Ferrous (i.e., Iron Base) Patents (Class 148/320)
  • Patent number: 11946121
    Abstract: Provided are a steel sheet for battery outer tube cans, which is used for an aftergilding method and is suppressed in the occurrence of scratches, and which enables the achievement of a battery outer tube can that has excellent corrosion resistance and buckling resistance; and a battery outer tube can and a battery, each of which uses this steel sheet for battery outer tube cans. This steel sheet for battery outer tube cans has an Fe—Ni diffusion layer on both surface layers of a steel sheet; the Nb content in the steel sheet is from 0.010% by mass to 0.050% by mass (inclusive); and the adhesion amount of the Fe—Ni diffusion layer per one surface of the steel sheet is from 50 mg/m2 to 500 mg/m2 (inclusive) in terms of Ni.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: April 2, 2024
    Assignee: JFE Steel Corporation
    Inventors: Mikito Suto, Yoichiro Yamanaka, Kiyoshi Tachibana
  • Patent number: 11946856
    Abstract: To estimate a fracture starting point of steel due to hydrogen embrittlement with high accuracy. A steel fracture starting point estimation device includes a hydrogen concentration distribution calculation unit adapted to calculate a hydrogen concentration distribution in steel-to-be-estimated when the steel fractures due to hydrogen embrittlement; a local critical hydrogen content calculation unit adapted to calculate critical hydrogen content at which the steel-to-be-estimated fractures due to hydrogen embrittlement; and a fracture starting point estimation unit adapted to read the hydrogen concentration distribution out of a storage unit. To estimate, calculate, from the hydrogen concentration distribution, a location in the steel in which hydrogen concentration of the critical hydrogen content is distributed, and designate the location in the steel as the fracture starting point of the steel-to-be-estimated.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: April 2, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takuya Kamisho, Masamitsu Watanabe, Yosuke Takeuchi
  • Patent number: 11939639
    Abstract: A preferable aspect of the present invention provides: an ultra-high-strength hot-rolled steel sheet containing, by weight, one or two of 0.40-0.60% of C, 0.7-1.5% of Mn, 0.3% or less (excluding 0%) of Si, 0.03% or less (including 0%) of P, 0.004% or less (including 0%) of S, 0.04% or less (excluding 0%) of Al, 0.3% or less (excluding 0%) of Cr, 0.3% or less (excluding 0%) of Mo, 0.9-1.5% of Ni, and 0.9-1.5% of Cu, 1.1% or more of Cu+Ni, 0.04% or less (excluding 0%) of Ti, 0.005% or less (excluding 0%) of B, 0.006% or less (excluding 0%) of N, and the balance Fe and other impurities, the alloy elements satisfying relational formulas 1 and 2 below, wherein a microstructure of the hot-rolled steel sheet comprises, by volume, 7% or more of ferrite and 93% or less of perlite; a steel pipe and a member each using the same; and manufacturing methods therefor.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: March 26, 2024
    Assignee: POSCO CO., LTD
    Inventors: Hwan-Goo Seong, Yeol-Rae Cho, Seong-Beom Bae
  • Patent number: 11753691
    Abstract: A grain oriented electrical steel sheet includes the texture aligned with Goss orientation. In the grain oriented electrical steel sheet, when (?1 ?1 ?1) and (?2 ?2 ?2) represent deviation angles of crystal orientations measured at two measurement points which are adjacent on the sheet surface and which have an interval of 1 mm, the boundary condition BA is defined as |?2??1|?0.5°, and the boundary condition BB is defined as [(?2??1)2+(?2??1)2+(?2??1)2]1/2?2.0°, the boundary which satisfies the boundary condition BA and which does not satisfy the boundary condition BB is included.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: September 12, 2023
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Shuichi Nakamura, Yusuke Kawamura
  • Patent number: 11732339
    Abstract: The present disclosure relates to a hot-rolled steel sheet utilized as material for heavy machinery, vehicle frames, and the like, and more specifically to a high-strength hot-rolled steel sheet having excellent bendability and low-temperature toughness and a method for manufacturing same.
