Eight Percent Or More Total Content Of Nickel And/or Manganese Containing Patents (Class 148/327)
-
Patent number: 11473622Abstract: A bearing component such as a bearing ring includes a metallic base body and at least one alloy steel coating on the base body, the coating being applied to the base body by deposition welding. The base body is preferably non-alloy steel or cast iron, and the alloy includes at least one carbide-forming transition metal such as niobium, tantalum, zirconium, titanium, hafnium, tungsten, molybdenum, vanadium, or manganese. The coating can form a raceway of the bearing component or a structural element such as a flange. Also a method of forming such a bearing component is provided.Type: GrantFiled: November 25, 2019Date of Patent: October 18, 2022Assignee: AKTIEBOLAGET SKFInventor: Juergen Gegner
-
Patent number: 11389308Abstract: A lumen stent preform is provided using a plasma nitriding technology, a preparation method thereof, a method for preparing a lumen stent by using the preform, and a lumen stent obtained according to the method. The preform is manufactured by using pure iron or an iron alloy containing no strong nitrogen compound, has a hardness of 160-250HV0.05/10, and has a microstructure that is a deformed structure having a grain size number greater than or equal to 9 or a deformed structure after cold machining. Alternatively, the preform is an iron alloy containing a strong nitrogen compound, and has a microstructure that is a deformed structure having a grain size number greater than or equal to 9 or a deformed structure after cold machining. The lumen stent preform meets the requirements of a conventional stent for radial strength and plasticity, so that plasma nitriding is applicable to commercial preparation of a lumen stent.Type: GrantFiled: November 12, 2015Date of Patent: July 19, 2022Assignee: Biotyx Medical (Shenzhen) Co. Ltd.Inventors: Deyuan Zhang, Xianmiao Chen, Wenjiao Lin, Xiangdong Liu
-
Patent number: 11193190Abstract: An air castable Fe-based stainless steel alloy comprises in weight % based on the total weight of the alloy 18-22% Cr, 15-22% Ni, 3-6% Al, 0.5-5% Mn, 0-3.5% W, 0-5% Cu, 0-2% Si, 1-2.5% Nb, 0.3-0.6% C balance Fe wherein, Cu+W+Si=0.5-10.5, and the alloy provides an oxidation resistance of 0.5<specific mass change<+2 mg/cm2 after 400 one hour cycles at 900° C. in 10% water vapor.Type: GrantFiled: July 12, 2019Date of Patent: December 7, 2021Assignee: UT-BATTELLE, LLCInventors: Philip J Maziasz, Govindarajan Muralidharan, Bruce A. Pint, Kinga A. Unocic, Ying Yang
-
Patent number: 10683569Abstract: An austenitic alloy for high temperature use, particularly for use in resistance heating elements. The alloy includes primarily the elements Fe, Ni, and Cr, and it has the following main composition, given in weight %, Ni 38-48, Cr 18-24, Si 1.0-1.9, C <0.1, and the balance Fe. The alloy provides good hot form stability, good oxidation resistance, and a relatively high electrical resistance coupled with a low change in resistance as a function of temperature.Type: GrantFiled: September 4, 2018Date of Patent: June 16, 2020Assignee: Sandvik Intellectual Property ABInventors: Bo Jönsson, Thomas Helander
-
Patent number: 10643754Abstract: Passive reactivity control technologies that enable reactivity control of a nuclear thermal propulsion (NTP) system with little to no active mechanical movement of circumferential control drums. By minimizing or eliminating the need for mechanical movement of the circumferential control drums during an NTP burn, the reactivity control technologies simplify controlling an NTP reactor and increase the overall performance of the NTP system. The reactivity control technologies mitigate and counteract the effects of xenon, the dominant fission product contributing to reactivity transients. Examples of reactivity control technologies include, employing burnable neutron poisons, tuning hydrogen pressure, adjusting wait time between burn cycles or merging burn cycles, and enhancement of temperature feedback mechanisms.Type: GrantFiled: March 13, 2017Date of Patent: May 5, 2020Assignee: Ultra Safe Nuclear CorporationInventors: Paolo Francesco Venneri, Michael John Eades
-
Patent number: 10633729Abstract: Provided is austenitic heat-resisting cast steel that is excellent in both of the heat resistance and the machinability. Austenitic heat-resisting cast steel, includes: C: 0.1 to 0.4 mass %; Si: 0.8 to 2.5 mass %; Mn: 0.8 to 2.0 mass %; S: 0.05 to 0.30 mass %; Ni: 5 to 20 mass %; N: 0.3 mass % or less; Zr: 0.01 to 0.20 mass %; Ce: 0.01 to 0.10 mass %; one type or more of the elements selected from the following groups of (i) to (iii), at least including (i), (i) Cr: 14 to 24 mass %, (ii) Nb: 1.5 mass % or less, and (iii) Mo: 3.0 mass % or less; and Fe and inevitable impurity as a remainder.Type: GrantFiled: June 2, 2016Date of Patent: April 28, 2020Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHOInventors: Takamichi Ueda, Harumi Ueno, Takumi Hijii, Hitomi Hirai, Takashi Maeshima, Kazuaki Nishino, Hirofumi Ito
-
