Aluminum Containing Patents (Class 148/428)
  • Patent number: 8491838
    Abstract: The present invention relates to a low thermal expansion Ni-base superalloy containing, in terms of mass %, C: 0.15% or less; Si: 1% or less; Mn: 1% or less; Cr: 5% or more but less than 20%; at least one of Mo, W and Re, in which Mo+½(W+Re) is 5% or more but less than 20%; W: 10% or less; Al: 0.1 to 2.5%; Ti: 0.10 to 0.95%; Nb+½Ta: 1.5% or less; B: 0.001 to 0.02%; Zr: 0.001 to 0.2%; Fe: 4.0% or less; and a balance of inevitable impurities and Ni, in which the total amount of Al, Ti, Nb and Ta is 2.0 to 6.5% in terms of atomic %. The low thermal expansion Ni-base superalloy of the present invention has a thermal expansion coefficient almost equal to that of 12 Cr ferritic steel, excellent high temperature strength, excellent corrosion and oxidation resistance, good hot-workability, and excellent weldability.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: July 23, 2013
    Assignees: Daido Tokushuko Kabushiki Kaisha, Mitsubishi Heavy Industries, Ltd.
    Inventors: Shuji Hamano, Shigeki Ueta, Ryuichi Yamamoto, Yoshikuni Kadoya, Takashi Nakano, Shin Nishimoto
  • Patent number: 8470106
    Abstract: A heat treatment method for desensitizing a nickel-based alloy with respect to environmentally-assisted cracking, the alloy having the following composition in percentages by weight: C?0.10%; Mn?0.5%; Si?0.5%; P?0.015%; S?0.015%; Ni?40%; Cr=12%-40%; Co?10%; Al?5%; Mo=0.1%-15%; Ti?5%; B?0.01%; Cu?5%; W=0.1%-15%; Nb=0-10%; Ta?10%; the balance being Fe, and inevitable impurities that result from processing, characterized in that the alloy is held at 950° C.-1160° C. in an atmosphere of pure hydrogen or containing at least 100 ppm of hydrogen mixed with an inert gas. A part made of a nickel-based alloy having the composition and that has been subjected to the heat treatment.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: June 25, 2013
    Assignee: Areva NP
    Inventors: Jean-Marc Cloue, Veronique Garat, Eric Andrieu, Julien Deleume
  • Patent number: 8460482
    Abstract: A heat-resistant alloy spring is made of a Ni-based alloy material comprising in weight %: not more than 0.1% C; not more than 1.0% Si; not more than 1.50% Mn; 13.0 to 25.0% Cr; 1.5 to 7.0% Mo; 0.5 to 4.0% Ti; 0.1 to 3.0% Al; {at least one optional element selected from the group consisting of 0.15 to 2.50% W, 0.001 to 0.020% B, 0.01 to 0.3% Zr, 0.30 to 6.00% Nb, 5.0 to 18.0% Co, and 0.03 to 2.00% Cu}; the balance being essentially Ni; and incidental impurities. The Ni-based alloy material is provided in its crystal structure with gamma prime phase [Ni3(Al, Ti)] or gamma prime phase [Ni3(Al, Ti, Nb)].
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: June 11, 2013
    Assignees: Nippon Seisen Co., Ltd., Chuo Spring Co., Ltd.
    Inventors: Yoshinori Tanimoto, Naoyuki Kawahata, Shoji Ichikawa, Hiroyuki Shiga
  • Patent number: 8449262
    Abstract: Nickel-based superalloys, turbine blades, and methods of improving or repairing turbine engine components are included. A nickel-based superalloy includes, by weight, about 5% to about 12% cobalt, about 3% to about 10% chromium, about 5.5% to about 6.3% aluminum, about 5% to about 10% tantalum, about 3% to about 10% rhenium, about 2% to about 5% of one or more of elements selected from a group consisting of platinum, ruthenium, palladium, and iridium, about 0.1% to about 1.0% hafnium, about 0.01% to about 0.4% yttrium, about 0.01% to about 0.15% silicon, and a balance of nickel.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: May 28, 2013
    Assignee: Honeywell International Inc.