    Type: Grant
    Filed: November 22, 2018
    Date of Patent: August 22, 2023
    Assignee: POSCO CO., LTD
    Inventors: Sung-Il Kim, Hee-Sung Kang, Hyun-Seok Tak
  • Patent number: 11708623
    Abstract: The present invention relates to material utilized for heavy construction machinery, vehicle frames, reinforcing members, and the like, and more specifically to a high-strength steel sheet having excellent impact resistance and a method for manufacturing same.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: July 25, 2023
    Assignee: POSCO CO., LTD
    Inventors: Sung-Il Kim, Seok-Jong Seo
  • Patent number: 11578375
    Abstract: A high-strength hot-rolled steel sheet that has excellent punching workability and hole expandability, and a method for manufacturing the same. The hot-rolled steel sheet has a tensile strength of 980 MPa or more. The hot-rolled steel sheet has a chemical composition containing C, Si, Mn, P, S, Al, N, Ti, Cr, and B, and has a microstructure including a bainite phase having an area ratio of 85% or more as a main phase, and a martensite phase or martensite-austenite constituent having an area ratio of 15% or less as a second phase, the balance being a ferrite phase. The second phase has an average grain diameter of 3.0 ?m or less, prior-austenite grains have an average aspect ratio of 1.3 or more and 5.0 or less, and recrystallized prior-austenite grains have an area ratio of 15% or less relative to non-recrystallized prior-austenite grains.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: February 14, 2023
    Assignee: JFE STEEL CORPORATION
    Inventors: Kazuhiko Yamazaki, Shunsuke Toyoda, Noriaki Moriyasu, Kentaro Irisa
  • Patent number: 11572610
    Abstract: A steel sheet includes a predetermined chemical composition and a metal structure represented by, in area fraction, ferrite: 50% to 95%, granular bainite: 5% to 48%, martensite: 2% to 30%, and upper bainite, lower bainite, tempered martensite, retained austenite, and pearlite: 5% or less in total.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: February 7, 2023
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Katsuya Nakano, Kunio Hayashi, Yuri Toda, Eisaku Sakurada, Akihiro Uenishi
  • Patent number: 11560606
    Abstract: Methods of producing high strength continuously cast hot rolled steel sheet products are disclosed. The methods include continuously casting a steel slab and then hot rolling with finish rolling on a hot strip mill, quenching on the hot strip mill to form a predominantly matrensitic microstructure, and performing a thermal cycling step including soaking at an intercritical temperature followed by holding at a lower temperature. The resultant hot rolled steel sheet products have a microstructure comprising ferrite and retained austenite. Steels processed in accordance with the present invention exhibit favorable combined ultimate tensile strength and total elongation (UTS·TE) properties, and may fall into the category of Generation 3 advanced high strength steels, desirable in various industries including automobile manufacturers.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: January 24, 2023
    Assignee: United States Steel Corporation
    Inventors: David Paul Hoydick, Eduardo Augusto Silva, Matthew Michael McCosby
  • Patent number: 11508501
    Abstract: Provided is an oriented electrical steel sheet including: a forsterite film formed on one side or both sides of an oriented electrical steel sheet substrate; and a ceramic layer formed on an entire or partial region of the forsterite film. Provided is a manufacturing method for an oriented electrical steel sheet including: preparing an oriented electrical steel sheet having a forsterite film formed on one surface or both surfaces thereof; and forming a ceramic layer by spraying ceramic powder on the forsterite film.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: November 22, 2022
    Assignee: POSCO
    Inventors: Min Serk Kwon, Heon Jo Choi, Taeyoung No, Byung Deug Hong
  • Patent number: 11491581
    Abstract: A tailor-welded blank is made of two steels, one steel of Alloy A and one steel of Alloy B. Alloy A comprises 0.10-0.50 wt % C, 0.1-0.5 wt % Si, 2.0-8.0 wt % Mn, 0.0-6.0 wt % Cr, 0.0-2.0 wt % Mo, 0.0-0.15 wt % Ti, and 0.0-0.005 wt % B and wherein Alloy B comprises 0.06-0.12 wt % C, 0.1-0.25 wt % Si, 1.65-2.42 wt % Mn, 0.0-0.70 wt % Cr, 0.08-0.40 wt % Mo, 0.0-0.05 wt % V, and 0.01-0.05 wt % Ti.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: November 8, 2022
    Assignee: Cleveland-Cliffs Steel Properties Inc.
    Inventors: Erik James Pavlina, Stephen Bryant Tate
  • Patent number: 11473159
    Abstract: Provided is a hot rolled steel sheet comprising a predetermined composition wherein the hot rolled steel sheet comprises first ferrite with an average orientation difference in the same grain of 0.5 to 5.0° in 30 to 70 vol %, at least one type of structures among bainite and second ferrite with an average orientation difference of 0 to less than 0.5° and the first ferrite in a total of 95 vol % or more, a balance microstructure of 5 vol % or less, has an average grain size of the first ferrite of 0.5 to 5.0 ?m, and has an average grain size of the other structures of 1.0 to 10 ?m. Provided is a method for producing a hot rolled steel sheet comprising rolling where two or more consecutive passes of rolling including a final pass are performed under conditions of a rolling temperature: A point or more and less than Ae3 point etc., and where a total strain amount of all passes satisfying the conditions is 1.4 to 4.0, cooling by a 20 to 50° C./sec average cooling rate, and coiling the steel sheet at 300° C.