Patent number: 10519533Abstract: A high Cr austenitic stainless steel with a chemical composition consisting of in terms of % by mass, 0.03 to 0.12% of C, 0.10 to 1.00% of Si, 0.10 to 3.00% of Mn, 0.030% or less of P, 0.020% or less of S, 21.50 to 28.00% of Cr, more than 26.00 and not more than 35.00% of Ni, more than 2.00 and not more than 5.00% of W, 0.80% or less of Co, 0.01 to 0.70% of V, 0.15 to 1.00% of Nb, 0.001 to 0.040% of Al, 0.0001 to 0.0100% of B, 0.010 to 0.400% of N, 0.001 to 0.200% of Zr, 0.001 to 0.200% of Nd, 0.001 to 0.200% of Ta, 0.020 to 0.200% of Ta+0.8Nd+0.5Zr, 0.025% or less of Ti+Sn+Sb+Pb+As+Bi, 0.0090% or less of O, and a remainder consisting of Fe and impurities.Type: GrantFiled: June 3, 2016Date of Patent: December 31, 2019Assignee: NIPPON STEEL CORPORATIONInventors: Atsuro Iseda, Hiroyuki Semba, Hirokazu Okada, Hiroyuki Hirata, Toshihide Ono, Katsuki Tanaka, Tomoaki Hamaguchi, Kana Jotoku
-
Patent number: 10512828Abstract: A manufacture method for partial structure refinement of a forged iron golf club head includes a preparing step, a first preforming step, a second preforming step, a fine-forging shaping step, a partial structure refinement step, and a final shaping step. The manufacture method is capable of partially refining the particle structure of the final workpiece. The hardness of a hitting surface of the final workpiece is reinforced to generate clear and loud sounds and to achieve better hitting performance and experience.Type: GrantFiled: October 13, 2017Date of Patent: December 24, 2019Inventor: Chi-Hung Su
-
Patent number: 10316383Abstract: There is provided an austenitic stainless steel having a high strength and an excellent hydrogen brittleness resistance and further having an excellent machinability. The austenitic stainless steel of the present embodiment has a chemical composition including: in mass %, C: 0.10% or less; Si: 1.0% or less; Mn: 2.1 to 6.0%; P: 0.045% or less; S: 0.1% or less; Ni: 8.0 to 16.0%; Cr: 15.0 to 30.0%; Mo: 1.0 to 5.0%; N: 0.05 to 0.45%; Nb: 0 to 0.50%; and V: 0 to 0.50%, with the balance being Fe and impurities, and satisfying Formula (1). The austenitic stainless steel of the present embodiment has a grain size number of less than 8.0 and a tensile strength of 690 MPa or more. 15?12.6C+1.Type: GrantFiled: April 17, 2015Date of Patent: June 11, 2019Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Etsuo Dan, Masaaki Terunuma, Takahiro Osuki, Tomohiko Omura, Jun Nakamura
-
Patent number: 10280487Abstract: The high alloy for oil well according to the present embodiment consists of, in mass %, C: 0.03% or less, Si: 1.0% or less, Mn: 0.05 to 1.5%, P: 0.03% or less, S: 0.03% or less, Ni: 26.0 to 40.0%, Cr: 22.0 to 30.0%, Mo: 0.01% or more to less than 5.0%, Cu: 0.1 to 3.0%, Al: 0.001 to 0.30%, N: more than 0.05% to 0.30% or less, O: 0.010% or less, and Ag: 0.005 to 1.0%, wherein the alloy satisfies the following Formula (1) and (2), wherein the high alloy for oil well has yield strength of 758 MPa or more: 5×Cu+(1000×Ag)2?40??(1) Cu+6×Ag?500×(Ca+Mg+REM)?3.5??(2) where, each element symbol in each Formula is substituted by the content (in mass %) of each element.Type: GrantFiled: February 5, 2015Date of Patent: May 7, 2019Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Masayuki Sagara, Akiko Tomio
-
Patent number: 10233523Abstract: There is provided a carburization resistant metal material suitable as a raw material for cracking furnaces, reforming furnaces, heating furnaces, heat exchangers, etc. in petroleum and gas refining, chemical plants, and the like. This metal material consists of, by mass %, C: 0.03 to 0.075%, Si: 0.6 to 2.0%, Mn: 0.05 to 2.5%, P: 0.04% or less, S: 0.015% or less, Cr: higher than 16.0% and less than 20.0%, Ni: 20.0% or higher and less than 30.0%, Cu: 0.5 to 10.0%, Al: 0.15% or less, Ti: 0.15% or less, N: 0.005 to 0.20%, and O (oxygen): 0.02% or less, the balance being Fe and impurities. The metal material may further contain one kind or more kinds of Co, Mo, W, Ta, B, V, Zr, Nb, Hf, Mg, Ca, Y, La, Ce and Nd.Type: GrantFiled: May 29, 2012Date of Patent: March 19, 2019Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Yoshitaka Nishiyama, Hirokazu Okada, Takahiro Osuki, Etsuo Dan
-
Patent number: 10228030Abstract: A torque tube assembly may comprise a torque tube including a reaction plate and a first travel limit pin coupled to the reaction plate. The first travel limit pin may comprise a shaft portion and a head portion. The first travel limit pin may be configured to limit an axial movement of the reaction plate.Type: GrantFiled: May 15, 2017Date of Patent: March 12, 2019Assignee: GOODRICH CORPORATIONInventor: Warren Kendricks
-