    Inventor: Tom Strangman
  • Patent number: 8444778
    Abstract: Disclosed is a low-thermal-expansion Ni-based super-heat-resistant alloy for a boiler, which has excellent high-temperature strength. The alloy can be welded without the need of carrying out any aging treatment. The alloy has a Vickers hardness value of 240 or less. The alloy comprises (by mass) C in an amount of 0.2% or less, Si in an amount of 0.5% or less, Mn in an amount of 0.5% or less, Cr in an amount of 10 to 24%, one or both of Mo and W in such an amount satisfying the following formula: Mo+0.5 W=5 to 17%, Al in an amount of 0.5 to 2.0%, Ti in an amount of 1.0 to 3.0%, Fe in an amount of 10% or less, and one or both of B and Zr in an amount of 0.02% or less (excluding 0%) for B and in an amount of 0.2% or less (excluding 0%) for Zr, with the remainder being 48 to 78% of Ni and unavoidable impurities.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: May 21, 2013
    Assignees: Hitachi Metals, Ltd., Babcock-Hitachi Kabushiki Kaisha, Hitachi, Ltd.
    Inventors: Toshihiro Uehara, Takehiro Ohno, Akihiro Toji, Takashi Sato, Gang Bao, Shinya Imano, Hiroyuki Doi
  • Patent number: 8431073
    Abstract: A nickel base gamma prime strengthened superalloy with a unique blend of adequate hot corrosion resistance, high oxidation resistance, high coating compatibility, adequate phase stability, adequate creep resistance and low density is disclosed. The composition includes: Up to 20 wt % Co, between 12 and 14 wt % Cr, between 1 and 2 wt % Mo, between 1.4 and 2.8 wt % W, between 5.1 and 5.9 wt % Al, between 1.1 and 1.6 wt % Ti, between 3 and 7 wt % Ta, between 0.01 and 0.3 wt % of C+Zr+B, between 0.05 and 1 wt % Hf, between 0.05 and 1 wt % Si, and between 0.01 and 0.2 wt % of the sum of rare earths such as Sc, Y, the actinides and the lanthanides. The composition is intended for use in hot components such as gas turbine blades, and the hot components are preferably produced by clean casting.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: April 30, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventor: Magnus Hasselqvist
  • Patent number: 8426033
    Abstract: Provided are precipitation hardened high strength nickel based alloy welds that yield improved properties and performance in joining high strength metals. The advantageous weldments include two or more segments of ferrous or non-ferrous components, and fusion welds, friction stir welds, electron beam welds, laser beam welds, or a combination thereof bonding adjacent segments of the components together, wherein the welds comprise a precipitation hardened nickel based alloy weld metal composition including greater than or equal to 1.4 wt % of combined aluminum and titanium based on the total weight of the nickel based alloy weld metal composition. Also provided are methods for forming the welds from the nickel based alloy weld compositions, wherein the precipitation hardening occurs in the as-welded condition. The nickel based welds do not require a separate heat treatment step after welding to produce advantageous strength properties.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: April 23, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Raghavan Ayer, Neeraj Srinivas Thirumalai, Hyun-Woo Jin, Daniel B. Lillig, Douglas Paul Fairchild, Steven Jeffrey Ford
  • Patent number: 8394210
    Abstract: A nickel-base alloy having favorable toughness and thermal fatigue resistance comprises, in weight percentages based on total alloy weight: 9 to 12 chromium; 25 to 35 iron; 1 to 3 molybdenum; 3.0 to 5.5 niobium; 0.2 to 2.0 aluminum; 0.3 to 3.0 titanium; less than 0.10 carbon; no more than 0.01 boron; nickel; and incidental impurities. Also disclosed are die casting dies, other tooling, and other articles of manufacture made from or comprising the nickel-base alloy.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: March 12, 2013
    Assignee: ATI Properties, Inc.