    Type: Grant
    Filed: November 22, 2018
    Date of Patent: October 18, 2022
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Tetsuya Hirashima, Takeshi Toyoda
  • Patent number: 11453922
    Abstract: Provided is an ultra-high-strength steel sheet having an excellent hole expandability and yield ratio, including, in terms of wt %: 0.05-0.2% of carbon (C); 2.0% or less of silicon (Si); 4.1-9.0% of manganese (Mn); 0.05% or less (excluding 0%) of phosphorus (P); 0.02% or less (excluding 0%) of sulfur (S); 0.5% or less (excluding 0%) of aluminum (Al); 0.02% or less (excluding 0%) of nitrogen (N); and a balance of iron (Fe) and other inevitable impurities, wherein the following Equation 1 is satisfied, and wherein microstructures includes, in volume percentage, 10-30% or retained austenite, 50% or more of annealed martensite, and 20% or less of other phases including alpha martensite and epsilon martensite, Equation 1: C/12+Ti/48+Nb/93+V/51+Mo/96?0.015.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: September 27, 2022
    Assignee: POSCO
    Inventors: Joo-Hyun Ryu, Kyoo-Young Lee, Sea-Woong Lee, Won-Hwi Lee
  • Patent number: 11447848
    Abstract: A steel sheet wherein a steel structure of an inside of the steel sheet contains, by volume fraction, soft ferrite: 0% to 30%, retained austenite: 3% to 40%, fresh martensite: 0% to 30%, a sum of pearlite and cementite: 0% to 10%, and a remainder including hard ferrite. In the steel sheet, in a ? to ? thickness range, a proportion of retained austenite having an aspect ratio of 2.0 or more is 50% or more, and a soft layer having a thickness of 1 to 100 ?m from a surface in a sheet thickness direction is present. When an emission intensity at a wavelength indicating Si is analyzed in the sheet thickness direction from the surface by a radio-frequency glow discharge analysis method, a peak of the emission intensity appears in a range of more than 0.2 ?m and 5.0 ?m or less from the surface.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: September 20, 2022
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Takafumi Yokoyama, Kohichi Sano, Riki Okamoto, Hiroyuki Kawata, Eisaku Sakurada, Yuji Yamaguchi, Kazuki Shiokawa, Yuichi Nakahira, Kohei Ueda, Masahiro Nakata, Satoshi Uchida
  • Patent number: 11421295
    Abstract: Provided is an ultra high-strength hot-rolled steel sheet, having tensile strength of 800 MPa, and a method for manufacture same, the method enabling excellent surface quality, workability, weldability as well as significantly reduced deviation of the mechanical property in the width and length directions of the steel sheet by means of an endless rolling mode in a continuous casting-direct rolling process.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: August 23, 2022
    Assignee: POSCO
    Inventors: Jong-Pan Kong, Jea-Sook Chung
  • Patent number: 11414722
    Abstract: A process for manufacturing a cold-rolled steel sheet with a strength of at least 1200 MPa and an elongation at break greater than 10%. A steel is provided having a microstructure comprising 65 to 90% bainite. A semifinished product is cast from the steel and heated to a temperature greater than 1150° C. The semifinished product is hot rolled to obtain a hot-rolled sheet; the coiled and pickled. Cold-rolling occurs with a reduction ratio of between 30 and 80% so as to obtain a cold-rolled sheet; and then reheating occurs at a rate Vc between 5 and 15° C./s up to a temperature T1 between Ac3 and Ac3+20° C. and held at said temperature T1 for a time t1 between 50 and 150 s. The sheet is cooled at a rate VR1 greater than 40° C./s but below 100° C./s down to a temperature T2 between (Ms?30° C. and Ms+30° C.). The sheet is maintained at temperature T2 for a time t2 between 150 and 350 s, and then cooled at a rate VR2 of less than 30° C./s down to an ambient temperature.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: August 16, 2022
    Assignee: ArcelorMittal
    Inventors: Javier Gil Otin, Antoine Moulin
  • Patent number: 11414762
    Abstract: A substrate for a flexible device which includes a stainless steel sheet, a nickel plating layer formed on a surface of the stainless steel sheet, and a glass layer of electrical insulating bismuth-based glass formed in the form of layer on a surface of the nickel plating layer.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: August 16, 2022
    Assignee: TOYO SEIKAN GROUP HOLDINGS. LTD.
    Inventors: Kouji Nanbu, Toshihiko Miyazaki, Hirohisa Masuda, Hiroshi Shimomura
  • Patent number: 11408048
    Abstract: A high strength, hot rolled abrasive wear resistant steel strip with low carbon equivalent values, with a Brinell hardness in the range of 400-465 HBW and a tensile strength in the range of 1180-1500 MPa for strip thicknesses in the range of 3-20 mm, as well as a process for producing such a high strength, hot rolled abrasive wear resistant steel strip.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: August 9, 2022
    Assignee: TATA STEEL UK LIMITED
    Inventor: Bin Xiao
  • Patent number: 11401571
    Abstract: A hot-rolled steel sheet includes a specific chemical composition, and includes a microstructure represented by, in vol %: retained austenite: 2% to 30%; ferrite: 20% to 85%; bainite: 10% to 60%; pearlite: 5% or less; and martensite: 10% or less. A proportion of grains having an intragranular misorientation of 5° to 14° in all grains is 5% to 50% by area ratio, the grain being defined as an area which is surrounded by a boundary having a misorientation of 15° or more and has a circle-equivalent diameter of 0.3 ?m or more.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: August 2, 2022
