Zinc Containing Patents (Class 148/413)
  • Patent number: 10384282
    Abstract: An electrical discharge machining electrode wire includes a core including a copper or a copper alloy, and a covering layer that covers a periphery of the core and includes a zinc. The covering layer includes an outermost layer consisting of an ?-phase of a copper-zinc based alloy. The outermost layer has a Vickers hardness of 200 to 300 Hv.
    Type: Grant
    Filed: January 7, 2015
    Date of Patent: August 20, 2019
    Assignee: HITACHI METALS, LTD.
    Inventors: Takayuki Tsuji, Hiromitsu Kuroda, Tetsuya Tokumitsu, Takamitsu Kimura, Yosuke Shiba, Hiroshi Matsuzaki, Yuichi Komuro, Shingo Amamiya
  • Patent number: 9845520
    Abstract: A beryllium-free high-strength copper alloy includes, about 10-30 vol % of L12-(Ni,Cu)3(Al,Sn), and substantially excludes cellular discontinuous precipitation around grain boundaries. The alloy may include at least one component selected from the group consisting of: Ag, Cr, Mn, Nb, Ti, and V, and the balance Cu.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: December 19, 2017
    Assignee: Questek Innovations LLC
    Inventors: James A. Wright, Abhijeet Misra
  • Patent number: 9209567
    Abstract: A clamping body for an electrical conductor includes a clamping body pocket. The clamping body pocket forms a receiving space for receiving the electrical conductor. The clamping body pocket is formed from a copper zinc alloy that has a lead content of less than 0.1 percent by weight, a tensile strength that is at least 640 Newtons per square millimeter, and an elongation A10 at rupture that is at least 5 percent. The clamping body also includes a threaded bore for receiving a screw, the threaded bore being formed in a side wall of the clamping body pocket.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: December 8, 2015
    Assignee: PHOENIX CONTACT GMBH & CO. KG
    Inventors: Michael Schaefer, Uwe Ambrosy
  • Publication number: 20150000803
    Abstract: A Cu—Ni—Si-based copper alloy sheet of the invention has excellent mold abrasion resistance and shear workability while maintaining strength and conductivity, in which 1.0 mass % to 4.0 mass % of Ni is contained, 0.2 mass % to 0.9 mass % of Si is contained, the remainder is made up of Cu and inevitable impurities. The number of the Ni—Si precipitate particles having a grain diameter in a range of 20 nm to 80 nm in a surface layer that is as thick as 20% of the entire sheet thickness from the surface is represented by a particles/mm2, and the number of the Ni—Si precipitate particles having a grain diameter in a range of 20 nm to 80 nm in a portion below the surface layer is represented by b particles/mm2, a/b is in a range of 0.5 to 1.5.
    Type: Application
    Filed: December 22, 2011
    Publication date: January 1, 2015
    Applicant: Mitsubishi Shindoh Co., Ltd
    Inventors: Jun-Ichi Kumagai, Yoshio Abe, Akira Saito, Shuzo Umezu, Ryo Iino
  • Publication number: 20140318673
    Abstract: A copper alloy material, having an alloy composition containing any one or both of Ni and Co in an amount of 0.4 to 5.0 mass % in total, and Si in an amount of 0.1 to 1.5 mass %, with the balance being copper and unavoidable impurities, wherein a ratio of an area of grains in which an angle of orientation deviated from S-orientation {2 3 1} <3 4 6> is within 30° is 60% or more, according to a crystal orientation analysis in EBSD measurement; an electrical or electronic part formed by working the copper alloy material; and a method of producing the copper alloy material.
    Type: Application
    Filed: June 24, 2014
    Publication date: October 30, 2014
    Inventors: Hiroshi KANEKO, Kiyoshige HIROSE, Tatsuhiko EGUCHI
  • Publication number: 20140283963
    Abstract: A Cu—Ti based copper alloy sheet material contains, in mass %, from 2.0 to 5.0% of Ti, from 0 to 1.5% Ni, from 0 to 1.0% Co, from 0 to 0.5% Fe, from 0 to 1.2% Sn, from 0 to 2.0% Zn, from 0 to 1.0% Mg, from 0 to 1.0% Zr, from 0 to 1.0% Al, from 0 to 1.0% Si, from 0 to 0.1% P, from 0 to 0.05% B, from 0 to 1.0% Cr, from 0 to 1.0% Mn, and from 0 to 1.0% V, the balance substantially being Cu. The sheet material has a metallic texture wherein in a cross section perpendicular to a sheet thickness direction, a maximum width of a grain boundary reaction type precipitate is not more than 500 nm, and a density of a granular precipitate having a diameter of 100 nm or more is not more than 105 number/mm2.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 25, 2014
    Applicant: DOWA METAL TECH CO., LTD.
    Inventors: Weilin GAO, Motohiko Suzuki, Toshiya Kamada, Takashi Kimura, Fumiaki Sasaki, Akira Sugawara
  • Publication number: 20140212324
    Abstract: Provided by the present invention are a fine crystallite high-function metal alloy member, a method for manufacturing the same, and a business development method thereof, in which a crystallite of a metal alloy including a high-purity metal alloy whose crystal lattice is a face-centered cubic lattice, a body-centered cubic lattice, or a close-packed hexagonal lattice is made fine with the size in the level of nanometers (10?9 m to 10?6 m) and micrometers (10?6 m to 10?3 m), and the form thereof is adjusted, thereby remedying drawbacks thereof and enhancing various characteristics without losing superior characteristics owned by the alloy.
