Magnesium Base Patents (Class 148/420)
  • Patent number: 5087304
    Abstract: Magnesium base metal alloy sheet is produced by rolling the rolling stock extruded or forged from a billet at a temperature ranging from 200.degree. C. to 300.degree. C. The billet is consolidated from rapidly solidified magnesium based alloy powder that consists of the formula Mg.sub.bal Al.sub.a Zn.sub.b X.sub.c, wherein X is at least one element selected from the group consisting of manganese, cerium, neodymium, praseodymium, and yttrium, "a" ranges from about 0 to 15 atom percent, "b" ranges from about 0 to 4 atom percent, "c" ranges from about 0.2 to 3 atom percent, the balance being magnesium and incidental impurities, with the proviso that the sum of aluminum and zinc present ranges from about 2 to 15 atom percent. The alloy has a uniform microstructure comprised of fine grain size ranging from 0.2-1.0 .mu.m together with precipitates of magnesium and aluminum containing intermetallic phases of a size less than 0.1 .mu.m.
    Type: Grant
    Filed: May 6, 1991
    Date of Patent: February 11, 1992
    Assignee: Allied-Signal Inc.
    Inventors: Chin-Fong Chang, Santosh K. Das
  • Patent number: 5078807
    Abstract: Magnesium base metal alloy sheet is produced by rolling the rolling stock extruded or forged from a billet at a temperature ranging from 200.degree. C. to 300.degree. C. The billet is consolidated from rapidly solidified magnesium based alloy powder that consists of the formula Mg.sub.bal Al.sub.a Zn.sub.b X.sub.c, wherein X is at least one element selected from the group consisting of manganese, cerium, neodymium, praseodymium, and yttrium, "a" ranges from about 0 to 15 atom percent, "b" ranges from about 0 to 4 atom percent, "c" ranges from about 0.2 to 3 atom percent, the balance being magnesium and incidental impurities, with the proviso that the sum of aluminum and zinc present ranges from about 2 to 15 atom percent. The alloy has a uniform microstructure comprised of fine grain size ranging from 0.2-1.0 .mu.m together with precipitates of magnesium and aluminum containing intermetallic phases of a size less than 0.1 .mu.m.
    Type: Grant
    Filed: September 21, 1990
    Date of Patent: January 7, 1992
    Assignee: Allied-Signal, Inc.
    Inventors: Chin-Fong Chang, Santosh K. Das
  • Patent number: 5055254
    Abstract: Magnesium alloys having improved corrosion resistance, one alloy containing not more than 0.0024% iron, 0.010% nickel and 0.0024% copper and not less than 0.15% manganese and the other containing not more than 0.0015% iron, 0.0010% nickel and 0.0010% copper and not less than 0.15% manganese.
    Type: Grant
    Filed: October 5, 1989
    Date of Patent: October 8, 1991
    Assignee: Timminco Limited
    Inventor: Douglas J. Zuliani
  • Patent number: 4997622
    Abstract: Magnesium alloy having a breaking load of at least 290 MPa, more particularly at least 330 MPa, having the following composition by weight: Al 2-11%, Zn 0-12%, Mn 0-0.6%, Ca 0-7%, but with the presence of at least Zn and/or Ca, having a mean particle size less than 3 .mu.m, a homogeneous matrix reinforced with intermetallic compounds having a size less than 1 .mu.m precipitated at the grain boundaries, this structure remaining unchanged after storage at 200.degree. C. for 24 hours; and a process for producing it by rapid solidification and consolidation by extrusion at a temperature between 200.degree. and 350.degree. C.
    Type: Grant
    Filed: October 25, 1989
    Date of Patent: March 5, 1991
    Assignees: Pechiney Electrometallurgie, Norsk Hydro A.S.
    Inventors: Gilles Regazzoni, Gilles Nussbaum, Haavard T. Gjestland
  • Patent number: 4767678
    Abstract: The invention is an oxalloy consisting essentially of about 5 to about 57 weight percent magnesium or aluminum and about 0.5 to about 10 weight percent of one or more alloying materials selected from the group consisting of B, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, As, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Ga, In, Sn, Sb, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Th, and rare earths; and the remainder oxygen.The invention also includes a method for forming the above oxalloys and a substrate coated with the oxalloys of the present invention.
