. Water, a source of Zn, a source of Cu, optionally a source of Sn and at least one of a source of S and a source of Se are contacted under conditions sufficient to produce a dispersion of the metal chalcogenide nanoparticles having a Zn chalcogenide distributed within a surface layer thereof. The metal chalcogenide nanoparticles are separated from the dispersion and can subsequently be used to form an ink for deposition of kesterite films.
    Type: Application
    Filed: August 10, 2011
    Publication date: February 14, 2013
    Applicant: International Business Machines Corporation
    Inventors: David Brian Mitzi, Teodor Krassimirov Todorov
  • Publication number: 20130037111
    Abstract: Techniques for preparing chalcogen-containing solutions using an environmentally benign borane-based reducing agent and solvents under ambient conditions, as well as application of these solutions in a liquid-based method for deposition of inorganic films having copper (Cu), zinc (Zn), tin (Sn), and at least one of sulfur (S) and selenium (Se) are provided. In one aspect, a method for preparing a chalcogen-containing solution is provided. The method includes the following steps. At least one chalcogen element, a reducing agent and a liquid medium are contacted under conditions sufficient to produce a homogenous solution. The reducing agent (i) contains both boron and hydrogen, (ii) is substantially carbon free and (iii) is substantially metal free.
    Type: Application
    Filed: August 10, 2011
    Publication date: February 14, 2013
    Applicant: International Business Machines Corporation
    Inventors: David Brian Mitzi, Xiaofeng Qiu
  • Publication number: 20130037105
    Abstract: A compositional range of high strain point and/or intermediate expansion coefficient alkali metal free aluminosilicate and boroaluminosilicate glasses are described herein. The glasses can be used as substrates or superstrates for photovoltaic devices, for example, thin film photovoltaic devices such as CdTe or CIGS photovoltaic devices or crystalline silicon wafer devices. These glasses can be characterized as having strain points ?600° C., thermal expansion coefficient of from 35 to 50×10?7/° C.
    Type: Application
    Filed: August 8, 2012
    Publication date: February 14, 2013
    Inventors: Bruce Gardiner Aitken, James Edward Dickinson, JR., Timothy James Kiczenski, John Christopher Mauro, Adama Tandia
  • Patent number: 8372683
    Abstract: An RTP heating system and an RTP heating method, which can heat a photovoltaic-device intermediate product having a glass substrate, a Mo layer, and a light absorption layer in formation. The RTP heating system is composed of a chamber; a support member located in the chamber; a heating element mounted in the chamber for emitting infrared rays for heating; and a plurality of temperature sensors and a temperature control device for sensing and controlling thermal sources from the heating element and the support member. The infrared rays can be mostly reflected off the Mo layer to apply less direct heating to the glass substrate. Accordingly, the upper and lower surfaces of the photovoltaic-device intermediate product can be heated under different temperatures separately to prevent the glass substrate below the photovoltaic-device intermediate product from softening and deformation and to allow production of the light absorption layer on the Mo layer.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: February 12, 2013
    Assignee: ADPV Technology Limited
    Inventor: Shiezen Steven Huang
  • Patent number: 8373062
    Abstract: A solar cell is provided as one capable of increasing the open voltage when compared with the conventional solar cells. A solar cell according to the present invention has a p-type semiconductor layer containing a group Ib element, a group IIIb element, and a group VIb element, and an n-type semiconductor layer containing a group Ib element, a group IIIb element, a group VIb element, and Zn and formed on the p-type semiconductor layer. A content of the group Ib element in the n-type semiconductor layer is from 15 to 21 at. % to the total number of atoms of the group Ib element, the group IIIb element, the group VIb element, and Zn in the n-type semiconductor layer, and a content of Zn in the n-type semiconductor layer is from 0.005 to 1.0 at. % to the total number of atoms of the group Ib element, the group IIIb element, the group VIb element, and Zn in the n-type semiconductor layer.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: February 12, 2013
    Assignee: TDK Corporation
    Inventors: Yasuhiro Aida, Masato Susukida
  • Patent number: 8372684
    Abstract: The method and system for selenization in fabricating CIS and/or CIGS based thin film solar cell overlaying cylindrical glass substrates. The method includes providing a substrate, forming an electrode layer over the substrate and depositing a precursor layer of copper, indium, and/or gallium over the electrode layer. The method also includes disposing the substrate vertically in a furnace. Then a gas including a hydrogen species, a selenium species and a carrier gas are introduced into the furnace and heated to between about 350° C. and about 450° C. to at least initiate formation of a copper indium diselenide film from the precursor layer.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: February 12, 2013
    Assignee: Stion Corporation
    Inventors: Robert D. Wieting, Steven Aragon, Chester A. Farris, III
  • Patent number: 8372685
    Abstract: Methods and devices are provided for forming thin-films from solid group IIIA-based particles. In one embodiment, a method is provided for bandgap grading in a thin-film device using such particles. The method may be comprised of providing a bandgap grading material comprising of an alloy having: a) a IIIA material and b) a group IA-based material, wherein the alloy has a higher melting temperature than a melting temperature of the IIIA material in elemental form. A precursor material may be deposited on a substrate to form a precursor layer. The precursor material comprising group IB, IIIA, and/or VIA based particles. The bandgap grading material of the alloy may be deposited after depositing the precursor material. The alloy in the grading material may react after the precursor layer has begun to sinter and thus maintains a higher concentration of IIIA material in a portion of the compound film that forms above a portion that sinters first.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: February 12, 2013
    Assignee: Nanosolar, Inc.