    Type: Application
    Filed: April 10, 2012
    Publication date: July 31, 2014
    Applicant: THREE-O CO., LTD.
    Inventor: Kazuo Ogasa
  • Publication number: 20140116583
    Abstract: A Cu—Ni—Co—Si based copper alloy sheet material has second phase particles existing in a matrix, with a number density of ultrafine second phase particles is 1.0×109 number/mm2 or more. A number density of fine second phase particles is not more than 5.0×107 number/mm2. A number density of coarse second phase particles is 1.0×105 number/mm2 or more and not more than 1.0×106 number/mm2. The material has crystal orientation satisfying the following equation (1): I{200}/I0{200}?3.0??(1) wherein I{200} represents an integrated intensity of an X-ray diffraction peak of the {200} crystal plane on the sheet material sheet surface; and I0{200} represents an integrated intensity of an X-ray diffraction peak of the {200} crystal plane in a pure copper standard powder sample.
    Type: Application
    Filed: October 31, 2013
    Publication date: May 1, 2014
    Applicant: DOWA METALTECH CO., LTD.
    Inventors: Toshiya KAMADA, Takashi KIMURA, Weilin GAO, Fumiaki SASAKI, Akira SUGAWARA
  • Publication number: 20130333812
    Abstract: To provide a copper alloy of the FCC structure containing Ni: 3.0 to 29.5 mass %, Al: 0.5 to 7.0 mass %, and Si: 0.1 to 1.5 mass %, with the remainder consisting of Cu and incidental impurities, wherein the copper alloy is of the high strength, but is excellent in workability, and has high electrical conductivity, and can control property thereof, by precipitating a ?? phase of the L12 structure including Si at an average particle diameter of 100 nm or less in a parent phase of the copper alloy.
    Type: Application
    Filed: December 13, 2011
    Publication date: December 19, 2013
    Applicants: Tohoku Techno Arch Co., Ltd., Nippon Seisen Co., Ltd.
    Inventors: Kiyohito Ishida, Rysuke Kainuma, Ikuo Ohnuma, Toshihiro Omori, Takashi Miyamoto, Hiroki Sato
  • Publication number: 20130263978
    Abstract: Cu—Ni—Si—Co copper alloy strip having excellent balance between strength and electrical conductivity which can prevent the drooping curl is provided. The copper alloy strip for an electronic materials contains 1.0-2.5% by mass of Ni, 0.5-2.5% by mass of Co, 0.3-1.2% by mass of Si, and the remainder comprising Cu and unavoidable impurities, wherein the copper alloy strip satisfies both of the following (a) and (b) as determined by means of X-ray diffraction pole figure measurement based on a rolled surface: (a) among a diffraction peak intensities obtained by ? scanning at ?=20° in a {200} pole figure, a peak height at ? angle 145° is not more than 5.2 times that of standard copper powder; (b) among a diffraction peak intensities obtained by ? scanning at ?=75° in a {111} pole figure, a peak height at ? angle 185° is not less than 3.4 times that of standard copper powder.
    Type: Application
    Filed: November 11, 2011
    Publication date: October 10, 2013
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventor: Hiroshi Kuwagaki
  • Publication number: 20130180630
    Abstract: A Cu—Co—Si-based alloy that has even mechanical properties and that is provided with favorable mechanical and electrical properties as a copper alloy for an electronic material is provided. The copper alloy for an electronic material comprises 0.5% by mass to 3.0% by mass of Co, 0.1% by mass to 1.0% by mass of Si, and the balance Cu with inevitable impurities. An average grain size is in the range of 3 ?m to 15 ?m and an average difference between a maximum grain size and a minimum grain size in every observation field of 0.05 mm2 is 5 ?m or less.
    Type: Application
    Filed: September 6, 2011
    Publication date: July 18, 2013
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Yasuhiro Okafuji, Takuma Onda, Hiroshi Kuwagaki
  • Patent number: 8357248
    Abstract: A copper alloy having high strength, high electrical conductivity, and excellent bendability, the copper alloy containing, in terms of mass %, 0.4 to 4.0% of Ni; 0.05 to 1.0% of Si; and, as an element M, one member selected from 0.005 to 0.5% of P, 0.005 to 1.0% of Cr, and 0.005 to 1.0% of Ti, with the remainder being copper and inevitable impurities, in which an atom number ratio M/Si of elements M and Si contained in a precipitate having a size of 50 to 200 nm in a microstructure of the copper alloy is from 0.01 to 10 on average, the atom number ratio being measured by a field emission transmission electron microscope with a magnification of 30,000 and an energy dispersive analyzer. According to the invention, it is possible to provide a copper alloy having high strength, high electrical conductivity, and excellent bendability.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: January 22, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuhiro Aruga, Akira Fugono, Takeshi Kudo, Katsura Kajihara
  • Publication number: 20120267013
    Abstract: A copper alloy sheet material, having an R value of 1 or greater, which is defined by: R=([BR]+[RDW]+[W])/([C]+[S]+[B]) wherein [BR], [RDW], [W], [C], [S], and [B] represent an area ratio of crystal texture orientation component of BR orientation {3 6 2}<8 5 3>, RD-rotated-cube orientation {0 1 2}<1 0 0>, cube orientation {1 0 0}<0 0 1>, copper orientation {1 2 1}<1 1 1>, S-orientation {2 3 1}<3 4 6>, and brass orientation {1 1 0}<1 1 2>, respectively, in crystal orientation analysis in an EBSD (electron back scatter diffraction) analysis, and having a proof stress of 500 MPa or greater, and an electrical conductivity of 30%IACS or higher; and a production method of the same.
