Age Or Precipitation Hardened Or Strengthened Patents (Class 148/326)
-
Patent number: 12054817Abstract: The invention is a high strength austenitic steel composition having increased strength and toughness characteristics, applicable for use in a seawater environment. The high strength austenitic steel may include nanometer-scale carbides, carbonitrides of vanadium, and carbides and carbonitrides having molybdenum, titanium, and niobium. The austenitic steel includes, 0.15-0.5 wt. % of carbon, 0-0.8 wt. % of silicon 6-14 wt. % of manganese, 9-13.5 wt. % of nickel, 0-3 wt. % of copper; 0.8-2.2 wt. % of vanadium, 0-4 wt. % of molybdenum, 0-4 wt. % of chromium; 0-0.9 wt. % of aluminum, 0-0.1 wt. % of calcium, 0-0.3 wt. % of titanium, 0-0.6 wt. % of niobium, 0-0.2 wt. % of tungsten, 0-0.2 wt. % of nitrogen, 0-0.1 wt. % of cerium, 0-0.1 wt. % of lanthanum, 0-0.05 wt. % of sulfur, and 0-0.05 wt. % of phosphorus.Type: GrantFiled: November 10, 2021Date of Patent: August 6, 2024Assignee: United States of America, represented by the Secretary of the NavyInventors: Paul Lambert, Matthew Draper, Matthew Sinfield, Daniel Bechetti
-
Patent number: 11788177Abstract: A precipitation-hardened stainless steel alloy is disclosed including, by weight: 14.0-16.0% Cr; 6.0-7.0% Ni; 1.25-1.75% Cu; 0.5-1.0% Mo; 0.40-0.85% Nb; 0.025-0.05% C; up to 1.0% Mn; up to 1.0% Si; up to 0.1% V; up to 0.1% Co; up to 0.1% Sn; up to 0.02% N; up to 0.025% P; up to 0.05% Al; up to 0.008% S; up to 0.005% Ag; up to 0.005% Pb; up to 0.1% As; up to 0.01% Sb; and a balance of Fe. The alloy has a ratio of Nb:(C+N) of at least 15:1.Type: GrantFiled: April 27, 2021Date of Patent: October 17, 2023Assignee: GENERAL ELECTRIC COMPANYInventor: Theodore Francis Majka
-
Patent number: 11639542Abstract: A multi-scale and multi-phase dispersion strengthened iron-based alloy, and preparation and characterization methods thereof are provided. The alloy contains a matrix and a strengthening phase. The strengthening phase includes at least two types of the strengthening phase particles with different sizes. A volume of the two types of the strengthening phase particles with different sizes having a particle size less than or equal to 50 nm accounts for 85-95% of a total volume of all the strengthening phase particles. The matrix is a Fe—Cr—W—Ti alloy. The strengthening phases include crystalline Y2O3 phase, Y—Ti—O phase, Y—Cr—O phase, and Y—W—O phase. The characterization method comprises electrolytically separating the strengthening phases in the alloy, and then characterizing by using an electron microscope. The tensile strength of the prepared alloy is more than 1600 MPa at room temperature, and is more than 600 MPa at 700° C.Type: GrantFiled: August 30, 2018Date of Patent: May 2, 2023Assignee: CENTRAL SOUTH UNIVERSITYInventors: Zuming Liu, Quan Li, Boyun Huang, Xueqian Lv, Kai Peng, Fan Zhao
-
Patent number: 11499204Abstract: A martensitic stainless steel sheet has a composition containing, (mass %), from 0.10 to 0.15% of C, from 0.05 to 0.80% of Si, from 0.05 to 2.00% of Mn, 0.040% or less of P, 0.003% or less of S, from 0.05 to 0.50% of Ni, from 11.0 to 15.0% of Cr, from 0.02 to 0.50% of Cu, from 0.005 to 0.06% of N, from 0.001 to 0.20% of Al, from 0 to 1.00% of Mo, from 0 to 0.50% of V, from 0 to 0.01% of B, balance Fe and unavoidable impurities. An M value=420C?11.5Si+7Mn+23Ni?11.5Cr?12Mo?10V+9Cu?52Al+470N+189 is 100 or more. A carbonitride number density having a circle equivalent diameter of 1.0 ?m or more is 15.0 or less per 0.01 mm2. 0.2% yield strength is 1,100 N/mm2 or more.Type: GrantFiled: January 21, 2019Date of Patent: November 15, 2022Assignee: NIPPON STEEL STAINLESS STEEL CORPORATIONInventors: Taichiro Mizoguchi, Hiroyasu Matsubayashi, Katsuyuki Shiotsuki
-
Patent number: 11486015Abstract: The invention relates to a method for producing a steel material, particularly a corrosion-resistant steel material for pumps and similar, in which a steel corresponding to the following analysis (in wt. %) is smelted: C<0.050; Si<0.70; Mn<1.00; P<0.030; S<0.010; Cr=14-15.50; Mo=0.30-0.60; Ni=4.50-5.50; V<0.20; W<0.20; Cu=2.50-4.00; Co<0.30; Ti<0.05; Al<0.05; Nb<0.05; Ta<0.05; N<0.05.Type: GrantFiled: May 11, 2017Date of Patent: November 1, 2022Assignee: VOESTALPINE BÖHLER EDELSTAHL GMBH & CO. KGInventors: Jochen Perko, Michael Haspel, Patric Schütz
-
Patent number: 11359268Abstract: The present invention relates to an iron-based alloy that is able to provide a coating on a substrate, the coating having simultaneously high hardness and wear resistance. The iron-based alloy consists of 3.0-7.0% by weight Cr; 1.3-3.0% by weight C; 0.2-2.0% by weight B; 2.0-10.0% by weight V; optionally 1.5% by weight or less Si; optionally 1.0% by weight or less Mn, optionally 2.0% by weight or less Mo; optionally 1.5% by weight or less Ni; the balance being Fe and unavoidable impurities. The present invention further relates to an article comprising a substrate and coating formed thereon, the coating being formed from the alloy, and to a method for forming a coated article. The method preferably employs HVOF, laser cladding or plasma cladding.Type: GrantFiled: June 21, 2017Date of Patent: June 14, 2022Assignee: HÖGANÄS GERMANY GMBHInventors: Cecilia Cao, Crystal Liu, Kari Vesterling, Erik Wang, Hans Hallén