    Inventors: Matthew R. Robinson, Chris Eberspacher, Jeroen K. J. Van Duren
  • Patent number: 8367925
    Abstract: Light-electricity conversion devices based on II-VI semiconductor materials are provided. The light-electricity conversion devices are able to cover a wide spectrum range.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: February 5, 2013
    Assignee: University of Seoul Industry Cooperation Foundation
    Inventor: Doyeol Ahn
  • Publication number: 20130025680
    Abstract: Processes for making a process for making a photovoltaic absorber by depositing various layers of components on a substrate and converting the components into a thin film photovoltaic absorber material. Processes for depositing an ink containing compounds having the formula MB(ER)3 wherein MB is In, Ga or Al, and polymeric precursor compounds.
    Type: Application
    Filed: September 29, 2012
    Publication date: January 31, 2013
    Applicant: PRECURSOR ENERGETICS, INC.
    Inventor: Precursor Energetics, Inc.
  • Patent number: 8350146
    Abstract: A photovoltaic device may be provided. The photovoltaic device may include a first energy absorbing surface and a second energy absorbing surface being substantially parallel to the first energy absorbing surface. The photovoltaic device may include a third energy absorbing surface being substantially perpendicular to the first energy absorbing surface and the second energy absorbing surface. Each of the first energy absorbing surface, the second energy absorbing surface, and the third energy absorbing surface may be configured to convert energy from photons into electrical energy. The photons may be impinging one or more of the first energy absorbing surface, the second energy absorbing surface, and the third energy absorbing surface. The first, second, and the third energy absorbing surfaces may be oriented in manner to cause the photons to bounce between two or more of the first energy absorbing surface, the second energy absorbing surface, and the third energy absorbing surface.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: January 8, 2013
    Assignee: Georgia Tech Research Corporation
    Inventor: William Judson Ready
  • Patent number: 8344241
    Abstract: Nanostructures and photovoltaic structures are disclosed. A nanostructure according to one embodiment includes an array of nanocables extending from a substrate, the nanocables in the array being characterized as having a spacing and surface texture defined by inner surfaces of voids of a template; an electrically insulating layer extending along the substrate; and at least one layer overlaying the nanocables. A nanostructure according to another embodiment includes a substrate; a portion of a template extending along the substrate, the template being electrically insulative; an array of nanocables extending from the template, portions of the nanocables protruding from the template being characterized as having a spacing, shape and surface texture defined by previously-present inner surfaces of voids of the template; and at least one layer overlaying the nanocables.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: January 1, 2013
    Assignees: Q1 Nanosystems Corporation, The Regents of the University of California
    Inventors: Ruxandra Vidu, Brian Argo, John Argo, Pieter Stroeve, Jie-Ren Ku
  • Patent number: 8338698
    Abstract: Thin film photovoltaic devices are generally provided. The device can include a transparent conductive oxide layer on a glass substrate, an n-type thin film layer on the transparent conductive layer, and a p-type thin film layer on the n-type layer. The n-type thin film layer and the p-type thin film layer form a p-n junction. An anisotropic conductive layer is applied on the p-type thin film layer, and includes a polymeric binder and a plurality of conductive particles. A metal contact layer can then be positioned on the anisotropic conductive layer.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: December 25, 2012
    Assignee: PrimeStar Solar, Inc.