    Type: Application
    Filed: June 1, 2012
    Publication date: October 25, 2012
    Inventors: Hiroshi KANEKO, Koji Sato, Tatsuhiko Eguchi
  • Patent number: 8273192
    Abstract: The present invention relates to a lead-free, bismuth-free free-cutting phosphorous brass alloy and its method of manufacture. The alloy comprises: Cu; Zn; 0.59 to 1.6 wt % P; and other elements in the amount of 0.005 to 0.6 wt %, which comprise at least two elements selected from the group consisting of Al, Si, Sb, Sn, Rare earth element (RE), Ti and B, and the balance being unavoidable impurities. The phosphorous brass alloy contains a combined wt % of Cu and Zn of between 97.0 wt % and 99.5 wt %, within which the content of Zn is above 40 wt %. Considering the solid solubility of P in the matrix of copper will be decreased rapidly with the temperature decrease and form the brittle intermetallic compounds Cu3P with Cu, the present invention relies upon P to ensure excellent cuttability of the invented alloy. The invented alloy is reasonably priced, and has excellent cuttability, castability, hot and cold workability, dezincification corrosion resistance, mechanical properties and weldability.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: September 25, 2012
    Assignee: Xiamen Lota International Co., Ltd.
    Inventors: Chuankai Xu, Zhenqing Hu, Siqi Zhang
  • Patent number: 8268098
    Abstract: The present invention relates to a copper alloy having high strength, high electrical conductivity, and excellent bendability, the copper alloy containing, in terms of mass %, 0.4 to 4.0% of Ni; 0.05 to 1.0% of Si; and, as an element M, one member selected from 0.005 to 0.5% of P, 0.005 to 1.0% of Cr, and 0.005 to 1.0% of Ti, with the remainder being copper and inevitable impurities, in which an atom number ratio M/Si of elements M and Si contained in a precipitate having a size of 50 to 200 nm in a microstructure of the copper alloy is from 0.01 to 10 on average, the atom number ratio being measured by a field emission transmission electron microscope with a magnification of 30,000 and an energy dispersive analyzer. According to the invention, it is possible to provide a copper alloy having high strength, high electrical conductivity, and excellent bendability.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: September 18, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuhiro Aruga, Akira Fugono, Takeshi Kudo, Katsura Kajihara
  • Publication number: 20110186192
    Abstract: A copper alloy material for an electric/electronic part, having a composition comprising Co 0.5 to 2.0 mass % and Si 0.1 to 0.5 mass %, with the balance of Cu and inevitable impurities, in which a copper alloy of a matrix has a grain size of 3 to 35 ?m, a precipitate composed of Co and Si has a particle size of 5 to 50 nm, the precipitate has a density of 1×108 to 1×1010 number/mm2, and the copper alloy material has a tensile strength of 550 MPa and an electrical conductivity of 50% IACS or more.
    Type: Application
    Filed: January 28, 2011
    Publication date: August 4, 2011
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kuniteru MIHARA, Ryosuke MATSUO, Tatsuhiko EGUCHI
  • Publication number: 20110073221
    Abstract: A copper alloy sheet material, having a composition containing any one or both of Ni and Co in an amount of 0.5 to 5.0 mass % in total, and Si in an amount of 0.3 to 1.5 mass %, with the balance of copper and unavoidable impurities, wherein an area ratio of cube orientation {0 0 1} <1 0 0> is 5 to 50%, according to a crystal orientation analysis in EBSD measurement.
    Type: Application
    Filed: December 1, 2010
    Publication date: March 31, 2011
    Inventors: Hiroshi KANEKO, Kiyoshige HIROSE, Koji SATO
  • Publication number: 20100326573
    Abstract: An copper alloy material for electric/electronic components containing Co by 0.2 to 2 mass % and Si by 0.05 to 0.5 mass % and having a remaining component composed of Cu and unavoidable impurities, characterized in that its grain size is 3 to 35 ?m and size of precipitate containing the both of Co and Si is 5 to 50 nm, electric conductivity is 50% IACS or more, tensile strength is 500 MPa or more and bending workability (R/t) is 2 or less.