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Tatsuo Yokoi, Mitsuru Yoshida, Natsuko Sugiura, Hiroshi Shuto, Masayuki Wakita
  • Patent number: 11365465
    Abstract: A steel sheet includes a predetermined chemical composition, and includes a steel microstructure represented by, in an area ratio, ferrite: 5% to 80%, a hard microstructure constituted of bainite, martensite or retained austenite or an arbitrary combination of the above: 20% to 95%, and a standard deviation of a line fraction of the hard microstructure on a line in a plane perpendicular to a thickness direction: 0.050 or less in a depth range where a depth from a surface when a thickness of a steel sheet is set as t is from 3t/8 to t/2.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: June 21, 2022
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Shohei Yabu, Akihiro Uenishi, Koutarou Hayashi
  • Patent number: 11352683
    Abstract: A lower carbon steel alloy with specific substitutional alloying additions. The alloy is useful in the production of ASTM A516 grade pressure vessel steel plates with excellent HIC resistance. The material has a ferrite-pearlite microstructure, in normalized and stress relieved condition, appropriate for resisting hydrogen induced cracking, with isolated ferrite and pearlite constituents and no continuous pearlite bands. The material exhibits significant low temperature toughness.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: June 7, 2022
    Assignee: AcelorMittal
    Inventor: Amar Kumar De
  • Patent number: 11313009
    Abstract: A hot-rolled steel sheet according to an aspect of the present invention has a predetermined chemical composition, in which, in a location at a depth of ¼ of a sheet thickness from a surface, an area ratio of ferrite is 10% to 55%, a total area ratio of bainite and martensite is 45% to 90%, a total area ratio of the ferrite, the bainite, and the martensite is 90% or more, an average crystal grain size is 12.0 ?m or less, in a texture measured in a sheet thickness central portion, a maximum pole density of orientation groups of {100} <011>, {211} <011>, {311} <011>, {110} <011>, and {332} <113> is 8.0 or less, a total of pole densities of {211} <011> and {332} <113> is 10.0 or less, and a tensile strength is 950 MPa or more.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: April 26, 2022
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Mitsuru Yoshida, Nobusato Kojima, Yuuki Kanzawa, Kohhei Kamiya
  • Patent number: 11293073
    Abstract: Present invention discloses a high strength hot rolled steel product with tensile strength at least 1100 MPa and elongation not less than 21%. The steel further has uniform elongation not less than 10% and yield and tensile ratio 0.6-0.7. The steel further has tensile toughness in the range 19-23.5 GPa %. The developed steel is primarily aimed for automotive structural applications and also for many other such as defence where good combination of strength and ductility required is very high. The developed steel product has following composition C: 0.15-0.23, Mn: 0.8-2.1, Si: 0.3-1.1, Cr: 0.8-1.3, Mo: 0.08-0.25, Nb: 0.018-0.035, Ti—0.01-0.1 S—0.008 max, P—0.025 max, Al—0.05 to 0.3, N—0.005 max. The liquid metal was continuous cast into slab casting. The cast slab was soaked above 1150° C. for few hours and subsequently the cast structure was broken by deformation prior to hot rolling.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: April 5, 2022
    Assignee: TATA STEEL LIMITED
    Inventors: Rajib Saha, Saurabh Kundu, A. N. Bhagat
  • Patent number: 11268175
    Abstract: An aspect of the present invention relates to a high-strength steel, having excellent fracture initiation resistance and fracture propagation arrestability at low temperature.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: March 8, 2022
    Assignee: POSCO
    Inventors: Kyung-Keun Um, Woo-Gyeom Kim, Woo-Yeol Cha, Jin-Woo Chae
  • Patent number: 11268176
    Abstract: The invention discloses a high-strength steel plate, comprising the following chemical elements in mass percentages: C: 0.070-0.115%, Si: 0.20-0.50%, Mn: 1.80-2.30%, Cr: 0-0.35%, Mo: 0.10-0.40%, Nb: 0.03-0.06%, V: 0.03-0.06%, Ti: 0.002-0.04%, Al: 0.01-0.08%, B. 0.0006-0.0020%, N?0.0060%, O?0.0040% Ca: 0-0.0045%, and the balance of Fe and unavoidable impurities. The invention further discloses a process of manufacturing said high-strength steel plate.
    Type: Grant
    Filed: December 24, 2013
    Date of Patent: March 8, 2022
    Assignee: Baoshan Iron & Steel Co., Ltd.
    Inventors: Sixin Zhao, Liandeng Yao
  • Patent number: 11225697
    Abstract: A hot rolled light-gauge martensitic steel sheet made by the steps comprising: (a) preparing a molten steel melt comprising: (i) by weight, between 0.20% and 0.35% carbon, less than 1.0% chromium, between 0.7% and 2.0% manganese, between 0.10% and 0.50% silicon, between 0.1% and 1.0% copper, less than 0.05% niobium, less than 0.5% molybdenum, and silicon killed containing less than 0.01% aluminum, and (ii) the remainder iron and impurities resulting from melting; (b) solidifying at a heat flux greater than 10.0 MW/m2 and cooling the molten melt into a steel sheet less than 2.0 mm in thickness in a non-oxidizing atmosphere to below 1080° C. and above Ar3 temperature at a cooling rate greater than 15° C./s; and (c) hot rolling the steel sheet to between 15% and 50% reduction and rapidly cooling.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: January 18, 2022