    Inventors: Tammy Jane Lucas, Robert Dwayne Gossman, Scott Daniel Feldman-Peabody
  • Publication number: 20120318361
    Abstract: A method for synthesizing a thin film of CZTS such as for use as an absorber in a photovoltaic device. The method includes providing a substrate in a chamber, and, then, depositing a film of CZTS material on the substrate, the CZTS material comprising copper, zinc, tin, and at least on chalcogen species. The depositing includes tuning an optical bandgap of the film with heterovalent alloying. The depositing is performed at low temperatures with the substrate provided in the chamber free of direct/active heating. For example, the substrate may be maintained at a temperature below about 150° C. during the depositing of the film. The heterovalent alloying involves controlling deposition rates for the copper and the zinc to define a copper to zinc ratio set the optical bandgap such as a value between about 1.0 eV and about 2.75 eV.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 20, 2012
    Applicant: ALLIANCE FOR SUSTAINABLE ENERGY, LLC
    Inventors: Glenn Teeter, Hui Du, Matthew Young, Pete Erslev
  • Patent number: 8330039
    Abstract: Provided is a solar cell module that comprises a solar cell assembly. The solar cell assembly is encapsulated by a poly(vinyl butyral) encapsulant and contains a silver component that is at least partially in contact with the poly(vinyl butyral) encapsulant. The poly(vinyl butyral) encapsulant comprises poly(vinyl butyral), about 15 to about 45 wt % of one or more plasticizers, and about 0.1 to about 2 wt % of one or more unsaturated heterocyclic compounds, based on the total weight of the poly(vinyl butyral) encapsulant. Further provided are an assembly for preparing the solar cell module; a process for preventing or reducing the discoloration of a poly(vinyl butyral) encapsulant in contact with a silver component in the solar cell module; and the use of the solar cell module to convert solar energy to electricity.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: December 11, 2012
    Assignee: E I du Pont de Nemours and Company
    Inventors: Rebecca L. Smith, Jason S. Wall, Katherine M. Stika
  • Patent number: 8329494
    Abstract: A method for manufacturing a solar cell including a substrate, a first electrode layer, a semiconductor layer, and a second electrode layer, includes forming a first sacrificial layer on a portion of a surface of the substrate; forming the first electrode layer on the substrate and on the first sacrificial layer; and dividing the first electrode layer by removing the first sacrificial layer and a portion of the first electrode layer formed on the first sacrificial layer.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: December 11, 2012
    Assignee: Seiko Epson Corporation
    Inventors: Atsushi Denda, Hiromi Saito
  • Patent number: 8318050
    Abstract: This invention relates to processes for compounds, polymeric compounds, and compositions used to prepare semiconductor and optoelectronic materials and devices including thin film and band gap materials. This invention provides a range of compounds, polymeric compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, transparent conductive materials, as well as devices and systems for energy conversion, including solar cells. In particular, this invention relates to polymeric precursor compounds and precursor materials for preparing photovoltaic layers. In particular, this invention relates to molecular precursor compounds and precursor materials for preparing photovoltaic layers including CAIGAS.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: November 27, 2012
    Assignee: Precursor Energetics, Inc.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta
  • Patent number: 8299355
    Abstract: A solar cell including a quantum dot and an electron conductor, with a bifunctional ligand disposed between the quantum dot and the electron conductor. The bifunctional ligand molecule may include an electron conductor anchor that bonds to the electron conductor and a first quantum dot anchor that bonds to the quantum dot. A hole conductor such as a conductive polymer may include a second quantum dot anchor. In some instances, the first quantum dot may include selenium.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: October 30, 2012
    Assignee: Honeywell International Inc.