-
Patent number: 11198930Abstract: There is provided a precipitation-strengthened stainless steel plate having a chemical composition: by mass %, C: 0.01 to 0.10%; Si: 0.02 to 3.0%; Mn: 0.02 to 2.0%; Ni: 20 to 30%, Cr: 14 to 25.0%; Mo: 1.0 to 4.0%; Cu: 0.01 to 2.0%; Co: 0.01 to 0.5%; V: 0.1 to 1.0%; B: 0.001 to 0.01%; N: 0.02% or less; Ti: 2.0 to 5.0%; Al: 0.002 to 5.0%; Ti+Al: 3.3 to 6.0%; and the balance being Fe and impurities, the precipitation-strengthened stainless steel plate having a Vickers hardness Hv of 300 or higher, wherein the number density ??: Ni3(Al, Ti), which is an intermetallic compound, is 0 to 5/?m2. As a heat resistant component material, the precipitation-strengthened stainless steel plate is less expensive than conventional Ni-based alloys such as NCF625 and NCF718, and more excellent in high temperature properties than a precipitation-strengthened heat-resistant stainless steel such as SUH660.Type: GrantFiled: September 15, 2015Date of Patent: December 14, 2021Assignee: NIPPON STEEL CORPORATIONInventors: Masayoshi Sawada, Yuichi Fukumura
-
Patent number: 11072837Abstract: A martensitic stainless steel sheet comprises a chemical composition containing, in mass %, C: 0.035% to 0.090%, Si: 0.01% to 1.0%, Mn: 0.01% to 0.90%, P: 0.050% or less, S: 0.050% or less, Cr: 10.0% to 14.0%, Ni: 0.01% to 0.40%, Al: 0.001% to 0.50%, V: 0.05% to 0.50%, and N: 0.050% to 0.20%, with the balance being Fe and inevitable impurities, wherein a content of C and a content of N in the chemical composition satisfy C %+N % 0.10% and N % C %, the number of precipitates with a major axis length of 200 nm or more in a surface layer of the martensitic stainless steel sheet is 25 or less per 100 ?m2, and the martensitic stainless steel sheet has a tensile strength of 1300 MPa or more, a proof stress of 1100 MPa or more, and an elongation of 8.0% or more.Type: GrantFiled: October 6, 2017Date of Patent: July 27, 2021Assignee: JFE STEEL CORPORATIONInventors: Tetsuyuki Nakamura, Shin Ishikawa, Reiko Sugihara
-
Patent number: 11053979Abstract: A bearing ring for a rolling-element bearing or plain bearing has at least one first region that is inductively hardened or is configured to be inductively hardened and at least one second region that is not inductively hardened and is not intended to be inductively hardened, and the at least one second region includes at least one stress-relief recess and/or at least one stress-relief projection.Type: GrantFiled: July 11, 2019Date of Patent: July 6, 2021Assignee: AKTIEBOLAGET SKFInventors: Martina Sticht, Fred Menig, Juergen Reichert, Jesko-Henning Tanke, Gerhard Wagner, Michael Wendel
-
Patent number: 11020801Abstract: The invention relates to a method for coding metal powder. Said method comprises the following steps: providing a melt, forming a melt stream, spraying the melt stream by means of a spraying fluid, and forming metal powder particles from the melt stream. The method is characterized in that, during the spraying of the melt and/or the spraying fluid, a coding component or a coding gas is added in such a way that the use of the coding component in the metal powder can be detected, wherein the gaseous coding component comprises one or more isotopes of at least one gas and the fraction of the at least one isotope is changed in comparison with the naturally occurring fraction of said isotope in the gas and/or wherein the gaseous coding component contains gaseous alloying elements.Type: GrantFiled: May 12, 2017Date of Patent: June 1, 2021Assignee: LINDE AKTIENGESELLSCHAFTInventors: Jürgen Scholz, Ernst Miklos, Jim Fieret
-
Patent number: 10988824Abstract: A corrosion resistant steel having a yield strength of at least 758 MPa is described. The corrosion resistant steel comprises in weight %: 0.005?C<0.03, 14?Cr?17, 2.3?Mo?3.5, 3.2?Ni?4.5, Si?0.6, 0.5?Cu?1.5, 0.4?Mn?1.3, 0.35?V?0.6, 3.2×C?Nb?0.1, W?1.5, 0.5?Co?1.5, 0.02?N?0.05, Ti?0.05, P?0.03, S?0.005, Al?0.05, with the balance of the chemical composition of said corrosion resistant steel being constituted by Fe and inevitable impurities. A manufacturing method of such steel to obtain a quenched and tempered semi finished product is also described.Type: GrantFiled: June 29, 2016Date of Patent: April 27, 2021Assignee: VALLOUREC OIL AND GAS FRANCEInventors: Christelle Gomes, Hafida El Alami, Florent Decultieux
-
Patent number: 10927439Abstract: Disclosed is an austenitic stainless steel alloy that includes or consists of, by weight, about 24% to about 26% chromium, about 11% to about 13% nickel, about 4.5% to about 5.5% manganese, about 1.3% to about 1.7% silicon, about 1.2% to about 1.6% niobium, about 0.40% to about 0.50% carbon, about 0.2% to about 0.4% nitrogen, and a balance of iron with inevitable/unavoidable impurities. The alloy is suitable for use in turbocharger turbine applications for temperatures up to about 1050° C.Type: GrantFiled: May 30, 2018Date of Patent: February 23, 2021Assignee: GARRETT TRANSPORTATION I INCInventors: Balasubramani Nandagopal, Marc Wilson
-