    Assignee: NUCOR CORPORATION
    Inventors: James W. Watson, Paul Kelly, David C. Van Aken, Christopher Ronald Killmore
  • Patent number: 11203795
    Abstract: Provided is an ultra-high strength steel plate for automobiles and, more specifically, to an ultra-high strength steel plate having high formability and hole expandability, and a method for manufacturing the ultra-high strength steel plate. The ultra-high strength steel plate includes: by wt %, carbon (C): 0.04% to 0.17%, silicon (Si): 2% or less, manganese (Mn): 4% to 10%, phosphorous (P): 0.05% or less (excluding 0%), sulfur (S): 0.02% or less (excluding 0%), aluminum (Al): 0.5% or less (excluding 0%), nitrogen (N): 0.02% or less (excluding 0%), and a balance of iron (Fe) and inevitable impurities. Carbon (C) and manganese (Mn) satisfy Formula C+(Mn/25)?0.46. The ultra high strength steel plate has a microstructure comprising retained austenite in a volume fraction of 20% or greater and annealed martensite in a volume fraction of 50% or greater.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: December 21, 2021
    Assignee: POSCO
    Inventors: Kyoo-Young Lee, Joo-Hyun Ryu, Sea-Woong Lee, Won-Hwi Lee, Byun-Mok Hwang
  • Patent number: 11198928
    Abstract: A method for producing a dual phase steel sheet is provided. The method includes providing a dual phase hot rolled steel sheet having a microstructure including ferrite and martensite and a composition including 0.1 to 0.3 wt. % C, 1.5 to 2.5 wt. % Si and 1.75 to 2.5 wt. % Mn. The steel sheet is annealed at a temperature from 750 to 875° C., water quenched to a temperature from 400 to 420° C. and subject to overaging at the temperature from 400 to 420° C. to convert the martensite in the hot rolled steel sheet to tempered martensite. The overaging is sufficient to provide the hot rolled steel sheet with a hole expansion ratio of at least 15%.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: December 14, 2021
    Assignee: ArcelorMittal
    Inventors: Hyun Jo Jun, Narayan S. Pottore, Nina Michailovna Fonstein
  • Patent number: 11186902
    Abstract: A wire material for a canted coil spring includes a core wire composed of a steel having a pearlite structure, a copper plating layer covering the outer peripheral surface of the core wire, the copper plating layer being composed of copper or a copper alloy, and a hard layer disposed adjacent to the outer periphery of the copper plating layer, the hard layer having a higher hardness than the copper plating layer. The steel constituting the core wire contains 0.5% or more by mass and 1.0% or less by mass carbon, 0.1% or more by mass and 2.5% or less by mass silicon, and 0.3% or more by mass and 0.9% or less by mass manganese, the balance being iron and unavoidable impurities.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: November 30, 2021
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takumi Akada, Hiromu Izumida, Akihisa Hosoe
  • Patent number: 11180824
    Abstract: A hot stamped article excellent in strength having a predetermined composition, having an average crystal grain size of prior austenite of 3 ?m or less, containing at least one of lower bainite, martensite, and tempered martensite in an area rate of 90% or more, and having a grain boundary solid solution ratio Z, defined by Z=(mass % of one or both of Nb and Mo at the grain boundaries)/(mass % of one or more of Nb and Mo at time of dissolution) of 0.3 or more.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: November 23, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Yuri Toda, Kazuo Hikida, Shingo Fujinaka, Tomohito Tanaka
  • Patent number: 11155902
    Abstract: A galvanized dual phase steel sheet with a martensite phase and a ferrite phase and a composition containing within the following ranges by weight: carbon from about 0.01% to about 0.18%; manganese from about 0.2% to about 3%; silicon?about 1.2%; aluminum from about 0.01% to about 0.1%; one or both of chromium and nickel from about 0.1% to about 3.5%; calcium from about 0.0003% to about 0.01%; phosphorus?about 0.1%; sulfur?about 0.03%; nitrogen?about 0.02%; molybdenum?about 1%; one or more of niobium and titanium?about 1%; and boron?about 0.006% by weight; and with the balance of the composition being iron and incidental ingredients. The steel sheet may be both galvanized and galvannealed.
    Type: Grant
    Filed: October 2, 2011
    Date of Patent: October 26, 2021
    Assignee: NUCOR CORPORATION
    Inventor: Weiping Sun
  • Patent number: 11104974
    Abstract: Provided is a cold-rolled steel sheet manufactured by a cold-rolled steel sheet manufacturing method comprising a continuous annealing step, which has a composition comprising, by weight %: C: 0.1-0.15%; Si: 0.2% or less (including 0%); Mn: 2.3-3.0%; P: 0.001-0.10%; S: 0.010% or less (including 0%); Sol.Al: 0.01-0.10%; N: 0.010% or less (excluding 0%); Cr: 0.3-0.9%; B: 0.0010-0.0030%; Ti: 0.01-0.03%; Nb:0.01-0.03%; the balance being Fe and other impurities, and satisfies following relationship 1. [relationship 1] 1650?5541.4C+239Mn+169.1Cr+0.74SS-1.36RCS?1688, in which microstructure comprises, in area %, at least 90% of martensite and tempered martensite; and 10% or less of ferrite and bainite, in which the fraction of the tempered martensite in the martensite and the tempered martensite is 90% or more, in area %, and the ratio (b/a) of the C+Mn concentration (a) in the martensite to the C+Mn concentration (b) in the ferrite and the bainite is 0.65 or more.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: August 31, 2021