    Type: Application
    Filed: January 30, 2009
    Publication date: December 30, 2010
    Inventors: Kuniteru Mihara, Ryosuke Matsuo, Tatsuhiko Eguchi
  • Publication number: 20100269963
    Abstract: A copper alloy material according to the present invention is characterized in that the same comprises: Ni between 2.8 mass % and 5.0 mass %; Si between 0.4 mass % and 1.7 mass %; S of which content is limited to less than 0.005 mass %; and the balance of the copper alloy material is composed of copper and unavoidable impurity, wherein a proof stress is stronger than or equal to 800 MPa, and the same is superior in bending workability and in stress relaxation resistance.
    Type: Application
    Filed: October 31, 2008
    Publication date: October 28, 2010
    Inventors: Kiyoshige Hirose, Kuniteru Mihara, Hiroshi Kaneko, Tatsuhiko Eguchi
  • Publication number: 20100170595
    Abstract: A copper alloy material according to the present invention is characterized in that the copper alloy material includes: an element X between 0.1% and 4% by mass, in which the element X represents one transition element or not less than two elements selected from Ni, Fe, Co and Cr; an element Y between 0.01% and 3% by mass, in which the element Y represents one element or not less than two elements selected from Ti, Si, Zr and Hf; and a remaining portion to be comprised of copper and an unavoidable impurity, wherein the copper alloy material has an electrical conductivity of not less than 50% IACS, an yield strength of not less than 600 MPa, and a stress relaxation rate of not higher than 20% as to be measured after the same is maintained for 1000 hours at a state under applying a stress of 80% of the yield strength.
    Type: Application
    Filed: March 28, 2008
    Publication date: July 8, 2010
    Inventors: Hiroshi Kaneko, Kuniteru Mihara, Tatsuhiko Eguchi
  • Publication number: 20100132851
    Abstract: A sheet material of a copper alloy has a chemical composition comprising 1.2 to 5.0 wt % of titanium, and the balance being copper and unavoidable impurities, the material having a mean crystal grain size of 5 to 25 ?m and (maximum crystal grain size?minimum crystal grain size)/(mean crystal grain size) being 0.20 or less, assuming that the maximum, minimum and mean values of mean values, each of which is the mean value of crystal grain sizes in a corresponding one of a plurality of regions which are selected from the surface of the sheet material at random and which have the same shape and size, are the maximum, minimum and mean crystal grain sizes, respectively, and the material having a crystal orientation satisfying I{420}/I0{420}>1.0, assuming that the intensities of X-ray diffraction on the {420} crystal plane of the surface of the material and the standard powder of pure copper are I{420} and I0{420}, respectively.
    Type: Application
    Filed: November 24, 2009
    Publication date: June 3, 2010
    Applicant: DOWA METALTECH CO., LTD.
    Inventors: Weilin Gao, Hisashi Suda, Hiroto Narieda, Akira Sugawara
  • Publication number: 20100000637
    Abstract: The present invention provides Cu—Ni—Si system alloys for electronic material that with the addition of other alloy elements minimized, simultaneously exhibits enhanced electric conductivity, strength, bendability and stress relaxation performance. There are provided Cu—Ni—Si system alloys comprising 1.2 to 3.5 mass % Ni, Si in a concentration (mass %) of ? to ¼ of Ni concentration (mass %) and the balance Cu and impurities whose total amount is 0.05 mass % or less, the Cu—Ni—Si system alloys having its configuration of crystal grains and width of a precipitate-free zone regulated so as to fall within appropriate ranges by controlling solution treatment conditions, aging treatment conditions and degree of a reduction ratio. Thus, there can be provided copper alloys strip of 55 to 62% IACS electric conductivity and 550 to 700 MPa tensile strength, being free from cracking at 180° bending test of 0 radius and exhibiting a stress relaxation ratio, as measured on heating at 150° C. for 1000 hr, of 30% or less.
    Type: Application
    Filed: September 21, 2007
    Publication date: January 7, 2010
    Applicant: Nippon Mining & Metals Co., Ltd.
    Inventor: Takaaki Hatano
  • Publication number: 20090229715
    Abstract: An apparatus for manufacturing wire comprising: a wire delivering equipment, a wire winding equipment, and an annealing while running equipment installed between the wire delivering equipment and the wire winding equipment, the age-precipitation copper alloy wire being passed in such manner that the wire turns around a plurality of times along a running route in the annealing while running equipment. The current applying equipment to raise a temperature of the age-precipitation copper alloy wire by generated Joule heat may be installed at upstream side of the annealing while running equipment. Another current applying equipment for solution treatment may be installed in tandem at upstream side of the annealing while running equipment. In place of the annealing while running equipment, a current applying equipment may be connected in tandem for age-treatment. By using those equipments, age-precipitation copper alloy wire having the diameter of from 0.03 mm to 3 mm may be obtained.
    Type: Application
    Filed: March 5, 2009
    Publication date: September 17, 2009
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventors: Isao TAKAHASHI, Keisuke KITAZATO
  • Publication number: 20090165902
    Abstract: A method of producing a copper alloy wire rod, containing: a casting step for obtaining an ingot by pouring molten copper of a precipitation strengthening copper alloy into a belt-&-wheel-type or twin-belt-type movable mold; and a rolling step for rolling the ingot obtained by the casting step, which steps are continuously performed, wherein an intermediate material of the copper alloy wire rod in the mid course of the rolling step or immediately after the rolling step is quenched.