Patent number: 10830379Abstract: Provided is a ductile stainless steel pipe made of stainless steel having an austenite type matrix structure and containing a copper component. The ductile stainless steel pipe has a delta ferrite matrix structure of about 1% or less on the basis of a grain area. The ductile stainless steel pipe includes a steel pipe having a set outer diameter to carry a refrigerant of an air conditioner. R410a is used as the refrigerant, and the ductile stainless steel pipe has a minimum thickness determined based on a saturated pressure of the refrigerant.Type: GrantFiled: March 6, 2018Date of Patent: November 10, 2020Assignee: LG ELECTRONICS INC.Inventor: Seokpyo Hong
-
Patent number: 10627168Abstract: Disclosed are a stainless steel having a new composition, which has properties of low strength as compared with a conventional stainless steel, that includes, percent by weight, C: 0.03% or less, Si: exceeding 0 to 1.7% or less, Mn: 1.5 to 3.5%, Cr: 15.0 to 18.0%, Ni: 7.0 to 9.0%, Cu: 1.0 to 4.0%, Mo: 0.03% or less, P: 0.04% or less, S: 0.04% or less, N: 0.03% or less, residue: Fe, and incidental impurities, and has an austenite matrix structure and an average diameter of 30 to 60 ?m, and a system such as an air conditioner including the stainless steel thereof.Type: GrantFiled: December 18, 2017Date of Patent: April 21, 2020Assignee: LG ELECTRONICS INC.Inventor: Seokpyo Hong
-
Patent number: 10513764Abstract: An austenitic steel for hydrogen technology has the following composition: 0.01 to 0.4 percent by mass of carbon, ?5 percent by mass of silicon, 0.3 to 30 percent by mass of manganese, 10.5 to 30 percent by mass of chromium, 4 to 12.5 percent by mass of nickel, ?3 percent by mass of molybdenum, ?0.2 percent by mass of nitrogen, ?5 percent by mass of aluminum, ?5 percent by mass of copper, ?5 percent by mass of tungsten, ?0.1 percent by mass of boron, ?3 percent by mass of cobalt, ?0.5 percent by mass of tantalum, ?2.0 percent by mass of at least one of the elements: niobium, titanium, vanadium, hafnium and zirconium, ?0.3 percent by mass of at least one of the elements: yttrium, scandium, lanthanum, cerium and neodymium, the remainder being iron and smelting-related steel companion elements.Type: GrantFiled: November 14, 2014Date of Patent: December 24, 2019Assignee: Bayerische Motoren Werke AktiengesellschaftInventors: Wolfgang Leistner, Thorsten Michler, Werner Theisen, Mauro Sebastian Martin, Sebastian Weber, Joerg Naumann
-
Patent number: 10280498Abstract: A nickel-base alloy is disclosed that has the following weight percent composition. C about 0.005 to about 0.06 Cr about 13 to about 17 Fe about 4 to about 20 Mo about 3 to about 9 W up to about 8 Co up to about 12 Al about 1 to about 3 Ti about 0.6 to about 3 Nb up to about 5.5 B about 0.001 to about 0.012 Mg about 0.0010 to about 0.0020 Zr about 0.01 to about 0.08 Si up to about 0.7 P up to about 0.05 and the balance is nickel, usual impurities, and minor amounts of other elements as residuals from alloying additions during melting. The alloy provides a combination of high strength, good creep resistance, and good resistance to crack growth. A method of heat treating a nickel base superalloy to improve the tensile ductility of the alloy is also disclosed. An article of manufacture made from the nickel base superalloy described herein is also disclosed.Type: GrantFiled: October 12, 2016Date of Patent: May 7, 2019Assignee: CRS HOLDINGS, INC.Inventors: Karl A. Heck, Samuel J. Kernion
-
Patent number: 10208367Abstract: A Ge-containing stainless steel is disclosed. The disclosed Ge-containing stainless steel is principally composed of Fe and Cr. Pitting corrosion is significantly reduced when a certain amount of Ge is added. When more Ge is added, the pitting corrosion is reduced to a minimum level.Type: GrantFiled: December 29, 2016Date of Patent: February 19, 2019Assignee: NATIONAL TSING HUA UNIVERSITYInventor: Swe-Kai Chen
-
Patent number: 10180293Abstract: A method for producing a heat radiating plate, the method containing the steps of: finish cold-rolling an annealed material to obtain a strip; causing the strip to wind in the shape of a coil to prepare a coil stock; unwinding the coil stock by means of an uncoiler to obtain a strip; causing the strip to pass through a gap between the rolls of a leveler to correct the shape thereof; progressively feeding the corrected strip to a progressive die via a feeder to progressively press-working the strip to produce a heat radiating plate.Type: GrantFiled: September 28, 2016Date of Patent: January 15, 2019Assignee: DOWA METALTECH CO., LTD.Inventors: Tomotsugu Aoyama, Akira Sugawara
-
Patent number: 10094010Abstract: A strain-hardenable stainless steel alloy includes hard secondary phases dispersed in an austenitic primary phase, the alloy including 0.3-0.6% nitrogen by weight.Type: GrantFiled: June 18, 2015Date of Patent: October 9, 2018Assignee: THE OHIO STATE UNIVERSITYInventors: Ryan Thomas Smith, Tapasvi Lolla, Sudarsanam Suresh Babu, David Wayne Gandy, John Albert Siefert, Gregory J. Frederick, Lou Lherbier, David Novotnak
-