    Assignee: POSCO
    Inventors: Min-Seo Koo, Seong-Ho Han
  • Patent number: 11098392
    Abstract: A hot rolled steel sheet having a chemical composition containing, by mass %, C: 0.04% or more and 0.20% or less, Si: 0.7% or more and 2.3% or less, Mn: 0.8% or more and 2.8% or less, P: 0.1% or less, S: 0.01% or less, Al: 0.1% or less, N: 0.008% or less, and the balance being Fe and inevitable impurities. The microstructure of the hot rolled steel sheet includes ferrite and pearlites, in which the area ratio of the ferrite is 75% or more and less than 95%, the mean grain size of the ferrite is 5 ?m or more and 25 ?m or less, the area ratio of pearlite is 5% or more and less than 25%, the mean grain size of pearlite is 2.0 ?m or more, and the mean free path of pearlite is 5 ?m or more.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: August 24, 2021
    Assignee: JFE Steel Corporation
    Inventors: Yoshiyasu Kawasaki, Shinjiro Kaneko, Yasunobu Nagataki
  • Patent number: 11098394
    Abstract: A rolled wire rod wherein the contents of Ti, N, and S (mass %) are respectively [Ti], [N], and [S], and, if [S]?0.0010, [Ti] is (4.5×[S]+3.4×[N]) or more and (0.008+3.4×[N]) or less, while if [S]?0.0010, [Ti] is (4.5×[S]+3.4×[N]) or more and (8.0×[S]+3.4×[N]) or less, the internal structure is a mixed structure of ferrite and pearlite with an area ratio of a ferrite fraction of 40% or more, and a mean area of sulfides present in a range from a surface of the wire rod to a depth position D/8 from the surface of the wire rod is 6 ?m2 or less, wherein D represents a diameter, in mm, in a cross-section of the wire rod at a plane including the axis of the wire rod, and a mean aspect ratio of the sulfides is 5 or less.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: August 24, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Naoki Matsui, Yutaka Neishi, Makoto Kosaka
  • Patent number: 11085107
    Abstract: A steel sheet has a composition containing, by mass %, C: 0.04% to 0.20%, Si: 0.6% to 1.5%, Mn: 1.0% to 3.0%, P: 0.10% or less, S: 0.030% or less, Al: 0.10% or less, N: 0.010% or less, one, two, or all of Ti, Nb, and V in an amount of 0.01% to 1.0% each, and the balance being Fe and inevitable impurities, a microstructure including, in terms of area ratio, 50% or more of ferrite, in which an average grain diameter at a position located 50 ?m from a surface of the steel sheet in a thickness direction is 3000×(tensile strength TS (MPa))?0.85 ?m or less, C precipitates having a grain diameter of less than 20 nm formed in steel is 0.010 mass % or more, and a amount of precipitated Fe is 0.03 mass % to 1.0 mass %, and a roughness Ra of 3.0 ?m or less.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: August 10, 2021
    Assignee: JFE Steel Corporation
    Inventors: Taro Kizu, Akimasa Kido, Tetsushi Tadani
  • Patent number: 11085098
    Abstract: Disclosed is a Grade 550 MPa high temperature-resistant pipeline steel, the chemical elements, in mass percentage, being: 0.061%?C?0.120%, 1.70%?Mn?2.20%, 0.15%?Mo?0.39%, 0.15%?Cu?0.30%, 0.15%?Ni?0.50%, 0.035%?Nb?0.080%, 0.005%?V?0.054%, 0.005%?Ti?0.030%, 0.015%?Al?0.040%, 0.005%?Ca?0.035%, and the balance being Fe and unavoidable impurities. Also disclosed is a manufacturing method of the Grade 550 MPa high temperature-resistant pipeline steel, comprising the steps of: smelting, casting, slab heating, rough rolling, finish rolling, controlled cooling, and air cooling to room temperature. The pipeline steel has an excellent mechanical property under a high temperature.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: August 10, 2021
    Assignee: Baoshan Iron & Steel Co., Ltd
    Inventors: Ping Hu, Lei Zheng, Chuanguo Zhang
  • Patent number: 11060157
    Abstract: Provided are coated steel sheets, production methods therefor, and so forth, the coated steel sheets having a tensile strength of 440 MPa or more, good formability, and good aging resistance. A steel sheet of the present invention includes a specific component composition and a steel microstructure having an area fraction of a ferrite phase of 80% or more and 95% or less, an area fraction of pearlite of 5% or more and 20% or less, and an average ferrite grain size of 5 ?m or more and 20 ?m or less, in which in a ferrite grain size histogram, the average grain size of the largest 20% of ferrite grains in terms of grain size is 10 ?m or more, and the pearlite has an average lamellar spacing of 200 nm or less, the area fraction, the average ferrite grain size, and the lamellar spacing being determined by microstructure observation.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: July 13, 2021
    Assignee: JFE STEEL CORPORATION
    Inventors: Noriaki Kohsaka, Yoshimasa Funakawa
  • Patent number: 10934602
    Abstract: A hot rolled flat steel product including (in % by weight) of C: 0.05-0.08%, Si: 0.015-0.500%, Mn: 1.60-2.00%, P: up to 0.025%, S: up to 0.010%, Al: 0.020-0.050%, N: up to 0.006%, Cr: up to 0.40%, Nb: 0.060-0.070%, B: 0.0005-0.0025%, Ti: 0.090-0.130%, unavoidable impurities including up to 0.12% Cu, up to 0.100% Ni, up to 0.010% V, up to 0.004% Mo, and up to 0.004% Sb, and the remainder being iron. The hot rolled flat steel product has a yield strength of 700-850 MPa, a fracture elongation of at least 12%, and a microstructure of at least 70% by volume bainitic microstructure.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: March 2, 2021
    Assignees: THYSSENKRUPP STEEL EUROPE AG, THYSSENKRUPP AG
    Inventors: Alexander Gaganov, Wolfgang Gervers, Andreas Kern, Gabriel Kolek, Elena Schaffnit, Hans-Joachim Tschersich