Patent number: 10207477Abstract: A cladding material for stainless steel clad steel plate, includes, by mass %, 0.03% or less carbon, 1.5% or less silicon, 2.0% or less manganese, 0.04% or less phosphorus, 0.03% or less sulfur, 22.0% to 25.0% nickel, 21.0% to 25.0% chromium, 2.0% to 5.0% molybdenum, 0.15% to 0.25% nitrogen, and the balance being iron and incidental impurities, wherein critical pitting temperature (CPT) after normalization as determined in accordance with ASTM G48-03 Method E is 45° C. or higher, and corrosion loss at a welded zone as determined by a corrosion test in accordance with NORSOK Standard M-601 is 1.0 g/m2 or less.Type: GrantFiled: April 19, 2013Date of Patent: February 19, 2019Assignee: JFE STEEL CORPORATIONInventors: Keiichiro Kishi, Yoshihiro Yazawa, Shunichi Tachibana, Yota Kuronuma, Toshiyuki Hoshino
-
Patent number: 10161024Abstract: The invention relates to a method for producing an ultra high strength material with high elongation by work hardening an essentially nickel-free austenitic material and then subjecting the material to heat treatment in the temperature range between 200° C. and <1,100° C. within a period from 10 s to 10 minutes.Type: GrantFiled: February 27, 2014Date of Patent: December 25, 2018Assignee: Outokumpu Nirosta GmbHInventors: Thomas Fröhlich, Marcel Hartig, Seyed Amin Mousavi Rizi, Jochen Krautschick, Stefan Lindner, Jasminko Skrlec
-
Patent number: 10027194Abstract: An object of the present invention is to provide a motor rotor support suitable for an axial gap motor and a method for manufacturing the same. The motor rotor support for supporting a magnetic body disposed on a rotor of the motor is configured by laminating single materials each formed from a hot-worked material or a cold-worked material preferably composed of an 18Mn-18Cr nonmagnetic steel.Type: GrantFiled: March 27, 2013Date of Patent: July 17, 2018Assignees: THE JAPAN STEEL WORKS, LTD., SANWAKOGYO Ltd.Inventors: Shinji Tanaka, Hirokazu Madarame, Toshifumi Nakajima, Kazuhiro Miyagi
-
Patent number: 9994938Abstract: The present invention relates to an Fe—Ni-based alloy having excellent high-temperature characteristics and hydrogen embrittlement resistance, which has a composition containing, in terms of % by mass, C: 0.005% to 0.10%, Si: 0.01% to 0.10%, P: 0.015% or less, S: 0.003% or less, Ni: 23.0% to 27.0%, Cr: 12.0% to 16.0%, Mo: 0.01% or less, Nb: 0.01% or less, W: 2.5% to 6.0%, Al: 1.5% to 2.5%, and Ti: 1.5% to 2.5%, the balance being Fe and other unavoidable impurities.Type: GrantFiled: December 25, 2013Date of Patent: June 12, 2018Assignee: THE JAPAN STEEL WORKS, LTD.Inventors: Shinya Sato, Rinzo Kayano, Tatsuya Takahashi, Koichi Takasawa
-
Patent number: 9884783Abstract: A coated glass ceramic cooking plate is provided, which has a multilayer coating on its lower surface. The multilayer coating includes a metallic layer of an alloy including components chromium, iron, nickel, and silicon. The silicon content of the alloy is at least 2 atomic percent. This metallic layer is covered by a barrier layer in form of an oxide of an alloy including components chromium, iron, nickel, and silicon, also with a silicon content of at least 2 atomic percent. The molar content of oxygen of the barrier layer is greater by at least a factor of 10 than that of the metallic layer.Type: GrantFiled: May 7, 2014Date of Patent: February 6, 2018Assignee: SCHOTT AGInventors: Christian Henn, Eveline Rudigier-Voigt, Stephanie Mangold, Tanja Woywod
-
Patent number: 9873932Abstract: An austenitic stainless steel composition including relatively low nickel and molybdenum levels, and exhibiting corrosion resistance, resistance to elevated temperature deformation, and formability properties comparable to certain alloys including higher nickel and molybdenum levels. Embodiments of the austenitic stainless steel include, in weight %, up to 0.20 C, 2.0 to 9.0 Mn, up to 2.0 Si, 16.0 to 23.0 Cr, 1.0 to 7.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.05 to 0.35 N, up to 4.0 W, (7.5(C))?(Nb+Ti+V+Ta+Zr)?1.5, up to 0.01 B, up to 1.0 Co, iron and impurities. Additionally, embodiments of the steel may include 0.5?(Mo+W/2)?5.0 and/or 1.0?(Ni+Co)?8.0.Type: GrantFiled: August 5, 2015Date of Patent: January 23, 2018Assignee: ATI PROPERTIES LLCInventors: David S. Bergstrom, James M. Rakowski, Charles P. Stinner, John J. Dunn, John F. Grubb
-
Patent number: 9822435Abstract: An austenitic stainless steel composition including relatively low Ni and Mo levels, and exhibiting corrosion resistance, resistance to elevated temperature deformation, and formability properties comparable to certain alloys including higher Ni and Mo levels. Embodiments of the austenitic stainless steel include, in weight percentages, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 15.0-23.0 Cr, 1.0-9.5 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.05-0.35 N, (7.5(C))?(Nb+Ti+V+Ta+Zr)?1.5, Fe, and incidental impurities.Type: GrantFiled: August 5, 2015Date of Patent: November 21, 2017Assignee: ATI PROPERTIES LLCInventors: David S. Bergstrom, James M. Rakowski
-
Patent number: 9522311Abstract: In an iron golf club head with a face portion and a neck portion integrally molded by forging, the iron golf club head is made of an iron steel material at least containing 0.30% by weight or less of carbon and 0.0005% by weight to 0.003% by weight of boron. The face portion has been subjected to quenching processing.Type: GrantFiled: September 8, 2014Date of Patent: December 20, 2016Assignees: MIZUNO CORPORATION, CHUO INDUSTRIES, LTD.Inventors: Kazuhiro Doi, Jun Yoshikawa