Patent number: 9963757Abstract: A process includes: (a) providing a tantalum-coated metal alloy substrate; (b) heat annealing the tantalum-coated metal alloy substrate by heating to an annealing temperature for the tantalum-coated metal alloy substrate, holding at the annealing temperature for a period of time and then quenching to a temperature below 50 degrees Celsius; (c) heating the tantalum-coated metal substrate to the precipitation hardening temperature of the metal alloy substrate; and (d) cooling the tantalum-coated metal alloy substrate to a temperature below 50 degrees Celsius; wherein the process is further characterized by carrying out steps (b)-(d) under a tantalum-inert gas atmosphere and by quenching in step (b) and cooling in step (d) being carried out by flowing a tantalum-inert gas having a temperature of less than 50 degrees Celsius over the tantalum-coated metal alloy substrate.Type: GrantFiled: November 19, 2014Date of Patent: May 8, 2018Assignee: Dow Global Technologies LLCInventors: Valentina A. Woodcraft, Eugene L. Liening
-
Patent number: 9885099Abstract: To provide a ferritic stainless steel sheet which has high scale spalling even at a high temperature around 1000° C. Provided is a ferritic stainless steel sheet having excellent Mn-containing oxide film-forming ability and scale spalling ability, containing, in terms of mass %: C: 0.001 to 0.020%, N: 0.001 to 0.020%, Si: 0.10 to 0.40%, Mn: 0.20 to 1.00%, Cr: 16.0 to 20.0%, Nb: 0.30 to 0.80%, Mo: 1.80 to 2.40%, W: 0.05 to 1.40%, Cu: 1.00 to 2.50%, and B: 0.0003 to 0.0030%, in which the above-mentioned components are contained satisfying the formula (1) below, and the balance is composed of Fe and inevitable impurities. At least one of N, Al, V, Mg, Sn, Co, Zr, Hf, and Ta may be added in a predetermined content range.Type: GrantFiled: March 8, 2013Date of Patent: February 6, 2018Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATIONInventors: Norihiro Kanno, Junichi Hamada, Yoshiharu Inoue
-
Patent number: 9856541Abstract: Disclosed are a heat-resistant alloy used in a heat-resistant bolt and the like for fastening high temperature parts of an engine in a vehicle and the like, and a method of manufacturing a heat-resistant bolt using the heat-resistant alloy. Particularly, the austenitic heat-resistant alloy includes, based on a total weight of the heat-resistant alloy, carbon (C) in an amount of about 0.01 to about 0.08 wt %, silicon (Si) in an amount of about 0.01 to about 1.00 wt %, manganese (Mn) in an amount of about 0.01 to about 2.00 wt %, nickel (Ni) in an amount of about 17 to about 22 wt %, titanium (Ti) in an amount of about 2.7 to about 3.2 wt %, chromium (Cr) in an amount of about 11 to 16 wt %, molybdenum (Mo) in an amount of about 0.3 to about 1.0 wt %, vanadium (V) in an amount of about 0.1 to about 0.4 wt %, and a remainder of iron (Fe) and optionally an inevitable impurity.Type: GrantFiled: December 6, 2014Date of Patent: January 2, 2018Assignees: Hyundai Motor Company, Kia Motors CorporationInventors: Bo-Kyung Sa, Ho-Chul Shin, Jung-Suk Lee
-
Patent number: 9745649Abstract: The object of the present invention is to provide a heat-resistant steel for exhaust valves, having relatively small Ni content, high mechanical characteristics (for example, tensile strength, fatigue strength, wear resistance and hardness) at high temperature, and excellent oxidation resistance. The present invention provides a heat-resistant steel for exhaust valves, which includes: 0.45?C<0.60 mass %, 0.30<N<0.50 mass %, 19.0?Cr<23.0 mass %, 5.0?Ni<9.0 mass %, 8.5?Mn<10.0 mass %, 2.5?Mo<4.0 mass %, 0.01?Si<0.50 mass %, and 0.01?Nb<0.30 mass %, with the balance being Fe and unavoidable impurities, in which the steel satisfies 0.02?Nb/C<0.70 and satisfies 4.5?Mo/C<8.9.Type: GrantFiled: August 24, 2012Date of Patent: August 29, 2017Assignees: DAIDO STEEL CO., LTD., HONDA MOTOR CO., LTD.Inventors: Mototsugu Osaki, Shigeki Ueta, Takashi Tsuyumu
-
Patent number: 9677160Abstract: A purpose of the present invention is to provide a martensitic stainless steel tube exhibiting excellent performance even in severe corrosive environments in which a partial pressure of hydrogen sulfide exceeds 0.03 bar. Provided is a low C-high Cr alloy steel tube for OCTG (Oil Country Tubular Goods) having minimum yield strength of 862 MPa and excellent corrosion resistance, wherein the steel tube contains, in percent by mass, 0.005 to 0.05% C, 12 to 16% Cr, 1.0% or less Si, 2.0% or less Mn, 3.5 to 7.5% Ni, 1.5 to 3.5% Mo, 0.01 to 0.05% V, 0.02% or less N, and 0.01 to 0.06% Ta and satisfies the relationship in the following formula (1), and the rest comprises Fe and unavoidable impurities. 25-25 (% Ni)+5 (% Cr)+25 (% Mo)?0??(1).Type: GrantFiled: March 3, 2011Date of Patent: June 13, 2017Assignee: NKK TubesInventors: Shuji Hashizume, Yusuke Minami, Tomomi Taniguchi
-
Patent number: 9562274Abstract: An ultra-high strength stainless steel alloy with enhanced toughness includes in % by weight: 0 to 0.06% carbon (C); 12.0 to 18% chromium (Cr); 16.5 to 31.0% cobalt (Co); 0 to 8% molybdenum (Mo); 0.5 to 5.0% nickel (Ni); 0 to 0.5% titanium (Ti); 0 to 1.0% niobium (Nb); 0 to 0.5% vanadium (V); 0 to 16% tungsten (W); balance iron (Fe) and incidental deoxidizers and impurities. The heat treating method includes the steps of austenitizing at least once followed by quenching, tempering and sub-zero cooling to obtain no more than about 6-8% retained austenite in the finished alloy.Type: GrantFiled: September 7, 2011Date of Patent: February 7, 2017Assignee: Carnegie Mellon UniversityInventor: Warren M. Garrison, Jr.