    Inventors: Bogdan Serban, Mihai N. Mihaila, Viorel Georgel Dumitru, Cazimir Bostan, Stefan Dan Costea
  • Patent number: 8299353
    Abstract: A solar cell including a photovoltaic layer, a first electrode layer, a second electrode layer, an insulating layer and a light-transparent conductive layer is provided. The photovoltaic layer has a first surface and a second surface. The first electrode layer having at least one gap is disposed on the first surface, wherein the at least one gap exposes a portion of the photovoltaic layer. The second electrode layer is disposed on the second surface. The insulating layer having a plurality of pores is located on the photovoltaic layer exposed by the at least one gap, wherein the holes expose a portion of the photovoltaic layer. The light-transparent conductive layer covers the insulating layer and is connected with the first electrode layer. The transparent electrode is connected with the photovoltaic layer through at least a part of the pores. A method of fabricating a solar cell is also provided.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: October 30, 2012
    Assignees: Tatung Company, Tatung University
    Inventors: Chiung-Wei Lin, Yi-Liang Chen
  • Publication number: 20120241005
    Abstract: A CIS solar cell having flexibility and high conversion efficiency may be produced, using, as a substrate, a polyimide film which is prepared from an aromatic tetracarboxylic acid component comprising 3,3?,4,4?-biphenyltetracarboxylic dianhydride as the main component and an aromatic diamine component comprising p-phenylenediamine as the main component, and has a maximum dimensional change in the temperature-increasing step of from 25° C. to 500° C. within a range of from +0.6% to +0.9%, excluding +0.6%, based on the dimension at 25° C. before heat treatment.
    Type: Application
    Filed: November 19, 2010
    Publication date: September 27, 2012
    Applicant: Ube Industries, Ltd.
    Inventors: Hiroaki Yamaguchi, Takao Miyamoto, Nobu Iizumi, Ken Kawagishi
  • Publication number: 20120234391
    Abstract: The present disclosure relates to a method of manufacturing of a glass coated material that is suitable for use in the manufacture of flexible solar cells and other electronic devices. The invention is also to articles comprising the flexible solar cells described herein.
    Type: Application
    Filed: September 14, 2011
    Publication date: September 20, 2012
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Salah Boussaad, Damien Francis Reardon
  • Patent number: 8268270
    Abstract: A coating solution for forming a light-absorbing layer of a chalcopyrite solar cell, including a hydrazine-coordinated Cu chalcogenide complex, a hydrazine-coordinated In chalcogenide complex and hydrazine-coordinated Ga chalcogenide complex dissolved in dimethylsulfoxide, the hydrazine-coordinated Cu chalcogenide complex being obtained by dissolving Cu or Cu2Se and a chalcogen in dimethylsulfoxide having hydrazine added, and adding a poor solvent to the resulting solution.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: September 18, 2012
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Masaru Kuwahara, Koichi Misumi, Hidenori Miyamoto
  • Publication number: 20120227790
    Abstract: The assemblies of the present disclosure comprise an electrode, and a polyimide film. The polyimide film comprises a sub-micron filler and a polyimide. The polyimide is derived from at least one aromatic dianhydride component selected from rigid rod dianhydride, non-rigid rod dianhydride and combinations thereof, and at least one aromatic diamine component selected from rigid rod diamine, non-rigid rod diamine and combinations thereof. The mole ratio of dianhydride to diamine is 48-52:52-48 and the ratio of X:Y is 20-80:80-20 where X is the mole percent of rigid rod dianhydride and rigid rod diamine, and Y is the mole percent of non-rigid rod dianhydride and non-rigid rod diamine. The sub-micron filler is less than 550 nanometers in at least one dimension; has an aspect ratio greater than 3:1; is less than the thickness of the film in all dimensions.
    Type: Application
    Filed: November 19, 2010
    Publication date: September 13, 2012
    Applicant: E. I DU PONT DE NEMOURS AND COMPANY
    Inventors: Brian C. Auman, Meredith L. Dunbar, Tao He, Kostantinos Kourtakis
  • Publication number: 20120222742
    Abstract: A compound thin film solar cell of an embodiment includes: as a light-absorbing layer a semiconductor thin film which contains Cu, an element A (A is at least one element selected from a group consisting of Al, In and Ga) and Te, and has a chalcopyrite crystal structure, wherein a buffer layer that forms an interface with the light-absorbing layer is a compound which contains at least one element selected from Cd, Zn and a group consisting of In and Ga and at least one element selected from a group consisting of S, Se and Te, and has any crystal structure of a sphalerite structure, a wurtzite structure and a defect spinel structure, and a lattice constant “a” of the buffer layer with the sphalerite structure or a lattice constant “a” of the buffer layer at the time of converting the wurtzite structure or the defect spinel structure to the sphalerite structure is not smaller than 0.59 nm and not larger than 0.62 nm.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 6, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Naoyuki Nakagawa, Shinya Sakurada, Yasutaka Nishida, Satoshi Itoh, Michihiko Inaba
  • Patent number: 8258001
    Abstract: A multilayer structure to form absorber layers for solar cells. The multilayer structure includes a base comprising a contact layer on a substrate layer, a first layer on the contact layer, and a metallic layer on the first layer. The first layer includes an indium-gallium-selenide film and the gallium to indium molar ratio of the indium-gallium-selenide film is in the range of 0 to 0.8. The metallic layer includes gallium and indium without selenium. Additional selenium is deposited onto the metallic layer before annealing the structure for forming an absorber.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: September 4, 2012
    Assignee: SoloPower, Inc.