    Inventors: Wei-Di Cao, Richard L. Kennedy, Michael M. Antony, John W. Smythe
  • Patent number: 8366838
    Abstract: A single crystal alloy for high AN2 applications has a composition consisting essentially of from 4.0 to 10 wt % chromium, from 1.0 to 2.5 wt % molybdenum, up to 5.0 wt % tungsten, from 3.0 to 8.0 wt % tantalum, from 5.5 to 6.25 wt % aluminum, from 6.0 to 17 wt % cobalt, up to 0.2 wt % hafnium, from 4.0 to 6.0 wt % rhenium, from 1.0 to 3.0 wt % ruthenium, and the balance nickel. Further, these single crystal alloys have a total tungsten and molybdenum content in the range of from 1.0 to 7.5 wt %, preferably from 2.0 to 7.0 wt %, a total refractory element content in the range of from 9.0 to 24.5 wt %, preferably from 13 to 22 wt %, a ratio of rhenium to a total refractory element content in the range of from 0.16 to 0.67, preferably from 0.20 to 0.45, a density in the range of from 0.300 to 0.325 lb/in3, and a specific creep strength in the range from 106×103 to 124×103 inches.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: February 5, 2013
    Assignee: United Technologies Corporation
    Inventors: Venkatarama K. Seetharaman, Alan D. Cetel
  • Patent number: 8343419
    Abstract: An object of the present invention is to provide a Ni base alloy solid wire for welding, which has excellent cracking resistance to ductility dip cracking in weld metal, can increase the tensile strength of the weld metal to not less than the tensile strength of the base material, and has excellent weldability. The present invention provides a solid wire which has a composition containing Cr: 27.0 to 31.5 mass %, Ti: 0.50 to 0.90 mass %, Nb: 0.40 to 0.70 mass %, Ta: 0.10 to 0.30 mass %, C: 0.010 to 0.030 mass %, and Fe: 5.0 to 11.0 mass %, and is regulated to Al: 0.10 mass % or less, N: 0.020 mass % or less, Zr 0.005 mass % or less, P:0.010 mass % or less, S: 0.0050 mass % or less, Si: 0.50 mass % or less, and Mn: 1.00 mass % or less, with the balance including Ni and inevitable impurities.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: January 1, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Tetsunao Ikeda, Masaki Shimamoto, Shun Izutani, Hiroaki Kawamoto, Yushi Sawada, Hirohisa Watanabe
  • Patent number: 8334056
    Abstract: An alloy including: about 10 at % to about 30 at % of a Pt-group metal; less than about 23 at % Al; about 0.5 at % to about 2 at % of at least one reactive element selected from Hf, Y, La, Ce and Zr, and combinations thereof; a superalloy substrate constituent selected from the group consisting of Cr, Co, Mo, Ta, Re and combinations thereof; and Ni; wherein the Pt-group metal, Al, the reactive element and the superalloy substrate constituent are present in the alloy in a concentration to the extent that the alloy has a solely ??-Ni3Al phase constitution.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: December 18, 2012
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Brian M. Gleeson, Daniel J. Sordelet, Wen Wang
  • Patent number: 8313591