    Type: Application
    Filed: December 1, 2008
    Publication date: July 2, 2009
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hirokazu YOSHIDA, Tsukasa TAKAZAWA
  • Publication number: 20090120544
    Abstract: An object of the present invention is to provide a strengthened alpha brass having a good balance between high offset yield strength and formability without deteriorated stress relaxation resistance in comparison with conventional brass and a manufacturing method of the strengthened alpha brass. In order to achieve this object, a strengthened alpha brass having a composition of 63 wt % to 75 wt % copper, incidental impurities and the balance zinc; the strengthened alpha brass which is obtained by using a starting plate material subjected to a re-crystallization annealing to have a grain size from 1-micron meter to 2-micron meter followed by cold rolling in 5% to 40% reduction, then the plate material is low temperature annealed at a temperature equal to or higher than the temperature at which a 0.2% offset yield strength exhibits a maximum value to adjust the 0.2% offset yield strength ([Sigma]0.2: MPa) to be equal to or higher than 90% of its maximum value is adopted. The strengthened alpha brass has a 0.
    Type: Application
    Filed: February 3, 2006
    Publication date: May 14, 2009
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventor: Hiroshi Yamaguchi
  • Publication number: 20090101243
    Abstract: The present invention relates to a copper alloy having high strength, high electrical conductivity, and excellent bendability, the copper alloy containing, in terms of mass %, 0.4 to 4.0% of Ni; 0.05 to 1.0% of Si; and, as an element M, one member selected from 0.005 to 0.5% of P, 0.005 to 1.0% of Cr, and 0.005 to 1.0% of Ti, with the remainder being copper and inevitable impurities, in which an atom number ratio M/Si of elements M and Si contained in a precipitate having a size of 50 to 200 nm in a microstructure of the copper alloy is from 0.01 to 10 on average, the atom number ratio being measured by a field emission transmission electron microscope with a magnification of 30,000 and an energy dispersive analyzer. According to the invention, it is possible to provide a copper alloy having high strength, high electrical conductivity, and excellent bendability.
    Type: Application
    Filed: May 23, 2007
    Publication date: April 23, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro Aruga, Akira Fugono, Takeshi Kudo, Katsura Kajihara
  • Publication number: 20090025840
    Abstract: The invention provides Cu—Ni—Si—Co—Cr copper alloys for electronic materials having excellent characteristics such as dramatically improved strength and electrical conductivity. In one aspect, the invention is a Cu—Ni—Si—Co—Cr copper alloy for electronic materials, containing about 0.5-about 2.5% by weight of Ni, about 0.5-about 2.5% by weight of Co, about 0.30-about 1.2% by weight of Si, and about 0.09-about 0.5% by weight of Cr, and the balance being Cu and unavoidable impurities, wherein the ratio of the total weight of Ni and Co to the weight of Si in the alloy composition satisfies the formula: about 4?[Ni+Co]/Si?about 5, and the ratio of Ni to Co in the alloy composition satisfies the formula: about 0.5?Ni/Co?about 2, and wherein Pc is equal to or less than about 15/1000 ?m2, or Pc/P is equal to or less than about 0.
    Type: Application
    Filed: March 31, 2006
    Publication date: January 29, 2009
    Applicant: Nippon Mining & Metals Co., Ltd.
    Inventors: Naohiko Era, Kazuhiko Fukamachi, Hiroshi Kuwagaki
  • Publication number: 20040208778
    Abstract: The present invention provides a Cu—Cr—Zr alloy material excellent in fatigue and intermediate temperature characteristics, which comprises 0.05 to 1.0% by mass of Cr and 0.05 to 0.25% by mass of Zr with a balance of Cu and inevitable impurities. The alloy comprises inclusion particles based on any one of Zr and a Cu—Zr alloy having a diameter of 0.1 &mgr;m or more, and the proportion of the inclusion particles containing 10% or more of sulfur as one of the inevitable impurities is one particle/mm2.
    Type: Application
    Filed: January 20, 2004
    Publication date: October 21, 2004
    Inventors: Kazuki Kanmuri, Kazuhiko Fukamachi
  • Patent number: 6716541
    Abstract: The material for a metal strip for manufacturing electrical contact component parts has, expressed in percent by weight, the following composition: nickel (Ni) 0.5-3.5% silicon (Si) 0.08-1.0%  tin (Sn) 0.1-1.0% zinc (Zn) 0.1-1.0% zirconium (Zr) 0.005-0.2%  silver (Ag) 0.02- 0.5%  The remainder is copper and includes impurities caused by smelting.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: April 6, 2004
    Assignee: Stolberger Metallwerke GmbH & Co. KG
    Inventors: Udo Adler, Jürgen Gebhardt, Heinz Klenen, Robert Leffers, Thomas Helmenkamp
  • Patent number: 6620340
    Abstract: The invention is directed to a method for providing a corrosion inhibiting aqueous solution which includes zinc orthophosphate where the zinc orthophosphate is solubilized. The invention is directed to a method of making a substantially contaminant-free, concentrated aqueous solution of zinc orthophosphate from zinc metal or zinc oxide and aqueous phosphoric acid.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: September 16, 2003
    Assignee: Carus Corporation
    Inventors: Richard E. Deblois, Kenneth S. Pisarczyk
  • Patent number: 6464810
    Abstract: An object is to improve machinability and polishability of a brass material prepared through cold working, particularly in a brass pipe material. Before cold working, by having an &agr; phase making heat treatment step for increasing an area ratio of an &agr; phase, cold ductility can be ensured at the time of cold working. Also, after cold working, by having a &bgr; phase making heat treatment step for increasing an area ratio of a &bgr; phase, a brass material excellent in machinability and polishability can be provided.