    Inventor: Bulent M. Basol
  • Patent number: 8252621
    Abstract: A method of forming a Group IBIIIAVIA solar cell absorber, which includes a top surface region of less than or equal to 300 nm depth. The Ga/(Ga+In) molar ratio within the top surface region is in the range of 0.1-0.3. The Group IBIIIAVIA solar cell absorber is formed by reacting the layers of a multilayer material structure which includes a metallic film including at least Cu and In formed on a base, a separator layer including Se is formed on the metallic film, a metallic source layer substantially including Ga formed on the separator layer, and a cap layer substantially including Se formed on the source layer.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: August 28, 2012
    Assignee: SoloPower, Inc.
    Inventor: Bulent M. Basol
  • Publication number: 20120211074
    Abstract: CIGS absorber layers fabricated using coated semiconducting nanoparticles and/or quantum dots are disclosed. Core nanoparticles and/or quantum dots containing one or more elements from group 13 and/or IIIA and/or VIA may be coated with one or more layers containing elements group IB, IIIA or VIA. Using nanoparticles with a defined surface area, a layer thickness could be tuned to give the proper stoichiometric ratio, and/or crystal phase, and/or size, and/or shape. The coated nanoparticles could then be placed in a dispersant for use as an ink, paste, or paint. By appropriate coating of the core nanoparticles, the resulting coated nanoparticles can have the desired elements intermixed within the size scale of the nanoparticie, while the phase can be controlled by tuning the stochiomctiy, and the stoichiometry of the coated nanoparticle may be tuned by controlling the thickness of the coating(s).
    Type: Application
    Filed: May 7, 2012
    Publication date: August 23, 2012
    Inventors: Brian M. Sager, Dong Yu, Matthew R. Robinson
  • Patent number: 8247683
    Abstract: A cadmium telluride thin film photovoltaic device is provided having a thin film interlayer positioned between a cadmium sulfide layer and a cadmium telluride layer. The thin film interlayer can be an oxide thin film layer (e.g., an amorphous silica layer, a cadmium stannate layer, a zinc stannate layer, etc.) or a nitride film, and can act as a chemical barrier at the p-n junction to inhibit ion diffusion between the layers. The device can include a transparent conductive layer on a glass superstrate, a cadmium sulfide layer on the transparent conductive layer, a thin film interlayer on the cadmium sulfide layer, a cadmium telluride layer on the thin film interlayer, and a back contact on the cadmium telluride layer. Methods are also provided of manufacturing such devices.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: August 21, 2012
    Assignee: PrimeStar Solar, Inc.
    Inventors: Jonathan Mack Frey, Robert Dwayne Gossmann, Mehran Sadeghi, Scott Daniel Feldman-Peabody, Jennifer A. Drayton, Victor Kaydanov
  • Patent number: 8241943
    Abstract: A method of sodium doping in fabricating CIGS/CIS based thin film solar cells includes providing a shaped substrate member. The method includes forming a barrier layer over the surface region followed by a first electrode layer, and then a sodium bearing layer. A precursor layer of copper, indium, and/or gallium materials having an atomic ratio of copper/group III species no greater than 1.0 is deposited over the sodium bearing layer. The method further includes transferring the shaped substrate member to a second chamber and subjecting it to a thermal treatment process within an environment comprising gas-phase selenium species, followed by an environment comprising gas-phase sulfur species with the selenium species being substantially removed to form an absorber layer.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: August 14, 2012
    Assignee: Stion Corporation
    Inventors: Robert D. Wieting, Steven Aragon, Chester A. Farris, III
  • Patent number: 8241930
    Abstract: Methods are generally provided for manufacturing such thin film photovoltaic devices via sputtering a mixed phase layer from a target (e.g., at least including CdSOx, where x is 3 or 4) on a transparent conductive oxide layer and depositing a cadmium telluride layer on the mixed layer. The transparent conductive oxide layer is on a glass substrate.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: August 14, 2012
    Assignee: PrimeStar Solar, Inc.