    Abstract: An austenitic heat resistant alloy, which contains, by mass percent, C?0.15%, Si?2%, Mn?3%, Ni: 40 to 80%, Cr: 15 to 40%, W and Mo: 1 to 15% in total content, Ti?3%, Al?3%, N?0.03%, O?0.03%, with the balance being Fe and impurities, and among the impurities P?0.04%, S?0.03%, Sn?0.1%, As?0.01%, Zn?0.01%, Pb?0.01% and Sb?0.01%, and satisfies the conditions [P1=S+{(P+Sn)/2}+{(As+Zn+Pb+Sb)/5}?0.050], [0.2?P2=Ti+2Al?7.5?10×P1], [P2?9.0?100×O] and [N?0.002×P2+0.019] can prevent both the liquation crack in the HAZ and the brittle crack in the HAZ and also can prevent defects due to welding fabricability, which occur during welding fabrication, and moreover has excellent creep strength at high temperatures. Therefore, the alloy can be used suitably as a material for constructing high temperature machines and equipment, such as power generating boilers, plants for the chemical industry and so on.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: November 20, 2012
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Hiroyuki Hirata, Atsuro Iseda, Hirokazu Okada, Hiroyuki Semba, Kaori Kawano, Osamu Miyahara
  • Patent number: 8246766
    Abstract: The high-strength Ni-based alloy tube for nuclear power use consists, by mass percent, of C: 0.04% or less, Si: 0.10 to 0.50%, Mn: 0.05 to 0.50%, Ni: 55 to 70%, Cr: more than 26% and not more than 35%, Al: 0.005 to 0.5%, N: 0.02 to 0.10%, and one or more kinds of Ti: 0.01 to 0.5% and Nb: 0.02 to 1.0%, the balance being Fe and impurities. For this alloy tube, the grain size is as fine as grain size No. 6 or higher in JIS G 0551. It is preferable that the high-strength Ni-based alloy tube be manufactured by the process of preparing a Ni-based alloy stock through a remelting process, hot forging, heating to 1000 to 1160° C., hot extruding at a working ratio such that an extrusion ratio is 4 or higher, and performing solution annealing and thermal treatment.
    Type: Grant
    Filed: November 20, 2010
    Date of Patent: August 21, 2012
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Tetsuo Yokoyama, Hiroyuki Anada
  • Patent number: 8241439
    Abstract: A Ni—Cr alloy tube demonstrating an excellent corrosion resistance in a high temperature water environment can be provided, wherein the difference between uniform lattice strains of the surface layer thereof satisfies the following formulas (1) and (2). S?0.002??(1) S=D500?D?200??(2) wherein the meanings of the individual symbols in the above described formulas are as follows: S: The difference between uniform lattice strains (?) of the surface layer D500: The {111} interplanar spacing (?) at a depth of 500 nm from the material surface D?200: The average value of the {111} interplanar spacings (?) at the depth of 200 nm or less from the material surface.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: August 14, 2012
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Manabu Kanzaki, Mitsuharu Yonemura, Masanari Kimoto, Shoji Kinomura, Toshihiro Imoto
  • Publication number: 20120168038
    Abstract: [Problem to be Solved] A Ni-based alloy product consisting of, by mass percent, C: 0.03 to 0.10%, Si: 0.05 to 1.0%, Mn: 0.1 to 1.5%, Sol.Al: 0.0005 to 0.04%, Fe: 20 to 30%, Cr: not less than 21.0% and less than 25.0%, W: exceeding 6.0% and not more than 9.0%, Ti: 0.05 to 0.2%, Nb: 0.05 to 0.35%, and B: 0.0005 to 0.006%, the balance being Ni and impurities, the impurities being P: 0.03% or less, S: 0.01% or less, N: less than 0.010%, Mo: less than 0.5%, and Co: 0.8% or less, wherein a value of effective B (Beff) defined by the formula, Beff (%)=B?(11/14)×N+(11/48)×Ti, is 0.0050 to 0.0300%, and the rupture elongation in a tensile test at 700° C. and at a strain rate of 10?6/sec is 20% or more. This alloy may contain one or more kinds of Cu, Ta, Zr, Mg, Ca, REM, and Pd.