    Type: Grant
    Filed: April 17, 2000
    Date of Patent: October 15, 2002
    Assignee: Toto Ltd.
    Inventors: Katsuaki Nakamura, Toru Uchida
  • Patent number: 6391384
    Abstract: The invention is directed to a method for providing a corrosion inhibiting aqueous solution which includes zinc orthophosphate where the zinc orthophosphate is solubilized. The invention is directed to a method of making a substantially contaminant-free, concentrated aqueous solution of zinc orthophosphate from zinc metal or zinc oxide and aqueous phosphoric acid.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: May 21, 2002
    Assignee: Carus Corporation
    Inventors: Richard E. Deblois, Kenneth S. Pisarczyk
  • Publication number: 20010052377
    Abstract: A copper alloy with excellent punchability, comprising 0.2 to 0.35 wt % of Cr, 0.1 to 0.5 wt % of Sn, and 0.1 to 0.5 wt % of Zn, the balance being made of Cu and unavoidable impurities, wherein, in a Cu matrix, a precipitation phase A of Cr or a Cr compound of 0.1 to 10 &mgr;m in maximum diameter, is provided, at a density in number of 1×103 to 3×105/mm2, and a precipitation phase B of Cr or a Cr compound of 0.001 to 0.030 &mgr;m in maximum diameter, is provided, at a density in number that is 10 times or more of that of the precipitation phase A.
    Type: Application
    Filed: April 10, 2001
    Publication date: December 20, 2001
    Inventors: Takao Hirai, Yoshimasa Ohyama, Takayuki Usami
  • Publication number: 20010006082
    Abstract: The purpose of the invention is a structure element, particularly an lower wing element of an aircraft, manufactured from a rolled, extruded or forged product made of an alloy with composition (% by weight): Cu=4.6-5.3, Mg=0.10-0.50, Mn=0.15-0.45, Si <0.10, Fe<0.15, Zn<0.20, Cr<0.10, other elements <0.05 each and <0.15 total, the remainder being Al treated by solution heat treating, quenching, controlled tension to more than 1.5% permanent deformation and aging.
    Type: Application
    Filed: December 13, 2000
    Publication date: July 5, 2001
    Inventors: Timothy Warner, Philippe Lassince, Philippe Lequeu
  • Patent number: 6210636
    Abstract: A family of copper-nickel-zinc-palladium alloys for sliding and static electrical contact applications comprises, on a weight percent basis, about 15-65 percent copper, up to about 30 percent nickel, about 5-30 percent zinc, about 5-45 percent palladium, and up to about 35 percent silver. One embodiment of the family of alloys is age hardenable and provides alloys with hardness values in excess of 300 Knoop (100g load) and significant improvement in high-temperature properties, formability, tensile strength and ductility. A second embodiment provides an alloy with increased strength and hardness in the wrought condition, relative to the prior art Cu—Ni—Zn alloys.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: April 3, 2001
    Assignee: The J. M. Ney Company
    Inventor: Arthur S. Klein
  • Patent number: 6093499
    Abstract: Copper alloy foils are provided having far greater strength and heat resistance than conventional copper foils, and having better productivity, are characterized by a composition comprising, all by weight, from 0.01 to 0.4% Cr, from 0.01 to 0.25% Zr, from 0.02 to 2.0% Zn; and when necessary from 0.05 to 1.8% Fe and from 0.05 to 0.8% Ti; and when further necessary one or more elements selected from the group consisting of Ni, Sn, In, Mn, P, Mg, Al, B, As, Cd, Co, Te, Ag, and Hf in a total amount of from 0.005 to 1.5%; the balance being copper and unavoidable impurities. Inclusions in the copper foil not larger than 10 .mu.m in size, and the inclusions between 0.5 and 10 .mu.m in size number less than 100 pieces/mm.sup.2.
    Type: Grant
    Filed: April 2, 1999
    Date of Patent: July 25, 2000
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventor: Yasuo Tomioka
  • Patent number: 5658401
    Abstract: A copper-zinc alloy for semi-finished products and articles which are highly loaded and subjected to extreme wear especially synchronizing rings. The alloy possesses a composition of 40 to 65% Cu, 8 to 25% Ni, 2.5 to 5% Si, 0 to 3% Al, 0 to 3% Fe, 0 to 2% Mn and 0 to 2% Pb, with the balance being zinc and unavoidable impurities. The Ni:Si ratio is about 3 to 5:1, and the structure consists of at least 75% .beta.-phase, with the balance .alpha.-phase, in the absence of a .gamma.-phase. Nickel silicides occur predominantly as a round intermetallic phase. The alloy provides quite substantially higher levels of resistance to wear.