    Inventors: Scott Daniel Feldman-Peabody, Robert Dwayne Gossman
  • Publication number: 20120199185
    Abstract: A photovoltaic (PV) device, comprising a PV interband cascade (IC) stage, wherein the IC PV stage comprises an absorption region with a band gap, the absorption region configured to absorb photons, an intraband transport region configured to act as a hole barrier, and an interband tunneling region configured to act as an electron barrier. An IC PV architecture for a photovoltaic device, the IC PV architecture comprising an absorption region, an intraband transport region coupled to the absorption region, and an interband tunneling region coupled to the intraband transport region and to the adjacent absorption region, wherein the absorption region, the intraband transport region, and the interband tunneling region are positioned such that electrons will flow from the absorption region to the intraband transport region to the interband tunneling region.
    Type: Application
    Filed: February 9, 2011
    Publication date: August 9, 2012
    Applicant: BOARD OF REGENTS UNIVERSITY OF OKLAHOMA
    Inventors: Rui Q. Yang, Zhaobing Tian, Tetsuya D. Mishima, Michael B. Santos, Matthew B. Johnson, John F. Klem
  • Publication number: 20120192923
    Abstract: In one aspect of the present invention, a photovoltaic device is provided. The photovoltaic device includes a first semiconductor layer; a p+-type semiconductor layer; and an interlayer interposed between the first semiconductor layer and the p+-type semiconductor layer, wherein the interlayer includes magnesium and tellurium.
    Type: Application
    Filed: February 1, 2011
    Publication date: August 2, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bastiaan Arie Korevaar, James William Bray
  • Patent number: 8231848
    Abstract: Ternary and quaternary Chalcopyrite CuInxGa1-xSySe2-y (CIGS, where 0?x and y?1) nanoparticles were synthesized from molecular single source precursors (SSPs) by a one-pot reaction in a high boiling solvent using salt(s) (i.e. NaCl as by-product) as heat transfer agent via conventional convective heating method. The nanoparticles sizes were 1.8 nm to 5.2 nm as reaction temperatures were varied from 150° C. to 190° C. with very high-yield. Tunable nanoparticle size is achieved through manipulation of reaction temperature, reaction time, and precursor concentrations. In addition, the method developed in this study was scalable to achieve ultra-large quantities production of tetragonal and quaternary Chalcopyrite CIGS nanoparticles.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: July 31, 2012
    Assignee: Sun Harmonics Ltd
    Inventors: Yuhang Ren, Chivin Sun, Kai Shum
  • Publication number: 20120180869
    Abstract: Provided are a solar cell apparatus and a method of manufacturing the same. The solar cell apparatus includes a substrate, a rear electrode layer disposed on the substrate, a thin film layer disposed on the rear electrode layer, the thin film layer including a Group VI-based element, a light absorption layer disposed on the thin film layer, and a front electrode layer on the light absorption layer.
    Type: Application
    Filed: September 30, 2010
    Publication date: July 19, 2012
    Applicant: LG INNOTEK CO., LTD.
    Inventors: Suk Jae Jee, Kyung Am Kim
  • Patent number: 8217261
    Abstract: A method for fabricating a thin film solar cell includes providing a soda lime glass substrate comprising a surface region and a concentration of sodium oxide of greater than about 10 wt % and treating the surface region with one or more cleaning process, using a deionized water rinse, to remove surface contaminants having a particles size of greater than three microns. The method also includes forming a barrier layer overlying the surface region, forming a first molybdenum layer in tensile configuration overlying the barrier layer, and forming a second molybdenum layer in compressive configuration using a second process overlying the first molybdenum layer. Additionally, the method includes patterning the first molybdenum layer and the second molybdenum layer to form a lower electrode layer and forming a layer of photovoltaic material overlying the lower electrode layer. Moreover, the method includes forming a first zinc oxide layer overlying the layer of photovoltaic materials.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: July 10, 2012
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting
  • Patent number: 8207009
    Abstract: Methods for laser scribing a film stack including a plurality of thin film layers on a substrate are provided. A pulse of a laser beam is applied to the film stack, where the laser beam has a power that varies as a function of time during the pulse according to a predetermined power cycle. For example, the pulse can have a pulse lasting about 0.1 nanoseconds to about 500 nanoseconds. This pulse of the laser beam can be repeated across the film stack to form a scribe line through at least one of the thin film layers on the substrate. Such methods are particularly useful in laser scribing a cadmium telluride thin-film based photovoltaic device.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: June 26, 2012
    Assignee: PrimeStar Solar, Inc.