-
Patent number: 9534268Abstract: A method of manufacturing a hot press-hardened component comprises the following production steps: a) providing a steel product produced at least in sections from a stainless steel comprising of the following composition (specified in % wt.) C: 0.010-1.200%, P: up to 0.1%, S: up to 0.1%, Si: 0.10-1.5%, Cr: 10.5-20.0% and optionally one or more elements from the group “Mn, Mo, Ni, Cu, N, Ti, Nb, B, V, Al, Ca, As, Sn, Sb, Pb, Bi, H” with the requirement Mn: 0.10-3.0%, Mo: 0.05-2.50%, Ni: 0.05-8.50%, Cu: 0.050-3.00%, N: 0.01-0.2%, Ti: up to 0.02%, Nb: up to 0.1%, B: up to 0.1%, V: up to 0.2%, Al: 0.001-1.50%, Ca: 0.0005-0.003%, As: 0.003-0.015%, Sn: 0.003-0.01%, Sb: 0.002-0.01%, Pb: up to 0.01%, Bi: up to 0.01%, H: up to 0.Type: GrantFiled: June 17, 2010Date of Patent: January 3, 2017Assignee: Outokumpu Nirosta GmbHInventor: Evelin Ratte
-
Patent number: 9458743Abstract: An iron-based alloy includes, in weight percent, carbon from about 2 to about 3 percent; manganese from about 0.1 to about 0.4 percent; silicon from about 0.3 to about 0.8 percent; chromium from about 11.5 to about 14.5 percent; nickel from about 0.05 to about 0.6 percent; vanadium from about 0.8 to about 2.2 percent; molybdenum from about 4 to about 7 percent; tungsten from about 3 to about 5 percent; niobium from about 1 to about 3 percent; cobalt from about 3 to about 5 percent; boron from zero to about 0.2 percent; and the balance containing iron and incidental impurities. The alloy is suitable for use in elevated temperature applications such as in valve seat inserts for combustion engines.Type: GrantFiled: July 31, 2013Date of Patent: October 4, 2016Assignee: L.E. JONES COMPANYInventors: Cong Yue Qiao, Peter Vennema, Douglas W. Dooley, David Doll
-
Patent number: 9395692Abstract: A hairspring material for a mechanical timepiece includes an alloy which contains 37.5 to 39.5% by mass of Ni, 9.2 to 9.9% by mass of Cr, 0.35 to 0.55% by mass of Ti, and 0.6 to 0.9% by mass of Be, based on the total amount of the alloy, and contains in the remainder Fe and unavoidable impurities, the alloy being an alloy containing, as the unavoidable impurities, C (carbon), Mn in an amount of more than 0% by mass but not more than 0.5% by mass and Al in an amount of more than 0% by mass but less than 0.03% by mass, the amount of the C (carbon) being limited to not more than 0.03% by mass. The hairspring material can provide a smaller variation in Young's modulus than that of conventional hairspring materials.Type: GrantFiled: August 29, 2013Date of Patent: July 19, 2016Assignees: CITIZEN HOLDINGS CO., LTD., CITIZEN WATCH CO., LTD., HITACHI METALS, LTD., HITACHI METALS NEOMATERIAL, LTD.Inventors: Yoshirou Hirai, Shinichi Matsumoto, Kenji Tsuchiya, Shinji Yamamoto
-
Patent number: 9334552Abstract: The invention relates to a steel for the production of submarine hulls having the chemical composition: 0.030%?C<0.080% 0.040%?Si?0.48% 0.1%?Mn?1.4% 2%?Ni?4% Cr?0.3% 0.30%?Mo+W/2+3(V+Nb/2+Ta/4)?0.89% Mo?0.15% V+Nb/2+Ta/4?0.004% Nb?0.004% Cu?0.45% Al?0.1% Ti?0.04% N?0.0300% the balance being iron and impurities resulting from the production operation, boron being an impurity whose content is less than 0.0005%, and P+S?0.015%, the chemical composition complying with the condition: 410?540×C0.25+245[Mo+W/2+3(V+Nb/2+Ta/4)]0.30?460.Type: GrantFiled: May 19, 2006Date of Patent: May 10, 2016Assignee: INDUSTEEL FRANCEInventors: Jean Beguinot, Cédric Chauvy
-
Patent number: 9303691Abstract: The invention relates to a rolling bearing arrangement for a rotational connection for a roller/ball combination raceway system, for the purpose of relative movement of a plurality of rotating elements, in particular two rolling bearing rings supported on one another. At least one rolling element raceway is hardened along its annular shape in the contact area between rolling element and rolling bearing ring. The invention is characterized in that provided at the beginning and the end of the at least one hardened rolling element raceway is at least one overlap region which extends along the rolling element raceway, the overlap region comprising a region of lower hardness than the surrounding hardened region, the lower hardness gap region, extending at an inclination through the overlap region.Type: GrantFiled: December 21, 2012Date of Patent: April 5, 2016Assignee: IMO Holding GmbHInventor: Hubertus Frank
-
Patent number: 9284632Abstract: Steel for nitrocarburizing includes, by mass %, C: 0% to less than 0.15%; Si: 0.01% to 1.00%; Mn: 0.01% to 1.00%; S: 0.0001% to 0.050%; Al: 0.0001% to 0.050%; Ti: more than 0.50% to 1.50%; N: 0.0005% to 0.0100%; and the balance consisting of Fe and inevitable impurities, in which P is limited to 0.050% or less; O is limited to 0.0060% or less; and the amount of Ti [Ti %], the amount of C [C %], the amount of N [N %], and the amount of S [S %] satisfy 0.48<[Ti %]?47.9×([C %]/12+[N %]/14+[S %]/32)?1.20.Type: GrantFiled: January 25, 2011Date of Patent: March 15, 2016Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventor: Manabu Kubota
-