-
Patent number: 9506126Abstract: Austenitic stainless steel having high temperature strength and excellent nitric acid corrosion resistance is provided. The austenitic stainless steel according to the present embodiment including, in mass percent, C: at most 0.050%, Si: 0.01 to 1.00%, Mn: 1.75 to 2.50%, P: at most 0.050%, S: at most 0.0100%, Ni: 20.00 to 24.00%, Cr: 23.00 to 27.00%, Mo: 1.80 to 3.20%, and N: 0.110 to 0.180%, the balance being Fe and impurities, a grain size number of crystal grains based on JIS G0551 (2005) is at least 6.0, and an area fraction of a ? phase is at most 0.1%.Type: GrantFiled: June 20, 2012Date of Patent: November 29, 2016Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventor: Masaki Ueyama
-
Patent number: 9234429Abstract: The invention relates to a method for producing a compressor blade, comprising the following steps: forging a blank made of an austenitic-ferritic steel; uniaxially stretching and plastically deforming the blank while at least the elongation and the deformation force of the blank are detected and monitored; and ending the stretching after a defined limit value for the stress has been reached.Type: GrantFiled: September 17, 2012Date of Patent: January 12, 2016Assignee: SIEMENS AKTIENGESELLSCHAFTInventor: Ralf Bode
-
Patent number: 9175361Abstract: Inexpensive stainless steel and inexpensive and high strength stainless steel which has excellent hydrogen environment embrittlement resistance even if used in a hydrogen resistant environment in over 40 MPa high pressure hydrogen gas or a hydrogen resistant environment in liquid hydrogen, characterized by containing, by mass %, C: 0.1% or less, Si: 0.4 to 1.5%, Mn: 8 to 11%, Cr: 15 to 17%, Ni: 5 to 8%, Cu: 1 to 4%, and N: 0.01 to less than 0.15% and having a balance of Fe and unavoidable impurities, having a volume rate of ?-ferrite of 10% or less, and having a long axis of ?-ferrite before annealing of 0.04 to 0.1 mm.Type: GrantFiled: September 29, 2011Date of Patent: November 3, 2015Assignee: Nippon Steel & Sumikin Stainless Steel CorporationInventors: Masaharu Hatano, Shigeo Fukumoto, Hideki Fujii, Shinichi Ohmiya
-
Patent number: 9145600Abstract: The present invention relates to a precipitation hardened heat-resistant steel containing, in terms of % by mass: 0.005 to 0.2% of C, not more than 2% of Si, 1.6 to 5% of Mn, 15% or more and less than 20% of Ni, 10 to 20% of Cr, more than 2% and up to 4% of Ti, 0.1 to 2% of Al, and 0.001 to 0.02% of B, with the balance being Fe and inevitable impurities, in which a ratio (Ni/Mn) of an amount of Ni to an amount of Mn is 3 to 10, a total amount of Ni and Mn (Ni+Mn) is 18% or more and less than 25%, and a ratio (Ti/Al) of an amount of Ti to an amount of Al is 2 to 20.Type: GrantFiled: March 15, 2012Date of Patent: September 29, 2015Assignee: DAIDO STEEL CO., LTD.Inventors: Kaoru Imaizumi, Naohide Kamiya
-
Patent number: 9039961Abstract: The invention relates to a low-nickel austenitic stainless steel with high resistance to delayed cracking and the use of the steel. The steel contains in weight % 0.02-0.15% carbon, 7-15% manganese, 14-19% chromium, 0.1-4% nickel, 0.1-3% copper, 0.05-0.3% nitrogen, the balance of the steel being iron and inevitable impurities, and the chemical composition range in terms of the sum of carbon and nitrogen contents (C+N) and the measured Md3o-temperature is inside the area defined by the points ABCD which have the following values Point Md30° C. C+N % A?80 0.1 B+7 0.1 C?40 0.40 D?80 0.40.Type: GrantFiled: April 18, 2011Date of Patent: May 26, 2015Assignee: Outokumpu OyjInventors: Juho Talonen, Suresh Kodukula, Tero Taulavuori
-
Publication number: 20150129093Abstract: A method of processing a metal alloy includes heating to a temperature in a working temperature range from a recrystallization temperature of the metal alloy to a temperature less than an incipient melting temperature of the metal alloy, and working the alloy. At least a surface region is heated to a temperature in the working temperature range. The surface region is maintained within the working temperature range for a period of time to recrystallize the surface region of the metal alloy, and the alloy is cooled so as to minimize grain growth. In embodiments including superaustenitic and austenitic stainless steel alloys, process temperatures and times are selected to avoid precipitation of deleterious intermetallic sigma-phase. A hot worked superaustenitic stainless steel alloy having equiaxed grains throughout the alloy is also disclosed.Type: ApplicationFiled: November 12, 2013Publication date: May 14, 2015Applicant: ATI PROPERTIES, INC.Inventors: Robin M. Forbes Jones, Ramesh S. Minisandram
-