  • Patent number: 10907233
    Abstract: Provided are a hot-dip galvanized steel sheet and a hot-dip galvannealed steel sheet with excellent aging-resistance properties and bake hardenability, and a method for manufacturing the same. The hot-dip galvanized steel sheet has a molten zinc plated layer on the surface of a base steel sheet, wherein the base steel sheet comprises: 0.002-0.012 wt % of carbon (C); 1.6-2.7 wt % of manganese (Mn); 0.03 wt % or less (excluding 0 wt %) of phosphorus (P); 0.01 wt % or less (excluding 0 wt %) of sulfur (S); 0.01 wt % or less (excluding 0 wt %) of nitrogen (N); 0.02-0.06 wt % of aluminum (sol.Al); 1.0 wt % or less (excluding 0 wt %) of chromium (Cr), with the remainder being iron and inevitable impurities; the base steel sheet satisfies the relation of 1.3?Mn(wt %)/(1.15×Cr(wt %))?20.5; Mneq defined by relational expression 1 satisfies 1.9?Mneq?3.9.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: February 2, 2021
    Assignee: POSCO
    Inventors: Sang-Ho Han, Je-Woong Lee
  • Patent number: 10900100
    Abstract: A hot rolled steel sheet having a chemical composition consisting of, in mass %, C: 0.020-0.180%, Si: 0.05-1.70%, Mn: 0.50-2.50%, Al: 0.010-1.000%, N: 0.0060%, P?0.050%, S?0.005%, Ti: 0-0.150%, Nb: 0-0.100%, V: 0-0.300%, Cu: 0-2.00%, Ni: 0-2.00%, Cr: 0-2.00%, Mo: 0-1.00%, B: 0-0.0100%, Mg: 0-0.0100%, Ca: 0-0.0100%, REM: 0-0.1000%, Zr: 0-1.000%, Co: 0-1.000%, Zn: 0-1.000%, W: 0-1.000%, the balance: Fe and impurities, wherein a metal microstructure includes, in area %, at a position ¼ W or ¾ W from an end face of the steel sheet and ¼ t or ¾ t from a surface, martensite: more than 2%-10%, retained austenite <2%, bainite 40%, pearlite 2%, the balance: ferrite, an average circle-equivalent diameter of a metallic phase constituted of martensite/retained austenite is 1.0-5.0 ?m, an average of minimum distances between adjacent metallic phases is 3 ?m or more, and a standard deviation of nano hardness is 2.0 GPa or less.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: January 26, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Tatsuo Yokoi, Nobuo Yoshikawa, Shigeru Yonemura, Kazuya Ootsuka
  • Patent number: 10894996
    Abstract: A hot rolled steel sheet including a chemical composition consisting of, in mass %, C: 0.07-0.22%, Si: 1.00-3.20%, Mn: 0.80-2.20%, Al: 0.010-1.000%, N?0.0060%, P?0.050%, S?0.005%, Ti: 0-0.150%, Nb: 0-0.100%, V: 0-0.300%, Cu: 0-2.00%, Ni: 0-2.00%, Cr: 0-2.00%, Mo: 0-1.00%, B: 0-0.0100%, Mg: 0-0.0100%, Ca: 0-0.0100%, REM: 0-0.1000%, Zr: 0-1.000%, Co: 0-1.000%, Zn: 0-1.000%, W: 0-1.000%, Sn: 0-0.050%, the balance: Fe and impurities, wherein a metal microstructure includes, in area %, at a position ¼ W or ¾ W from an end face of the steel sheet and ¼ t or ¾ t from a surface, retained austenite: more than 2%-10%, martensite ?2%, bainite: 10-70%, pearlite ?2%, the balance: ferrite, an average circle-equivalent diameter of a metallic phase constituted of retained austenite/martensite is 1.0 to 5.0 ?m, an average of minimum distances between adjacent metallic phases is 3 ?m or more, and a standard deviation of nano hardness is 2.5 GPa or less.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: January 19, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Tatsuo Yokoi, Nobuo Yoshikawa, Shigeru Yonemura, Kazuya Ootsuka
  • Patent number: 10851434
    Abstract: A steel sheet for a can having sufficient hardness and a method for manufacturing the steel sheet. The steel sheet has a chemical composition containing, by mass %, C: 0.0005% or more and 0.0030% or less, Si: 0.05% or less, Mn: 0.50% or more and 1.00% or less, P: 0.030% or less, S: 0.020% or less, Al: 0.01% or more and 0.04% or less, N: 0.0010% or more and 0.0050% or less, B: 0.0005% or more and 0.0050% or less, and Fe and inevitable impurities. Additionally, the steel sheet has a hardness (HR30T) of 56 or more, and an average Young's modulus of 215 GPa or more.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: December 1, 2020
    Assignee: JFE STEEL CORPORATION
    Inventors: Hayato Saito, Mikito Suto, Katsumi Kojima, Hiroki Nakamaru
  • Patent number: 10844446
    Abstract: A method is provided for fabricating iron castings for metallic components. The method for fabricating the iron castings may include forming a molten solution by melting carbon and iron and combining carbon nanomaterials with the molten solution. A first portion of the carbon nanomaterials combined with the molten solution may be dispersed therein. The method may also include cooling the molten solution to solidify at least a portion of the carbon thereof to fabricate the iron castings. The first portion of the carbon nanomaterials may be dispersed in the iron castings.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: November 24, 2020
    Assignee: DRESSER-RAND COMPANY
    Inventor: Kevin Pickrell
  • Patent number: 10837080
    Abstract: In a rolled steel bar or rolled wire rod for a cold-forged component having a predetermined chemical composition, Y1 represented by Y1=[Mn]×[Cr] and Y2 represented by Y2=0.134×(D/25.4?(0.50×?[C]))/(0.50×?[C]) satisfy Y1>Y2, the tensile strength is 750 MPa or less, an internal structure is a ferrite-pearlite structure, and the ferrite fraction in the internal structure is 40% or greater. AMOUNT IS 0.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: November 17, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Naoki Matsui, Yutaka Neishi, Tetsushi Chida, Akihisa Obata, Shoji Hori, Keisuke Chiba
  • Patent number: 10837079