    Type: Application
    Filed: March 15, 2012
    Publication date: July 5, 2012
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Atsuro ISEDA, Hiroyuki HIRATA, Hirokazu OKADA, Hiroyuki SEMBA
  • Patent number: 8187725
    Abstract: A nickel, chromium, iron alloy and method for use in producing weld deposits and weldments formed therefrom. The alloy comprises, in weight percent, about 28.5 to 31.0% chromium; about 0 to 16% iron; less than about 1.0% manganese; about 2.1 to 4.0% niobium plus tantalum; 1.0 to 6.5% molybdenum; less than 0.50% silicon; 0.01 to 0.35% titanium; 0 to 0.25% aluminum; less than 1.0% copper; less than 1.0% tungsten; less than 0.5% cobalt; less than about 0.10% zirconium; less than about 0.01% sulfur; less than 0.01% boron; less than 0.03% carbon; less than about 0.02% phosphorous; 0.002 to 0.015% magnesium plus calcium; and balance nickel and incidental impurities. The method includes the steps of forming a welding electrode from the above alloy composition and melting the electrode to form a weld deposit. A preferred weldment may be in the form of a tubesheet of a nuclear reactor.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: May 29, 2012
    Assignees: Huntington Alloys Corporation, Areva NP Inc.
    Inventors: Samuel D. Kiser, Brian A. Baker, David E. Waskey
  • Patent number: 8089028
    Abstract: Methods for repairing a gas turbine engine knife edge seals are provided. A representative method includes: providing a knife edge of a gas turbine component, the component comprising IN-100, the knife edge being degraded; directing a laser beam toward the knife edge; and dispensing IN-100 powder such that the IN-100 powder is melted by the laser beam and is deposited on the knife edge.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: January 3, 2012
    Assignee: United Technologies Corp.
    Inventor: William M. Rose
  • Patent number: 8066938
    Abstract: A wrought age-hardenable nickel-chromium-cobalt based alloy suitable for use in high temperature gas turbine transition ducts possessing a combination of three specific key properties, namely resistance to strain age cracking, good thermal stability, and good creep-rupture strength contains in weight percent 17 to 22 chromium, 8 to 15 cobalt, 4.0 to 9.1 molybdenum, up to 7 tungsten, 1.39 to 1.65 aluminum, 1.50 to 2.30 titanium, up to 0.80 niobium, 0.01 to 0.2 carbon, up to 0.01 boron, up to 3 iron, up to 1.5 tantalum and less than 0.02 zirconium, with a balance of nickel and impurities. Certain alloying elements must be present in amounts according to two equations here disclosed.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: November 29, 2011
    Assignee: Haynes International, Inc.
    Inventor: Lee M. Pike, Jr.
  • Publication number: 20110192501
    Abstract: It is an object of the present invention to provide an Ni based alloy for forging having high forging-related characteristics with a wide temperature range for high-temperature forging and high upper forging temperature limit. An Ni based alloy for forging, containing Cr at 12 to 20%, Al at 3.5 to 5%, Co at 15 to 23%, W at 5 to 12%, C at 0.001 to 0.05%, and Nb, Ti and Ta at a total content of 0.5 to 1.0%, all percentages by mass, and a steam turbine plant component using the same.
    Type: Application
    Filed: February 2, 2011
    Publication date: August 11, 2011
    Inventors: Shinya IMANO, Hiroyuki Doi, Jun Sato
  • Patent number: 7985304
    Abstract: A nickel-base alloy having favorable toughness and thermal fatigue resistance comprises, in weight percentages based on total alloy weight: 9 to 20 chromium; 25 to 35 iron; 1 to 3 molybdenum; 3.0 to 5.5 niobium; 0.2 to 2.0 aluminum; 0.3 to 3.0 titanium; less than 0.10 carbon; no more than 0.01 boron; nickel; and incidental impurities. Also disclosed are die casting dies, other tooling, and other articles of manufacture made from or comprising the nickel-base alloy.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: July 26, 2011
    Assignee: ATI Properties, Inc.