Publication number: 20150083283Abstract: The present invention is directed to a heat-resistant austenitic stainless steel sheet comprising, by mass %, C: 0.03% to 0.06%, N: 0.1% to 0.3%, Si: 1% or less Mn: 3% or less, P: 0.04% or less, S: 0.03% or less, Ni: 5 to 12%, Cr: 15 to 20%, Al: 0.01% to 0.1%, Nb: 0.05% to 0.3%, V: 0.05% to 0.30%, Ti: 0.03% or less, (Nb+V)/(C+N):2 or less and further a balance of Fe and unavoidable impurities, and wherein an amount of precipitates mainly comprised of carbonitrides is 1% or less.Type: ApplicationFiled: March 28, 2013Publication date: March 26, 2015Applicant: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATIONInventors: Yoshiharu Inoue, Fumio Fudanoki, Junichi Hamada
-
Patent number: 8951368Abstract: Disclosed are amorphous, ductile brazing foils with a composition consisting essentially of FeRestNiaCrbSicBdPe, wherein 0 atomic %?a<25 atomic %; 0 atomic %?b?15 atomic %; 1 atomic %?c?10 atomic %; 4 atomic %?d?15 atomic %; 1 atomic %?e?9 atomic %; any impurities?0.5 atomic %; rest Fe, wherein 2 atomic %?c+e?10 atomic % and 15 atomic %?c+d+e?22 atomic %, or consisting essentially of FeRestNiaCrbMofCugSicBdPe, wherein 0 atomic %?a<25 atomic %; 0 atomic %?b?15 atomic %; 1 atomic %<c?10 atomic %; 4 atomic %?d?15 atomic %; 1 atomic %?e?9 atomic %; 0 atomic %<f?3 atomic %; 0 atomic %?g?3 atomic %; any impurities?0.5 atomic %; rest Fe, wherein 2 atomic %?c+e?10 atomic % and 15 atomic %?c+d+e?22 atomic %. Also disclosed are brazed objects formed using these foils, particularly exhaust gas recirculation coolers and oil coolers, and methods for making the brazing foils and for making the brazed parts.Type: GrantFiled: September 21, 2011Date of Patent: February 10, 2015Assignee: Vacuumschmelze GmbH & Co. KGInventors: Thomas Hartmann, Dieter Nuetzel
-
Patent number: 8906171Abstract: The invention relates to a method of producing a TWIP and nano twinned austenitic stainless steel. The austenitic steel should not contain more than 0.018 wt % C, 0.25-0.75 wt % Si, 1.5-2 wt % Mn, 17.80-19.60 wt % Cr, 24.00-25.25 wt % Ni, 3.75-4.85 wt % Mo, 1.26-2.78 wt % Cu, 0.04-0.15 wt % N, and the balance of Fe. In order to form nano twins in the material the austenitic stainless steel should be brought to a temperature below 0° C., and imparted a plastic deformation to such a degree that the desired nano twins are formed, e.g. to a plastic deformation of around 30%. The invention also relates to the thus produced austenitic stainless steel.Type: GrantFiled: September 25, 2012Date of Patent: December 9, 2014Assignee: Sandvik Intellectual PropertyInventors: Ulrika Magnusson, Guocai Chai
-
Patent number: 8900379Abstract: Provided are a stainless steel for a proton-exchange membrane fuel cell separator having high durability and a low contact resistance (i.e., high electrical conductivity) and a proton-exchange membrane fuel cell using the same. More specifically, a stainless steel for a proton-exchange membrane fuel cell separator has a composition comprising 0.03% mass % or less of C, 16-45 mass % of Cr, 0.03 mass % or less of N, 0.1-5.0 mass % of Mo, wherein a total of the C content and the N content satisfies 0.03 mass % or less; a balance portion is comprised of Fe and unavoidable impurities; an atomic ratio of Cr/Fe with respect to Al, Cr, and Fe contained in a passive film on a surface of the stainless steel is 1 or greater.Type: GrantFiled: June 9, 2004Date of Patent: December 2, 2014Assignee: JFE Steel CorporationInventors: Shin Ishikawa, Kunio Fukuda, Yasushi Kato, Osamu Furukimi, Kenji Takao
-
Publication number: 20140338800Abstract: A steel product, such as a strip, plate, sheet, bar or wire, manufactured from austenitic stainless steel. A steel product, wherein: a—the average grain size of the recrystallized austenitic structure of said product is at most 6 , b—less than 50% of the structure of said product is non-recrystallized austenite c—the yield strength (Rpo.2) is at least 350 MPa, d—the tensile strength (Rm) is at least 600 MPa, and e—the uniform elongation (Ag) of said product is at least 5%, depending on the strength. The invention also relates to a method.Type: ApplicationFiled: January 20, 2012Publication date: November 20, 2014Applicant: JL MATERIALS TECHNOLOGY OYInventor: Jouko Leinonen
-
Publication number: 20140332117Abstract: High-Mn austenitic stainless steels having a chemical composition comprising C: 0.02-0.12 mass %, Si: 0.05-1.5 mass %, Mn: 10.0-22.0 mass %, S: not more than 0.0028 mass %, Ni: 4.0-12.0 mass %, Cr: 14.0-25.0 mass % and N: 0.07-0.17 mass % with the balance being Fe and inevitable impurities, provided that these components are contained so that ? cal represented by the following equation is not more than 5.5%: ? cal (mass %)=(Cr+0.48Si)?(Ni+0.11Mn?0.0101Mn2+26.4C+20.1N)?4.7, wherein each element symbol in the equation is a content of the respective element (mass %), and having a magnetic permeability of not more than 1.003 under a magnetic field of 200 kA/m.Type: ApplicationFiled: February 21, 2014Publication date: November 13, 2014Applicant: NIPPON YAKIN KOGYO CO., LTD.Inventors: Shigeru HIRATA, Yuji IKEGAMI, Kazuhiro YAMAKAWA
-