Patent number: 9181597Abstract: The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M23C6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650° C.Type: GrantFiled: April 23, 2013Date of Patent: November 10, 2015Assignee: U.S. Department of EnergyInventors: Jeffrey A. Hawk, Paul D. Jablonski, Christopher J. Cowen
-
Publication number: 20150132144Abstract: It is an objective of the invention to provide a precipitation-hardening martensitic stainless steel having a far better balance between a high mechanical strength and a high toughness than conventional ones as well as having good corrosion resistance properties. There is provided a precipitation-hardening martensitic stainless steel throughout which precipitates of intermetallic compounds are dispersed, the martensitic stainless steel including: 0.1 mass % or less of C; 11 to 13 mass % of Cr; 7.5 to 11 mass % of Ni; 0.9 to 1.7 mass % of Al; 0.85 to 1.35 mass % of Mo; 1.75 to 2.75 mass % of W; and the balance including Fe and inevitable impurities, in which “[Mo content]+0.5×[W content]” is from 1.9 mass % to 2.5 mass %, and “[Mo content]/[W content]” is from 0.4 to 0.6.Type: ApplicationFiled: November 7, 2014Publication date: May 14, 2015Inventors: Shinji OIKAWA, Shinya IMANO, Hiroyuki DOI
-
Patent number: 9028745Abstract: Various embodiments of the invention provide a low nickel austenitic stainless steel alloy composition including about 0.6% to about 0.8% by weight carbon; about 16% to about 18% by weight chromium; about 4.5% to about 5.5% by weight nickel; about 2.0% to about 5.0% by weight manganese; about 0.8% to about 1.2% by weight tungsten; about 0.8% to about 1.2% by weight molybdenum; about 0.65% to about 0.85% by weight niobium; about 0.3% to about 1.0% by weight silicon; balance iron and unavoidable impurities, wherein percentages are based on the overall weight of the composition. The invention further provides articles, such as turbine housings, prepared using the inventive alloys.Type: GrantFiled: November 1, 2011Date of Patent: May 12, 2015Assignee: Honeywell International Inc.Inventors: Shouxing Zhu, Li Xu, Balasubramani Nandagopal
-
Publication number: 20150076386Abstract: An iron-based alloy includes (in weight percent) carbon from about 1 to about 2 percent; manganese up to about 1 percent; silicon up to about 1 percent; nickel up to about 4 percent; chromium from about 10 to about 25 percent; molybdenum from about 5 to about 20 percent; tungsten up to about 4 percent; cobalt from about 17 to about 23 percent; vanadium up to about 1.5 percent; boron up to about 0.2 percent; sulfur up to about 0.03 percent; nitrogen up to about 0.4 percent; phosphorus up to about 0.06 percent; niobium up to about 4 percent; iron from about 35 to about 55 percent; and incidental impurities. The chromium/molybdenum ratio of the iron-based alloy is from about 1 to about 2.5. The alloy is suitable for use in elevated temperature applications, such as valve seat inserts for combustion engines.Type: ApplicationFiled: September 19, 2013Publication date: March 19, 2015Applicant: L.E. Jones CompanyInventors: Cong Yue Qiao, David Doll, Todd Trudeau, Peter Vennema
-
Patent number: 8980018Abstract: Ferritic stainless steel sheet for an exhaust part which has little deterioration in strength even if undergoing long term heat history and is low in cost, excellent in heat resistance and workability characterized by containing, characterized by containing, by mass %, C: less than 0.010%, N: 0.020% or less, Si: over 0.1% to 2.0%, Mn: 2.0% or less, Cr: 12.0 to 25.0%, Cu: over 0.9 to 2%, Ti: 0.05 to 0.3%, Nb: 0.001 to 0.1%, Al: 1.0% or less, and B: 0.0003 to 0.003%, having a Cu/(Ti+Nb) of 5 or more, and having a balance of Fe and unavoidable impurities.Type: GrantFiled: March 25, 2011Date of Patent: March 17, 2015Assignee: Nippon Steel & Sumikin Stainless Steel CorporationInventors: Junichi Hamada, Shinichi Teraoka, Yoshiharu Inoue, Norihiro Kanno
-
Patent number: 8900510Abstract: A heat-resistant, ferritic cast steel having excellent room-temperature toughness, which has a composition comprising by mass 0.32-0.48% of C, 0.85% or less of Si, 2% or less of Mn, 1.5% or less of Ni, 16-19.8% of Cr, 3.2-5% of Nb, Nb/C being 9-11.5, 0.15% or less of N, 0.002-0.2% of S, and 0.8% or less in total of W and/or Mo, the balance being Fe and inevitable impurities, and a structure in which a eutectic (?+NbC) phase formed from a ? phase and Nb carbide (NbC) has an area ratio of 60-90%, and an exhaust member made thereof.Type: GrantFiled: March 31, 2011Date of Patent: December 2, 2014Assignee: Hitachi Metals, Ltd.Inventor: Masahide Kawabata
-
Patent number: 8900379Abstract: Provided are a stainless steel for a proton-exchange membrane fuel cell separator having high durability and a low contact resistance (i.e., high electrical conductivity) and a proton-exchange membrane fuel cell using the same. More specifically, a stainless steel for a proton-exchange membrane fuel cell separator has a composition comprising 0.03% mass % or less of C, 16-45 mass % of Cr, 0.03 mass % or less of N, 0.1-5.0 mass % of Mo, wherein a total of the C content and the N content satisfies 0.03 mass % or less; a balance portion is comprised of Fe and unavoidable impurities; an atomic ratio of Cr/Fe with respect to Al, Cr, and Fe contained in a passive film on a surface of the stainless steel is 1 or greater.Type: GrantFiled: June 9, 2004Date of Patent: December 2, 2014Assignee: JFE Steel CorporationInventors: Shin Ishikawa, Kunio Fukuda, Yasushi Kato, Osamu Furukimi, Kenji Takao