    Inventors: Wei-Di Cao, Richard L. Kennedy, Michael M. Antony, John W. Smythe
  • Publication number: 20110120597
    Abstract: Low rhenium nickel base superalloy compositions and articles formed from the superalloy composition are provided. The nickel base superalloy composition includes in percentages by weight: about 5-8 Cr; about 6.5-9 Co; about 1.3-2.5 Mo; about 4.8-6.8 W; about 6.0-7.0 Ta; if present, up to about 0.5 Ti; about 6.0-6.4 Al; about 1-2.3 Re; if present, up to about 0.6 Hf; if present, up to about 0-1.5 C; if present, up to about 0.015 B; the balance being nickel and incidental impurities. Exemplary compositions are characterized by an Re ratio defined as the weight % of Re relative to the total of the weight % of W and the wt % of Mo, of less than about 0.3. Exemplary articles include airfoils for gas turbine engine blades or vanes, nozzles, shrouds, and splash plates.
    Type: Application
    Filed: December 26, 2007
    Publication date: May 26, 2011
    Inventors: Kevin Swayne O'Hara, Laura Jill Carroll
  • Patent number: 7931759
    Abstract: Improved compositions are described for the protection of gas turbine parts at elevated temperatures. The compositions are of the MCrAlY type, wherein M is Nickel, or Nickel in combination with cobalt and/or iron. The compositions further comprise a lanthanide, a group 4 metal selected from hafnium, zirconium, titanium, or a combination of these, and optionally, a group 14 element selected from silicon and/or germanium. The combination results in improved Al retention properties. Also disclosed herein are articles comprising the coatings.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: April 26, 2011
    Assignee: General Electric Company
    Inventors: Canan Uslu Hardwicke, Ganjiang Feng, Melvin Robert Jackson
  • Publication number: 20110088817
    Abstract: A method of forging a nickel base superalloy comprising providing a nickel base superalloy preform (40) with a first predetermined shape, the nickel base superalloy preform having been produced by powder metallurgy. The nickel base superalloy preform (40) is forged to produce a nickel base superalloy forged component (50) with a second predetermined shape. The first predetermined shape and the second predetermined shape are arranged such that the effective strain at the end of the forging is less than 1. The nickel base superalloy forged component (50) is given a supersolvus heat treatment to produce a large grain size in the nickel base superalloy forged component (50).
    Type: Application
    Filed: September 15, 2010
    Publication date: April 21, 2011
    Applicant: ROLLS-ROYCE PLC
    Inventor: Robert J. MITCHELL
  • Publication number: 20110056590
    Abstract: A Ni—Cr alloy tube demonstrating an excellent corrosion resistance in a high temperature water environment can be provided, wherein the difference between uniform lattice strains of the surface layer thereof satisfies the following formulas (1) and (2). S?0.
    Type: Application
    Filed: November 15, 2010
    Publication date: March 10, 2011
    Applicant: Sumitomo Metal Industries, Ltd.