Patent number: 8877121Abstract: An austenitic stainless steel composition having low nickel and molybdenum and exhibiting high corrosion resistance and good formability. The austenitic stainless steel includes, in weight %, up to 0.20 C, 2.0-6.0 Mn, up to 2.0 Si, 16.0-23.0 Cr, 5.0-7.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.1-0.35 N, up to 4.0 W, up to 0.01 B, up to 1.0 Co, iron and impurities. The austenitic stainless steel has a ferrite number less than 11 and an MD30 value less than ?10° C.Type: GrantFiled: February 26, 2008Date of Patent: November 4, 2014Assignee: ATI Properties, Inc.Inventors: David S. Bergstrom, James M. Rakowski, Charles P. Stinner, John J. Dunn, John F. Grubb
-
Patent number: 8858872Abstract: An austenitic stainless steel having low nickel and molybdenum and exhibiting comparable corrosion resistance and formability properties to higher nickel and molybdenum alloys comprises, in weight %, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 16.0-23.0 Cr, 1.0-5.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.1-0.35 N, up to 4.0 W, up to 0.01 B, up to 1.0 Co, iron and impurities, the steel having a ferrite number of less than 10 and a MD30 value of less than 20° C.Type: GrantFiled: October 15, 2012Date of Patent: October 14, 2014Assignee: ATI Properties, Inc.Inventors: David S. Bergstrom, James M. Rakowski, Charles P Stinner, John J. Dunn, John F. Grubb
-
Patent number: 8852362Abstract: There is provided an austenitic stainless steel pipe excellent in steam oxidation resistance. The austenitic stainless steel pipe excellent in steam oxidation resistance contains, by mass percent, 14 to 28% of Cr and 6 to 30% of Ni, and is configured so that a region satisfying the following Formula exists in a metal structure at a depth of 5 to 20 ?m from the inner surface of the steel pipe: (?/?)×?/?×100?0.3 where the meanings of symbols in the above Formula are as follows: ?: sum total of the number of pixels of digital image in region in which orientation difference of adjacent crystals detected by electron backscattering pattern is 5 to 50 degrees ?: the number of total pixels of digital image in region of measurement using electron backscattering pattern ?: analysis pitch width of electron backscattering pattern (?m) ?: grain boundary width (?m).Type: GrantFiled: June 1, 2012Date of Patent: October 7, 2014Assignee: Nippon Steel & Sumitomo Metal CorporationInventors: Yoshitaka Nishiyama, Mitsuru Yoshizawa, Masahiro Seto, Katsuki Tanaka
-
Patent number: 8840735Abstract: Fatigue damage resistant metal or metal alloy wires have a submicron-scale or nanograin microstructure that demonstrates improved fatigue damage resistance properties, and methods for manufacturing such wires. The present method may be used to form a wire having a nanograin microstructure characterized by a mean grain size that is 500 nm or less, in which the wire demonstrates improved fatigue damage resistance. Wire manufactured in accordance with the present process may show improvement in one or more other material properties, such as ultimate strength, unloading plateau strength, permanent set, ductility, and recoverable strain, for example. Wire manufactured in accordance with the present process is suitable for use in a medical device, or other high end application.Type: GrantFiled: September 18, 2009Date of Patent: September 23, 2014Assignee: Fort Wayne Metals Research Products CorpInventor: Jeremy E. Schaffer
-
Publication number: 20140261918Abstract: Improved steel compositions and methods of making the same are provided. The present disclosure provides advantageous wear resistant steel. More particularly, the present disclosure provides high manganese (Mn) steel having enhanced wear resistance, and methods for fabricating high manganese steel compositions having enhanced wear resistance. The advantageous steel compositions/components of the present disclosure improve one or more of the following properties: wear resistance, ductility, crack resistance, erosion resistance, fatigue life, surface hardness, stress corrosion resistance, fatigue resistance, and/or environmental cracking resistance. In general, the present disclosure provides high manganese steels tailored to resist wear and/or erosion.Type: ApplicationFiled: March 4, 2014Publication date: September 18, 2014Applicant: ExxonMobil Research and Engineering CompanyInventors: HyunWoo Jin, Ning Ma, Raghavan Ayer, Russell Robert Mueller, Hak-Cheol Lee, Jong-Kyo Choi, In-Shik Suh
-
Patent number: 8808471Abstract: A martensitic stainless steel alloy is strengthened by copper-nucleated nitride precipitates. The alloy includes, in combination by weight percent, about 10.0 to about 12.5 Cr, about 2.0 to about 7.5 Ni, up to about 17.0 Co, about 0.6 to about 1.5 Mo, about 0.5 to about 2.3 Cu, up to about 0.6 Mn, up to about 0.4 Si, about 0.05 to about 0.15 V, up to about 0.10 N, up to about 0.035 C, up to about 0.01 W, and the balance Fe and incidental elements and impurities. The nitride precipitates may be enriched by one or more transition metals.Type: GrantFiled: April 13, 2009Date of Patent: August 19, 2014Assignee: QuesTek Innovations LLCInventors: James A. Wright, Gregory B. Olson, Weijia Tang
-