    Inventor: Jonathan Mack Frey
  • Patent number: 8203073
    Abstract: This invention relates to a front electrode/contact for use in an electronic device such as a photovoltaic device. In certain example embodiments, the front electrode of a photovoltaic device or the like includes a multilayer coating including at least one transparent conductive oxide (TCO) layer (e.g., of or including a material such as tin oxide, ITO, zinc oxide, or the like) and/or at least one conductive substantially metallic IR reflecting layer (e.g., based on silver, gold, or the like). In certain example instances, the multilayer front electrode coating may include one or more conductive metal(s) oxide layer(s) and one or more conductive substantially metallic IR reflecting layer(s) in order to provide for reduced visible light reflection, increased conductivity, cheaper manufacturability, and/or increased infrared (IR) reflection capability. At least one of the surfaces of the front glass substrate may be textured in certain example embodiments of this invention.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: June 19, 2012
    Assignee: Guardian Industries Corp.
    Inventors: Yiwei Lu, Willem den Boer, David Lerin, Scott V. Thomsen
  • Patent number: 8198117
    Abstract: Methods and devices are provided for absorber layers formed on foil substrate. In one embodiment, a method of manufacturing photovoltaic devices may be comprised of providing a substrate comprising of at least one electrically conductive aluminum foil substrate, at least one electrically conductive diffusion barrier layer, and at least one electrically conductive electrode layer above the diffusion barrier layer. The diffusion barrier layer may prevent chemical interaction between the aluminum foil substrate and the electrode layer. An absorber layer may be formed on the substrate. In one embodiment, the absorber layer may be a non-silicon absorber layer. In another embodiment, the absorber layer may be an amorphous silicon (doped or undoped) absorber layer. Optionally, the absorber layer may be based on organic and/or inorganic materials.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: June 12, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Craig R. Leidholm, Brent Bollman, James R. Sheats, Sam Kao, Martin R. Roscheisen
  • Patent number: 8198123
    Abstract: Improved methods and apparatus for forming thin-film layers of semiconductor material absorber layers on a substrate web. According to the present teachings, a semiconductor layer may be formed in a multi-zone process whereby various layers are deposited sequentially onto a moving substrate web.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: June 12, 2012
    Assignee: Global Solar Energy, Inc.
    Inventors: Jeffrey S. Britt, Scott Wiedeman
  • Patent number: 8197885
    Abstract: A method for producing a metal article according to one embodiment may include: Providing a supply of a sodium/molybdenum composite metal powder; compacting the sodium/molybdenum composite metal powder under sufficient pressure to form a preformed article; placing the preformed article in a sealed container; raising the temperature of the sealed container to a temperature that is lower than a sintering temperature of molybdenum; and subjecting the sealed container to an isostatic pressure for a time sufficient to increase the density of the article to at least about 90% of theoretical density.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: June 12, 2012
    Assignee: Climax Engineered Materials, LLC
    Inventors: Dave Honecker, Christopher Michaluk, Carl Cox, James Cole
  • Patent number: 8193442
    Abstract: CIGS absorber layers fabricated using coated semiconducting nanoparticles and/or quantum dots are disclosed. Core nanoparticles and/or quantum dots containing one or more elements from group IB and/or IIIA and/or VIA may be coated with one or more layers containing elements group IB, IIIA or VIA. Using nanoparticles with a defined surface area, a layer thickness could be tuned to give the proper stoichiometric ratio, and/or crystal phase, and/or size, and/or shape. The coated nanoparticles could then be placed in a dispersant for use as an ink, paste, or paint. By appropriate coating of the core nanoparticles, the resulting coated nanoparticles can have the desired elements intermixed within the size scale of the nanoparticle, while the phase can be controlled by tuning the stochiometry, and the stoichiometry of the coated nanoparticle may be tuned by controlling the thickness of the coating(s).
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: June 5, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Brian M. Sager, Dong Yu, Matthew R. Robinson
  • Patent number: 8193443
    Abstract: The present invention relates to a photovoltaic cell, a method of manufacturing such photovoltaic cell, and to uses of such cell.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: June 5, 2012
    Assignees: Sony Deutschland GmbH, Sony Corporation
    Inventors: Michael Duerr, Gabriele Nelles, Akio Yasuda, Masahiro Morooka, Yusuke Suzuki, Kazuhiro Noda