    Abstract: The present invention relates to thin hot-rolled ultrahigh strength steel (UHSS) products, i.e. to hot-rolled steel strips with ultrahigh strength and good bendability. The object of the present invention is to provide an ultrahigh strength hot-rolled steel product that is having yield strength Rp0.2 at least 840 MPa and improved bendability. Further, a preferred aim is also to achieve an ultrahigh strength steel strip with excellent low temperature impact toughness. The inventors of the present invention have surprisingly found that the bendability of directly quenched ultrahigh strength steel strip can be significantly improved by producing a microstructure comprising upper bainite as main phase and by having a hot-rolled steel strip product having a yield strength Rp0.2 at least 840 MPa and a thickness of less than 12 mm, whose composition in percentage by weight is C: 0.03-0.08, Si: 0.01-0.8, Mn: 0.8-2.5, Al: 0.01-0.15, Cr: 0.01-2.0, B: 0.0005-0.005 Nb: 0.005-0.07, Ti: 0.005-0.12, N:<0.01, P:<0.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: November 17, 2020
    Assignee: RAUTARUUKKI OYJ
    Inventors: Tommi Liimatainen, Mikko Hemmilä, Pasi Suikkanen, Juha Erkkilä, Kati Rytinki, Tuomo Saarinen, Teijo Limnell
  • Patent number: 10829842
    Abstract: In a rolled steel bar or rolled wire rod for a cold-forged component having a predetermined chemical composition, Y1 represented by Y1=[Mn]×[Cr] and Y2 represented by Y2=0.134×(D/25.4?(0.50×?[C])/(0.50×?[C]) satisfy Y1>Y2, the tensile strength is 750 MPa or less, an internal structure is a ferrite-pearlite structure, and the ferrite fraction in the internal structure is 40% or greater.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: November 10, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Naoki Matsui, Yutaka Neishi, Tetsushi Chida, Akihisa Obata, Shoji Hori, Keisuke Chiba
  • Patent number: 10808761
    Abstract: A rolling bearing includes an inner ring, an outer ring, and rolling elements interposed between the inner ring and the outer ring. A surface layer portion, beneath a raceway surface (10a), of a base material of a raceway ring (10) which is the inner ring or the outer ring, is a wear-resistant layer (13) which has a higher hardness than a residual portion (12), beneath the surface layer portion, of the base material, and includes a minute-recess-and-projection surface. An oxide film (14) is provided which has such a film thickness (t) as to fill recesses of the minute-recess-and-projection surface of the wear-resistant layer (13), and includes recesses and projections existing along the minute-recess-and-projection surface, and the oxide film (14) coats the surface of the wear-resistant layer (13). The oxide film (14) is made from a material more fragile than the wear-resistant layer (13) of the base material.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: October 20, 2020
    Assignee: NTN CORPORATION
    Inventors: Weida Yan, Kazumasa Seko, Michio Hori, Takashi Yamamoto, Naoya Hasegawa
  • Patent number: 10801090
    Abstract: The invention discloses an ultra-high obdurability steel plate having a low yield ratio, comprising the chemical elements in mass percentages of: C: 0.18-0.34%, Si: 0.10-0.40%, Mn: 0.50-1.40%, Cr: 0.20-0.70%, Mo: 0.30-0.90%, Nb: 0-0.06%, Ni: 0.50-2.40%, V: 0-0.06%, Ti: 0.002-0.04%, Al: 0.01-0.08%, B: 0.0006-0.0020%, N?0.0060%, O?0.0040%, Ca: 0-0.0045%, and the balance of Fe and other unavoidable impurities. The invention also discloses a process of manufacturing the steel plate, wherein the heating temperature is 1080-1250° C.; the quenching temperature is 860-940° C.; and the tempering temperature is 150-350° C.
    Type: Grant
    Filed: December 24, 2013
    Date of Patent: October 13, 2020
    Assignee: Baoshan Iron & Steel Co., Ltd.
    Inventors: Sixin Zhao, Hongsheng Jiang, Liandeng Yao
  • Patent number: 10797886
    Abstract: This specification describes techniques for performing blockchain consensus. An example method performed by a first node in a blockchain includes: receiving first service data; determining a corresponding handling time of the first service data; storing the first service data including the corresponding handling time at a cache, in which the cache stores multiple pieces of additional service data, and in which each piece of additional service data is associated with a respective handling time; determining whether a consensus needs to be performed on at least two pieces of service data; in response to determining that the consensus needs to be performed, selecting the at least two pieces of service data according to a sequence that is based on handling times associated with the at least two pieces of service data; and performing the consensus on the more than one pieces of service data according to the sequence.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: October 6, 2020
    Assignee: Alibaba Group Holding Limited
    Inventor: Hao Wu
  • Patent number: 10760150
    Abstract: A martensitic alloy component includes by weight, 0.25% to 0.31% carbon (C), 2.1% to 3.0% manganese (Mn), 0.22% to 0.28% silicon (Si), 2.0% to 2.2% chromium (Cr), 0.45% to 0.55% molybdenum (Mo), 0.08% to 0.12% vanadium (V), and the balance is iron (Fe) and incidental impurities. The manganese-chromium martensitic alloy component has a hardenability corresponding to an ideal diameter of about 15 inches to about 30 inches or more.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: September 1, 2020
    Assignee: General Electric Company
    Inventor: Theodore Francis Majka