Publication number: 20140190594Abstract: The present disclosure is directed and formulations and methods to provide alloys having relative high strength and ductility. The alloys may be provided in seamless tubular form and characterized by their particular alloy chemistries and identifiable crystalline grain size morphology. The alloys are such that they include boride pinning phases. In what is termed a Class 1 Steel the alloys indicate tensile strengths of 700 MPa to 1400 MPa and elongations of 10-70%. Class 2 Steel indicates tensile strengths of 800 MPa to 1800 MPa and elongations of 5-65%. Class 3 Steel indicates tensile strengths of 1000 MPa to 2000 MPa and elongations of 0.5-15%.Type: ApplicationFiled: January 9, 2014Publication date: July 10, 2014Inventors: Daniel James BRANAGAN, Sheng CHENG, Longzhou MA, Jason K. WALLESER, Grant G. JUSTICE, Andrew T. BALL, Kurtis CLARK, Scott LARISH, Alissa PETERSON, Patrick E. MACK, Brian D. MERKLE, Brian E. MEACHAM, Alla V. SERGUEEVA
-
Publication number: 20140166158Abstract: High-Mn austenitic stainless steels having a chemical composition comprising C: 0.02-0.12 mass %, Si: 0.05-1.5 mass %, Mn: 10.0-22.0 mass %, S: not more than 0.0028 mass %, Ni: 4.0-12.0 mass %, Cr: 14.0-25.0 mass % and N: 0.07-0.17 mass % with the balance being Fe and inevitable impurities, provided that these components are contained so that ? cal represented by the following equation is not more than 5.5%: ? cal (mass %)=(Cr+0.48Si)?(Ni+0.11Mn?0.0101Mn2+26.4C+20.1N)?4.7, wherein each element symbol in the equation is a content of the respective element (mass %), and having a magnetic permeability of not more than 1.003 under a magnetic field of 200 kA/m.Type: ApplicationFiled: February 21, 2014Publication date: June 19, 2014Applicant: NIPPON YAKIN KOGYO CO., LTD.Inventors: Shigeru HIRATA, Yuji IKEGAMI, Kazuhiro YAMAKAWA
-
Patent number: 8741215Abstract: To provide an inexpensive heat-resisting steel for engine valves by causing Fe-based heat-resisting steel to exhibit high temperature strength not inferior to that of Ni-based heat-resisting steel. A heat-resisting steel for engine valves excellent in high temperature strength containing, in % by mass, C: 0.20 to 0.50%, Si: 1.0% or less, Mn: 5.0% or less, P: 0.1 to 0.5%, Ni: 8.0 to 15.0%, Cr: 16.0 to 25.0%, Mo: 2.0 to 5.0%, Cu: 0.5% or less, Nb: 1.0% or less (including 0%), W: 8.0% or less (including 0%), N: 0.02 to 0.2%, B: 0.01% or less, and remnants of Fe and impurities, wherein the heat-resisting steel for engine valves satisfies formulae below: 442P(%)+12Mo(%)+5W(%)+7Nb(%)+328N(%)+171?300??Formula (1) ?38.13P(%)+1.06Mo(%)+0.13W(%)+9.64Nb(%)+13.52N(%)+4.83?0.12??Formula (2).Type: GrantFiled: April 19, 2010Date of Patent: June 3, 2014Assignees: Hitachi Metals, Ltd., Honda Motor Co., Ltd.Inventors: Katsuhiko Ohishi, Takehiro Ohno, Toshihiro Uehara
-
Publication number: 20140137994Abstract: Austenitic stainless steel having high temperature strength and excellent nitric acid corrosion resistance is provided. The austenitic stainless steel according to the present embodiment including, in mass percent, C: at most 0.050%, Si: 0.01 to 1.00%, Mn: 1.75 to 2.50%, P: at most 0.050%, S: at most 0.0100%, Ni: 20.00 to 24.00%, Cr: 23.00 to 27.00%, Mo: 1.80 to 3.20%, and N: 0.110 to 0.180%, the balance being Fe and impurities, a grain size number of crystal grains based on JIS G0551 (2005) is at least 6.0, and an area fraction of a ? phase is at most 0.1%.Type: ApplicationFiled: June 20, 2012Publication date: May 22, 2014Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventor: Masaki Ueyama
-
Patent number: 8728253Abstract: A method for handling aqueous solutions of methanesulfonic acid (MSA) having a concentration from 50 to 99% by weight of MSA and a total chlorine content of less than 50 mg/kg in apparatuses in which the aqueous MSA solution is in contact with steel surfaces. The steel comprises austenitic steels having a chromium content of from 15 to 22% by weight and a nickel content of from 9 to 15% by weight.Type: GrantFiled: November 2, 2010Date of Patent: May 20, 2014Assignee: BASF SEInventors: Stefan Faβbender, Peter Petersen, Arnulf Lauterbach, Günter Renz, Frieder Borgmeier, Peter Kolb
-
Patent number: 8703047Abstract: As a stainless steel for a metal part for clothing ornament capable of working into a complicated form part and having such nonmagnetic properties that the worked part can cope with the detection through needle detecting device is provided a high-Mn austenitic stainless steel having a chemical composition comprising C: 0.02-0.12 mass %, Si: 0.05-1.5 mass %, Mn: 10.0-22.0 mass %, S: not more than 0.03 mass %, Ni: 4.0-12.0 mass %, Cr: 14.0-25.0 mass % and N: 0.07-0.17 mass %, provided that these components are contained so that ? cal (mass %) represented by the following equation (1) is not more than 5.5 mass %: ? cal (mass %)=(Cr+0.48Si+1.21Mo+2.2(V+Ti)+0.15Nb)?(Ni+0.47Cu+0.11Mn?0.0101Mn2+26.4C+20.1N)?4.7??(1) and having a magnetic permeability of not more than 1.003 under a magnetic field of 200 kA/m.Type: GrantFiled: February 26, 2010Date of Patent: April 22, 2014Assignee: Nippon Yakin Kogyo Co., Ltd.Inventors: Shigeru Hirata, Yuji Ikegami, Kazuhiro Yamakawa