    Inventors: Manabu KANZAKI, Mitsuharu Yonemura, Masanari Kimoto, Shoji Kinomura, Toshihiro Imoto
  • Patent number: 7871247
    Abstract: A high modulus component, such as an aircraft engine turbine blade, is formed from a base metal that has a high modulus crystallographic orientation that is aligned with the primary, i.e. radial, direction of the turbine blade. The base metal is Ni, Fe, Ti, Co, Al, Nb, or Mo based alloy. Alignment of a high modulus direction of the base metal with the primary direction provides enhanced high cycle fatigue life.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: January 18, 2011
    Assignee: United Technologies Corporation
    Inventors: Dilip M. Shah, Alan D. Cetel, Alan W. Stoner, William P. Allen
  • Patent number: 7859177
    Abstract: A spark plug for an internal-combustion engine is provided wherein the central and ground electrodes exhibit a long service life and wherein the fatigue strength at high temperatures is improved. The ground electrode is made from an alloy comprised of nickel (Ni) as a primary component, chromium: 20-30% by weight, iron: 7-20% by weight, aluminum: 1-3% by weight, titanium: 0.05-0.5% by weight, manganese: not higher than 0.1% by weight, silicon: not higher than 0.1% by weight, and carbon: not higher than 0.5% by weight. The alloy further includes at least one specific element selected from zirconium, yttrium, neodymium, cerium, lanthanum and samarium. Further, the total content of the specific element group is 5% or more of the aluminum content and is not higher than 1% by weight.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: December 28, 2010
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Osamu Yoshimoto, Wataru Matsutani
  • Publication number: 20100284850
    Abstract: The invention includes a turbine cover bucket of an alloy including carbon at less than approximately 0.04 weight percent, manganese at approximately 0.0-0.2 weight percent, silicon at approximately 0.0-0.25 weight percent, phosphorus at approximately 0.0-0.015 weight percent, sulfur at approximately 0.0-0.015 weight percent, chromium from approximately 20.0-23.0 weight percent, molybdenum from approximately 8.5-9.5 weight percent, niobium from approximately 3.25-4 weight percent, tantalum at approximately 0.0-0.05 weight percent, titanium from approximately 0.2-0.4 weight percent, aluminum from approximately 0.15-0.3 weight percent, iron from approximately 3.0-4.5 weight percent, and the remainder being nickel. The alloy is heat treated at 538° C. to 760° C. for up to 100 hours. A method of manufacturing the turbine bucket cover is also provided.
    Type: Application
    Filed: May 6, 2009
    Publication date: November 11, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Jeffrey Allen Hawk
  • Patent number: 7824606
    Abstract: The invention provides nickel-based alloys that are useful in the preparation of articles for applications requiring high mechanical and physical properties, such as high strength and high heat stability, while simultaneously reducing the cost of preparation of the alloys. The invention further provides articles, such as turbine wheels, prepared using the inventive alloys.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: November 2, 2010
    Assignee: Honeywell International Inc.
    Inventor: Mark Heazle
  • Patent number: 7803237
    Abstract: A wear and oxidation resistant nickel-base alloy, exhibiting resistance to thermal cracking in high-stress elevated temperature environments, comprises, in weight percentages based on total alloy weight: 53 to 67 nickel; 20 to 26 chromium; and 12 to 18 tungsten. The alloy optionally further comprises, in weight percentages based on total alloy weight, at least one of: up to 3 cobalt; up to 3 molybdenum; up to 6 iron; 0.1 to 0.5 manganese; 0.1 to 0.7 silicon; 0.1 to 0.6 aluminum; and less than 0.05 carbon. Components of a seamless tube manufacturing apparatus fabricated from the alloy also are provided. The components may be, for example, tools for one of a piercing mill, a high mill, and a rotary expander, such as piercer points, piercing mill guide shoes, rotary expander guide shoes, reeler guide shoes, and high-mill plugs.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: September 28, 2010
    Assignee: Damascus Steel Casting Company
    Inventors: Thomas W. Cokain, Behram M. Kapadia, Charles J. Stein
  • Patent number: 7799271
    Abstract: Nickel base alloys for use in applications for highly corrosive and abrasive environments. The alloys contain a large volume fraction of metallic carbide particles that provide wear and abrasion resistance. The alloys are produced by induction melting and gas atomization to form alloy powder particles. The particles are consolidated by hot isostatic pressing to form a solid article.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: September 21, 2010
    Assignee: Compaction & Research Acquisition LLC
    Inventor: Andrzej L. Wojcieszynski
  • Patent number: 7740719
    Abstract: A cutter is composed of a Ni—Cr alloy containing from 32 to 44 mass percent of Cr, from 2.3 to 6.0 mass percent of Al, the balance being Ni, impurities, and additional trace elements and having a Rockwell C hardness of 52 or more. This Ni—Cr alloy provides a cutter produced with a superior workability and by a significantly simplified process, having a low deterioration in the hardness even when heated in use, having excellent corrosion resistance and low-temperature embrittlement resistance, and satisfactorily maintaining the cutting performance for a long time.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: June 22, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomohisa Arai, Takashi Rokutanda, Tadaharu Kido
  • Patent number: 7731809
    Abstract: The present invention provides a low-melt nickel-based alloy powder applied in an activated diffusion brazing repair on gas turbine components. In one embodiment, and by way of example only, the low-melt alloy powder comprises between about 6.7% and about 9.2% by weight Cr, between about 9.7% and about 10.3% by weight Co, between about 3.7% and about 4.7% by weight W, between about 3.3% and about 6.3% by weight Ta, between about 3.6% and about 5.2% by weight Al, between about 1.3% and about 4.0% by weight Hf, between about 0.02% and about 0.06% by weight C, between about 1.0% and about 3.2% by weight B, and Ni. Optionally, the low-melt alloy powder may include between about 1.4% and about 3.2% by weight Re.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: June 8, 2010
    Assignee: Honeywell International Inc.