    Type: Grant
    Filed: December 29, 1995
    Date of Patent: August 19, 1997
    Assignee: Diehl GmbH & Co.
    Inventors: Norbert Gaag, Peter Ruchel
  • Patent number: 5637160
    Abstract: There is provided a machinable .alpha.+.beta. brass containing bismuth and phosphorous. By maintaining the phosphorous content within a critical range, the alloy exhibits good elevated temperature tensile elongation in the temperature range of 100.degree. C.-350.degree. C. without a decrease in machinability due to phosphide formation. In preferred embodiments, the alloy further contains a tin addition for enhanced corrosion resistance. The combination of tin and phosphorous provides enhanced corrosion resistance to the alloy than could be predicted from either addition alone.
    Type: Grant
    Filed: July 20, 1994
    Date of Patent: June 10, 1997
    Assignee: Olin Corporation
    Inventors: Andrew J. Brock, John F. Breedis, Jack Crane, Julius C. Fister, Frank N. Mandigo, David D. McDevitt, Mark N. Pearman, Ronald N. Caron
  • Patent number: 5487867
    Abstract: A copper based casting alloy in which lead is replaced by 0.1 to 7 wt % bismuth and 0.1 to 2 wt % mischmetal or its rare earth equivalent is used to improve the distribution of bismuth in the alloy. The alloy is further defined by additions of tin, zinc, nickel, manganese, silicon, aluminum, iron and/or antimony.
    Type: Grant
    Filed: February 14, 1994
    Date of Patent: January 30, 1996
    Assignee: Federalloy, Inc.
    Inventor: Akhileshwar R. Singh
  • Patent number: 5288683
    Abstract: A wear-resistant copper alloy which consists essentially of 56 to 65 wt. % of Cu, 28 to 32 wt. % of Zn, 3.5 to 5.5 wt. % of Al, 0.5 to 2.0 wt. % of Fe, 1.0 to 3.0 wt. % of Ni, 0.1 to 1.0 wt. % of Nb, and 0.4 to 1.5 wt. % of Ti, provided that Ti+Nb is equal to or greater than 0.7 wt. %. The alloy includes two discrete intermetallic compounds comprising Ti-Ni-Fe-Al and Nb-Fe-Al uniformly dispersed in a microstructure preferably including at least 50 volume % beta phase and limited alpha and gamma phases. A synchronizer ring made of the copper alloy is also provided.
    Type: Grant
    Filed: November 3, 1992
    Date of Patent: February 22, 1994
    Assignee: Chuetsu Metal Works Co., Ltd.
    Inventors: Kunio Nakashima, Masao Hosoda, Kazuyuki Inagaki
  • Patent number: 5268043
    Abstract: There is provided a magnetic device having first and second portions with different magnetic coercivities. A magnetic field is induced in both the first and second portion. When exposed to a sufficiently high external magnetic field, the polarity of the first portion reverses generating a voltage pulse which may be detected by an external sensor. Either the first or second portion, or both, is formed from a copper alloy containing dispersed magnetic phase.
    Type: Grant
    Filed: August 2, 1991
    Date of Patent: December 7, 1993
    Assignee: Olin Corporation
    Inventor: Charles J. McCowen
  • Patent number: 5262124
    Abstract: An alloy suited for use in water service, having less tendency for lead to dissolve in water, free cutting property and freedom from gravity segregation in casting and cracks caused by forming is provided. The alloy according to the invention comprises about 60 weight % of copper, 0.5 to 3.5 weight % of lead, at least one rare earth metal in an amount of 1/17 to 1/5 relative to lead in weight and zinc for the rest. The lead content is preferably at most 3.0% for less dissolution of lead into water, while less than 3.0% of lead is preferred for hot forged alloys.
    Type: Grant
    Filed: September 3, 1991
    Date of Patent: November 16, 1993
    Assignee: Hitachi Alloy, Ltd.
    Inventors: Kenkichi Yamaji, Rokuro Kawanishi
  • Patent number: 5085712
    Abstract: An iron/copper/chromium alloy material for a high-strength lead frame or pin grid array, which comprises 20 to 90% by weight of Cu and 2.5 to 12% by weight of Cr, with the balance being mainly iron, and which has an average grain size number of at least 10 in each of the iron/chromium phase and the copper phase, is prepared by continuous casting, cold-working, and aging.
    Type: Grant
    Filed: May 23, 1990
    Date of Patent: February 4, 1992
    Assignee: Nippon Steel Corporation
    Inventors: Kunio Watanabe, Satoshi Nishimura, Kunishige Kaneko
  • Patent number: 5028391
    Abstract: A copper-nickel-silicon-chromium alloy having the combination of high hardness and high electrical conductivity. The alloy is composed by weight of 9.5% to 11.5% nickel, in an amount sufficient to provide a nickel-silicon ratio of 3.4 to 4.5, 0.5% to 2.0% chromium, and the balance copper. The alloy is heat treated by initially heating the alloy to a solution temperature and is thereafter quenched. The quenched alloy is then aged to precipitate the metal silicides. Because of the specific ratio of nickel to silicon, the heat treated alloy develops during heat treatment a hardness in excess of 30 Rockwell C and an electrical conductivity in excess of 24% of pure copper.