-
Publication number: 20140041770Abstract: A purpose of the present invention is to provide a martensitic stainless steel tube exhibiting excellent performance even in severe corrosive environments in which a partial pressure of hydrogen sulfide exceeds 0.03 bar. Provided is a low C-high Cr alloy steel tube for OCTG (Oil Country Tubular Goods) having minimum yield strength of 862 MPa and excellent corrosion resistance, wherein the steel tube contains, in percent by mass, 0.005 to 0.05% C, 12 to 16% Cr, 1.0% or less Si, 2.0% or less Mn, 3.5 to 7.5% Ni, 1.5 to 3.5% Mo, 0.01 to 0.05% V, 0.02% or less N, and 0.01 to 0.06% Ta and satisfies the relationship in the following formula (1), and the rest comprises Fe and unavoidable impurities.Type: ApplicationFiled: March 3, 2011Publication date: February 13, 2014Applicant: NKK TUBESInventors: Shuji Hashizume, Yusuke Minami, Tomomi Taniguchi
-
Patent number: 8647448Abstract: A steel piston ring and a steel cylinder liner are described which comprise as the main body a steel composition which has good nitridability. The steel composition consists of the following elements: 0-0.5 weight % B, 0.5-1.2 weight % C, 4.0-20.0 weight % Cr, 0-2.0 weight % Cu, 45.30-91.25 weight % Fe, 0.1-3.0 weight % Mn, 0.1-3.0 weight % Mo, 0-0.05 weight % Nb, 2.0-12.0 weight % Ni, 0-0.1 weight % P, 0-0.05 weight % Pb, 0-0.05 weight % S, 2.0-10.0 weight % Si, 0-0.05 weight % Sn, 0.05-2.0 weight % V, 0-0.2 weight % Ti and 0-0.5 weight % W. The steel piston ring and the steel cylinder liner can be manufactured in a casting process using the machinery and technology employed for the manufacture of cast iron parts.Type: GrantFiled: March 25, 2010Date of Patent: February 11, 2014Assignee: Federal-Mogul Burscheid GmbHInventor: Laszlo Pelsoeczy
-
Patent number: 8608873Abstract: A stainless steel and a flat cold product produced therefrom, which can be easily produced in an economical manner. A steel according to the invention, in the cold-rolled state, has a microstructure with 5-15% by volume ?-ferrite and austenite as the remainder. It contains (in % by weight): C: 0.05-0.14%, Si: 0.1-1.0%, Mn: 4.0-12.0%, Cr: >17.5-22.0%, Ni: 1.0-4.0%, Cu: 1.0-3.0%, N: 0.03-0.2%, P: max. 0.07%, S: max. 0.01%, Mo: max. 0.5%, optionally one or more elements from the group consisting of Ti, Nb, B, V, Al, Ca, As, Sn, Sb, Pb, Bi, and H wherein Ti: max. 0.02%, Nb: max. 0.1%, B: max. 0.004%, V: max. 0.1%, Al: 0.001-0.03%, Ca: 0.0005-0.003%, As: 0.003-0.015%, Sn: 0.003-0.01%, Pb: max. 0.01%, Bi: max. 0.01%, H: max. 0.0025%, and remainder Fe and unavoidable impurities.Type: GrantFiled: September 3, 2009Date of Patent: December 17, 2013Assignee: Outokumpu Nirosta GmbHInventors: Cornel Abratis, Lutz Ernenputsch, Wilfried Klos, Hans-Joachim Krautschick, Michael Sachtleber
-
Patent number: 8603263Abstract: The present invention provides a duplex stainless steel having excellent resistance to alkalis and particularly corrosion resistance against high-temperature concentrated alkali solutions and excellent weldability. The duplex stainless steel has a chemical composition comprising, in mass %, C: at most 0.03%, Si: at most 0.5%, Mn: at most 2.0%, P: at most 0.04%, S: at most 0.003%, Cr: at least 25.0% to less than 28.0%, Ni: at least 6.0% to at most 10.0%, Mo: at least 0.2% to at most 3.5%, N: less than 0.5%, W: at most 3.0%, and a remainder of Fe and impurities.Type: GrantFiled: May 1, 2012Date of Patent: December 10, 2013Assignee: Nippon Steel & Sumitomo Metal CorporationInventors: Hideya Kaminaka, Junichi Higuchi, Yoshiaki Yamade, Shuuji Yoshida, Junko Imamura
-
Patent number: 8591672Abstract: The invention provides medical devices comprising high-strength alloys which degrade over time in the body of a human or animal, at controlled degradation rates, without generating emboli. In one embodiment the alloy is formed into a bone fixation device such as an anchor, screw, plate, support or rod. In another embodiment the alloy is formed into a tissue fastening device such as staple. In yet another embodiment, the alloy is formed into a dental implant or a stent.Type: GrantFiled: July 19, 2012Date of Patent: November 26, 2013Assignee: Bio DG, Inc.Inventors: Gordon F. Janko, Herbert R. Radisch, Thomas A. Trozera
-
Patent number: 8580154Abstract: Disclosed are quaternary ammonium salts containing non-halogen anions such as carbonates, bicarbonates, phosphates, glycolates and mixtures thereof as conversion coatings or additives imparting anti-corrosive properties to paints. The invention relates to a method for inhibiting the corrosion of metal surfaces by applying a composition containing one or more quaternary ammonium carbonate or bicarbonate. The disclosure is also directed to anti-corrosive coatings for metal substrates containing these compounds and to metal substrates having these anticorrosive coatings.Type: GrantFiled: December 24, 2012Date of Patent: November 12, 2013Assignee: Lonza, Inc.Inventors: Thomas C. Bedard, Thomas David Burleigh, Larry K. Hall, Joseph Kimler, Joseph W. Scheblein, Michael Y. Chiang