-
Patent number: 8808471Abstract: A martensitic stainless steel alloy is strengthened by copper-nucleated nitride precipitates. The alloy includes, in combination by weight percent, about 10.0 to about 12.5 Cr, about 2.0 to about 7.5 Ni, up to about 17.0 Co, about 0.6 to about 1.5 Mo, about 0.5 to about 2.3 Cu, up to about 0.6 Mn, up to about 0.4 Si, about 0.05 to about 0.15 V, up to about 0.10 N, up to about 0.035 C, up to about 0.01 W, and the balance Fe and incidental elements and impurities. The nitride precipitates may be enriched by one or more transition metals.Type: GrantFiled: April 13, 2009Date of Patent: August 19, 2014Assignee: QuesTek Innovations LLCInventors: James A. Wright, Gregory B. Olson, Weijia Tang
-
Publication number: 20140209220Abstract: It is an object of the present invention to provide a metal diaphragm capable of achieving a higher strength, excellent corrosion resistance, and a smooth surface condition, and a pressure sensor including the diaphragm. The diaphragm according to the present invention includes a two-phase stainless steel having a composition of 24 to 26 mass % Cr, 2.5 to 3.5 mass % Mo, 5.5 to 7.5 mass % Ni, 0.03 mass % or less C, 0.08 to 0.3 mass % N, and the balance Fe and inevitable impurities, and having a 0.2% proof stress of 1300 MPa or higher.Type: ApplicationFiled: January 23, 2014Publication date: July 31, 2014Applicant: Seiko Instruments Inc.Inventors: Takuma OTOMO, Keita NAITO, Ryo SUGAWARA, Tomoo KOBAYASHI
-
Patent number: 8747733Abstract: A precipitation hardenable martensitic stainless steel excellent in the stability of martensite, having the high strength, high toughness and high corrosion resistance is provided. The precipitation hardenable martensitic stainless steel contains at a mass rate, C: 0.05-0.10%, Cr: 12.0-13.0%, Ni: 6.0-7.0%, Mo: 1.0-2.0%, Si: 0.01-0.05%, Mn: 0.06-1.0%, Nb: 0.3-0.5%, V: 0.3-0.5%, Ti: 1.5-2.5%, Al: 1.0-2.3%, and the remainder consisting of Fe and an unavoidable impurity.Type: GrantFiled: April 14, 2011Date of Patent: June 10, 2014Assignee: Hitachi, Ltd.Inventors: Shinji Oikawa, Hideo Yoda, Masahiko Arai, Hiroyuki Doi
-
Patent number: 8721808Abstract: The ferrite system heat-resistant cast steel and the exhaust system component are provided, which are inexpensive and are able to improve the reliability by largely improving the toughness under normal temperature and thermal fatigue performance. The ferrite system heat-resistant cast steel includes composition structure comprised, percent by mass, of 0.1% to 0.4% carbon, 0.5% to 2.0% silicon, 0.2% to 1.2% manganese, 0.3% or less phosphorus, 0.01% to 0.4% sulfur, 14.0% to 21.0% chrome, 0.05% to 0.6% niobium, 0.01% to 0.8% aluminum, 0.15% to 2.3% nickel, residual iron and inevitable impurities.Type: GrantFiled: February 8, 2010Date of Patent: May 13, 2014Assignee: Aisin Takaoka Co., Ltd.Inventors: Daisuke Yamanaka, Zhong-zhi Zhang
-
Patent number: 8663403Abstract: A precipitation-hardened stainless steel alloy comprises, by weight: about 14.0 to about 16.0 percent chromium; about 6.0 to about 8.0 percent nickel; about 1.25 to about 1.75 percent copper; greater than about 1.5 to about 2.0 percent molybdenum; about 0.001 to about 0.025 percent carbon; niobium in an amount greater than about twenty times that of carbon; and the balance iron and incidental impurities. The alloy has an aged microstructure and an ultimate tensile strength of at least about 1100 MPa and a Charpy V-notch toughness of at least about 69 J. In one embodiment, the aged microstructure includes martensite and not more than about 10% reverted austenite. In another embodiment, the alloy includes substantially all martensite and substantially no reverted austenite. The alloy is useful for making turbine airfoils.Type: GrantFiled: June 8, 2011Date of Patent: March 4, 2014Assignee: General Electric CompanyInventors: Jianqiang Chen, Thomas Michael Moors, Jon Conrad Schaeffer
-
Patent number: 8657971Abstract: A brake disk excellent in temper softening resistance and toughness comprising, by mass, 0.1% or less of C, 1.0% or less of Si, 2.0% or less of Mn, 10.5% to 15.0% of Cr, and 0.1% or less of N, the remainder being Fe and unavoidable impurities, such that the following inequalities are satisfied: 5Cr+10Si+15Mo+30Nb?9Ni?5Mn?3Cu?225N?270C<45 (1) and 0.03?{C+N?(13/92)Nb}?0.09 (2) wherein Cr, Si, Mo, Nb, Ni, Mn, Cu, N, and C each represent the content of the corresponding elements on a mass percent basis, and having a martensitic structure having prior-austenite grains with an average diameter of 8 to less than 15 ?m.Type: GrantFiled: October 5, 2006Date of Patent: February 25, 2014Assignee: JFE Steel CorporationInventors: Junichiro Hirasawa, Takumi Ujiro, Osamu Furukimi
-