    Type: Grant
    Filed: December 26, 1989
    Date of Patent: July 2, 1991
    Assignee: Amoco Metal Manufacturing Inc.
    Inventor: Quentin F. Ingerson
  • Patent number: 5004581
    Abstract: A dispersion strengthened Cu (copper)-base alloy for a wear-resistant overlay formed on a metal substrate consists essentially of, by weight %,Ni: 5 to 30%;B: 0.5 to 3%;Si: 1 to 5%;Fe: 4 to 30%;Sn: 3 to 15% and/or An: 3 to 30%; andthe remainder being Cu and unavoidable impurities, and has a structure in which particles of boride and silicide of the Fe-Ni system are dispersed in a Cu-base matrix, and Cu-base primary crystals contain Sn and/or Zn in a solid solution state. If necessary, 0.1 to 5% of Al, 0.1 to 5% of Ti, and/or 1 to 10% of Mn may be added. 0.02 to 2% of C, and 0.1 to 10% of Cr and/or 0.3 to 5% of Ti may be further added. Instead of or along with Sn and/or Zn, 2 to 20% of Pb can be used, and nonsoluble Pb particles are uniformly dispersed between Cu-base .alpha. phase dendrites and serve as a solid lubricant.
    Type: Grant
    Filed: July 30, 1990
    Date of Patent: April 2, 1991
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Soya Takagi, Kazuhiko Mori, Minoru Kawasaki, Shinji Kato
  • Patent number: 4954187
    Abstract: Utilization of a copper-zinc alloy for semifinished materials and semi-manufactured articles; especially synchronizing rings. The copper-zinc alloy is essentially constituted of 50 to 65% copper, 1 to 6% aluminum, 0.5 to 5% silicon, 5 to 8% nickel, as well as selectively 0 to 1% iron, 0 to 2% lead, 0 to 2% manganese, all in percent by weight, with zince as the remainder, as well as unavoidable impurities, whereby the nickel is overwhelmingly present in an intermetallic composition with silicon (nickel-silicide). The silicides are in round, uniformly distributed fine precipitate form.
    Type: Grant
    Filed: October 20, 1988
    Date of Patent: September 4, 1990
    Assignee: Diehl GmbH & Co.
    Inventors: Norbert Gaag, Peter Ruchel
  • Patent number: 4871399
    Abstract: A copper alloy obtained by preparing a blank of an alloy that consists of 1.0-3.0% Ni, 0.5-1.5% Ti (the ratio of Ni/Ti in weight percent being in the range of 1-3), 0.1-2.0% Zn, 0.01-0.5% Mg, no more than 50 ppm of oxygen, and the balance being Cu and incidental impurities, all percents being on a weight basis; and reducing the thickness thereof to the final value by cold rolling, wherein at least one cycle of solution heat-treatment is applied at a temperature of not lower than 900.degree. C., followed by quenching with water with no more than 50% reduction in plate thickness being attained to the final value subsequent to the final solution heat-treatment, and at least one cycle of aging treatment is applied at a temperature of 500.degree.-600.degree. C.
    Type: Grant
    Filed: April 26, 1988
    Date of Patent: October 3, 1989
    Assignees: Dowa Mining Co., Ltd., Yazaki Corporation
    Inventors: Akira Sugawara, Naoyuki Kanahara
  • Patent number: 4869758
    Abstract: An iron/copper/chromium alloy material for a high-strength lead frame or pin grid array, which comprises 20 to 90% by weight of Cu and 2.5 to 12% by weight of Cr, with the balance being mainly iron, and which has an average grain size number of at least 10 in each of the iron/chromium phase and the copper phase, is prepared by continuous casting, cold-working, and aging.
    Type: Grant
    Filed: May 25, 1988
    Date of Patent: September 26, 1989
    Assignee: Nippon Steel Corporation
    Inventors: Kunio Watanabe, Satoshi Nishimura, Kunishige Kaneko
  • Patent number: 4743427
    Abstract: A high electroconductive copper alloy is disclosed which contains 0.003 to 1.0 wt % of Zn, 0.005 to 0.1 wt % of Mg and the remainder of Cu. Not more than 0.1 wt % of the total amount of either one or more of Cr, Mn, Fe, Co, Ni, Y, Sn, Si and Zr may be contained further, while the amount of oxygen contained is confined to not more than 100 ppm in both cases.
    Type: Grant
    Filed: September 25, 1986
    Date of Patent: May 10, 1988
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Hiroshi Horikawa, Norimasa Satou, Akihiro Ooguri, Kenichi Omata
  • Patent number: 4696704
    Abstract: An excellent material for lead frames is provided which is economical and easily punched out to produce lead frames without bending or breakage, and has both superior tensile strength and high electrical conductivity, as well as splendid heat dissipation properties and good soldering properties.
    Type: Grant
    Filed: May 28, 1986
    Date of Patent: September 29, 1987
    Assignee: NGK Insulators, Ltd.
    Inventors: Kazumasa Takeuchi, Takaharu Iwadachi, Kazuo Ikushima