    Type: Grant
    Filed: February 18, 1986
    Date of Patent: August 30, 1988
    Assignee: The Dow Chemical Company
    Inventors: Ronald L. Yates, Patrick L. Hagans
  • Patent number: 4765954
    Abstract: A rapidly solidified magnesium based alloy contains finely dispersed magnesium intermetallic phases. The alloy has the form of a filament or a powder and is especially suited for consolidation into bulk shapes having superior combination of strength, ductility and corrosion resistance.
    Type: Grant
    Filed: September 30, 1985
    Date of Patent: August 23, 1988
    Assignee: Allied Corporation
    Inventors: Santosh K. Das, Chin-Fong Chang
  • Patent number: 4613386
    Abstract: The invention is an oxalloy consisting essentially of about 5 to about 57 weight percent magnesium or aluminum and about 0.5 to about 10 weight percent of one or more alloying materials selected from the group consisting of B, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, As, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Ga, In, Sn, Sb, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Th, and rare earths; and the remainder oxygen.The invention also includes a method for forming the above oxalloys and a substrate coated with the oxalloys of the present invention.
    Type: Grant
    Filed: January 26, 1984
    Date of Patent: September 23, 1986
    Assignee: The Dow Chemical Company
    Inventors: Ronald L. Yates, Patrick L. Hagans
  • Patent number: 4571272
    Abstract: A method of superplastically forming an article from a light metal base alloy, of the kind capable of having its crystal structure modified by cold working in such a way that subsequent dynamic recrystallization by hot working is facilitated, comprises cold working a first blank of the alloy to form a second blank having the modified crystal structure, and then forming the second blank into the article by hot working so that dynamic recrystallization is induced and super plastic deformation occurs. The degree of modification of the crystal structure during cold working is such that as the dynamic recrystallization continues, the grain size is progressively refined.
    Type: Grant
    Filed: August 26, 1983
    Date of Patent: February 18, 1986
    Assignee: Alcan International Limited
    Inventor: Roger Grimes
  • Patent number: 4533413
    Abstract: A composite material made of a matrix of a first metal and reinforcing first particles with average particle diameter less than or equal to about ten microns dispersed in the first metal matrix, with the reinforcing first particles each having a composite structure, being made up of a plurality of fine second particles of a ceramic made by reacting together a second metal and a gas and being combined with one another by a matrix of a third metal.
    Type: Grant
    Filed: May 8, 1984
    Date of Patent: August 6, 1985
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hirohisa Miura, Hiroshi Sato, Toshio Natsume, Hidenori Katagiri
  • Patent number: 4439253
    Abstract: A cobalt based, manganese-containing glassy metal alloy is provided. The alloy has a combination of near-zero magnetostriction (+5 ppm to -1 ppm), high permeability (greater than 5,000) and high saturation induction (about 1.09 T or greater). The alloy has a composition described by the formula [Co.sub.a Fe.sub.1-a ].sub.100-(b+c) Mn.sub.b B.sub.c-d Si.sub.d, where "a" ranges from about 0.90 to 0.99, "b" ranges from about 2 to 6 atom percent, "c" ranges from about 14 to 20 atom percent and "d" ranges from zero to about 7 atom percent, with the proviso that the minimum B present is 10 atom percent. The alloys of the invention find use in magnetic recording heads, switching power supplies, special magnetic amplifiers and the like.
    Type: Grant
    Filed: March 4, 1982
    Date of Patent: March 27, 1984
    Assignee: Allied Corporation
    Inventor: V. R. V. Ramanan
  • Patent number: 4401621
    Abstract: Magnesium alloys for castings having good tensile properties at both ambient and high temperatures and good resistance to creep contain 1.5-10% of yttrium or an yttrium/heavy rare earths mixture and 1-6% of neodymium or a neodymium/lanthanum/praseodymium mixture. The alloys may be heat treated to improve their properties.
    Type: Grant
    Filed: March 25, 1982
    Date of Patent: August 30, 1983
    Assignee: Magnesium Elektron Limited
    Inventors: William Unsworth, John F. King, Stephen L. Bradshaw