Publication number: 20140007981Abstract: A precipitation hardening type martensitic stainless steel of an embodiment contains: Cr: 8.5 to 12.5%; Mo: 1 to 2%; Ni: 8.5 to 11.5%; Ti: 0.6 to 1.4%; C: 0.0005 to 0.05%; Al: 0.0005 to 0.25%; Cu: 0.005 to 0.75%; Nb: 0.0005 to 0.3%; Si: 0.005 to 0.75%; Mn: 0.005 to 1%; and N: 0.0001 to 0.03% by mass, and the balance of Fe and unavoidable impurities.Type: ApplicationFiled: June 28, 2013Publication date: January 9, 2014Inventors: Reki TAKAKU, Haruki OHNISHI, Masayuki YAMADA, Yoriharu MURATA, Kenichi IMAI
-
Publication number: 20130327447Abstract: A high strength corrosion resistant tubing comprises about 35 to about 55% Ni, about 12 to about 25% Cr, about 0.5 to about 5% Mo, up to about 3% Cu, about 2.1 to about 4.5% Nb, about 0.5 to about 3% Ti, about 0.05 to about 1.0% Al, about 0.005 to about 0.04% C, balance Fe plus incidental impurities and deoxidizers. The composition also satisfies the equation: (Nb?7.75 C)/(Al+Ti)=about 0.5 to about 9. A process for manufacturing the tubing includes: extruding the alloy to form a tubing; cold working the extruded tubing; annealing the cold worked tubing; and applying at least one age hardening step to the annealed tubing. Another process includes extruding the alloy at a temperature of about 2050° F. or less; annealing the extruded tubing; and applying at least one age hardening step to the annealed tubing.Type: ApplicationFiled: June 11, 2012Publication date: December 12, 2013Applicant: HUNTINGTON ALLOYS CORPORATIONInventor: Sarwan K. Mannan
-
Publication number: 20130312880Abstract: Provided is a duplex stainless steel having a high strength and a high toughness. A stainless steel according to the present invention includes: a chemical composition containing, in mass percent, C: at most 0.030%, Si: 0.20 to 1.00%, Mn: at most 8.00%, P: at most 0.040%, S: at most 0.0100%, Cu: more than 2.00% and at most 4.00%, Ni: 4.00 to 8.00%, Cr: 20.0 to 30.0%, Mo: at least 0.50% and less than 2.00%, N: 0.100 to 0.350%, and sol. Al: at most 0.040%, the balance being Fe and impurities; and a structure, wherein a rate of ferrite in the structure is 30 to 70%, and a hardness of the ferrite in the structure is at least 300 Hv10gf.Type: ApplicationFiled: February 10, 2012Publication date: November 28, 2013Applicant: NIPPON STEEL & SUMITOMO METAL CORORATIONInventors: Daisuke Motoya, Masahiko Hamada, Hisashi Amaya, Hiroyuki Nagayama, Kenta Yamada
-
Publication number: 20130220491Abstract: A stainless steel strip article is disclosed. The article is formed from a corrosion resistant alloy having the following composition in weight percent, about: C ?0.03 max. Mn ?1.0 max. Si ?0.75 max. P 0.040 max. S 0.020 max. Cr 10.9-11.1 Ni 10.9-11.1 Mo 0.9-1.1 Ti 1.5-1.6 Al ?0.25 max. Nb 0.7-0.8 Cu ???1 max. B 0.010 max. N 0.030 max. The balance is iron and usual impurities. The elongated thin strip article provides a room temperature tensile strength of at least about 280 ksi in the solution treated and age hardened condition. A method of making the strip article and a method of using it to make a golf club are also disclosed.Type: ApplicationFiled: November 15, 2012Publication date: August 29, 2013Applicant: CRS HOLDINGS, INC.Inventor: CRS Holdings, Inc.
-
Publication number: 20130186106Abstract: The problem to be solved of the present invention is to provide a precipitation hardening martensitic stainless steel having excellent tissue stability, strength, toughness, and corrosion-resistance, requiring no sub-zero treatment, and having excellent productivity; and also a steam turbine long blade using the same. The problem is solved by providing a precipitation hardening martensitic stainless steel containing, by mass, 0.1% or less of C; 0.1% or less of N; 9.0% or more and 14.0% or less of Cr; 9.0% or more and 14.0% or less of Ni; 0.5% or more and 2.5% or less of Mo; 0.5% or less of Si; 1.0% or less of Mn; 0.25% or more and 1.75% or less of Ti; 0.25% or more and 1.75% or less of Al, and the rest is Fe and inevitable impurities; and a steam turbine long blade using the precipitation hardening martensitic stainless steel.Type: ApplicationFiled: January 15, 2013Publication date: July 25, 2013Applicant: HITACHI, LTD.Inventor: Hitachi, Ltd.
-
Patent number: RE44709Abstract: The soft Cr-containing steel includes, on a % by mass basis, C: from about 0.001% to about 0.020%, Si: more than about 0.10% and less than about 0.50%, Mn: less than about 2.00%, P: less than about 0.060%, S: less than about 0.008%, Cr: from about 12.0% to about 16.0%, Ni: from about 0.05% to about 1.00%, N: less than about 0.020%, Nb: from about 10×(C+N) to about 1.00%, Mo: more than about 0.80% and less than about 3.00%, wherein the contents of alloying elements, represented by Si and Mo, respectively, on a % by mass, satisfy the formula Si?1.2-0.4 Mo, so as to prevent precipitation of the Laves phase and to stably secure an effect of increasing high-temperature strength due to solid solution Mo.Type: GrantFiled: May 13, 2009Date of Patent: January 21, 2014Assignee: JFE Steel CorporationInventors: Atsushi Miyazaki, Junichiro Hirasawa, Mineo Muraki, Yoshihiro Yazawa, Osamu Furukimi