    Inventor: Yiping Hu
  • Publication number: 20100116383
    Abstract: A heat treatment method for desensitizing a nickel-based alloy with respect to environmentally-assisted cracking, the alloy having the following composition in percentages by weight: C?0.10%; Mn?0.5%; Si?0.5%; P?0.015%; S?0.015%; Ni?40%; Cr=12%-40%; Co?10%; Al?5%; Mo=0.1%-15%; Ti?5%; B?0.01%; Cu?5%; W=0.1%-15%; Nb=0-10%; Ta?10%; the balance being Fe, and inevitable impurities that result from processing, characterized in that the alloy is held at 950° C.-1160° C. in an atmosphere of pure hydrogen or containing at least 100 ppm of hydrogen mixed with an inert gas. A part made of a nickel-based alloy having the composition and that has been subjected to the heat treatment.
    Type: Application
    Filed: December 6, 2007
    Publication date: May 13, 2010
    Applicant: AREVA NP
    Inventors: Jean-Marc Cloue, Veronique Garat, Rric Andrieu, Julien Deleume
  • Patent number: 7704332
    Abstract: A single crystal alloy for high AN2 applications has a composition consisting essentially of from 4.0 to 10 wt % chromium, from 1.0 to 2.5 wt % molybdenum, up to 5.0 wt % tungsten, from 3.0 to 8.0 wt % tantalum, from 5.5 to 6.25 wt % aluminum, from 6.0 to 17 wt % cobalt, up to 0.2 wt % hafnium, from 4.0 to 6.0 wt % rhenium, from 1.0 to 3.0 wt % ruthenium, and the balance nickel. Further, these single crystal alloys have a total tungsten and molybdenum content in the range of from 1.0 to 7.5 wt %, preferably from 2.0 to 7.0 wt %, a total refractory element content in the range of from 9.0 to 24.5 wt %, preferably from 13 to 22 wt %, a ratio of rhenium to a total refractory element content in the range of from 0.16 to 0.67, preferably from 0.20 to 0.45, a density in the range of from 0.300 to 0.325 lb/in3, and a specific creep strength in the range from 106×103 to 124×103 inches.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: April 27, 2010
    Assignee: United Technologies Corporation
    Inventors: Venkatarama K. Seetharaman, Alan D. Cetel
  • Patent number: 7699944
    Abstract: Intermetallic braze alloys and methods of repairing an engine component are provided. In an embodiment, by way of example only, an intermetallic braze material includes between about 10% to about 15% chromium, by weight, between about 1% to about 3% aluminum, by weight, between about 0.1% to about 0.5% zirconium, by weight, between about 18% to about 25% hafnium, by weight, and a balance of nickel. In another embodiment, by way of example only, an intermetallic braze material includes between about 10% to about 15% chromium, by weight, between about 1% to about 3% aluminum, by weight, between about 10% to about 13% zirconium, by weight, between about 0.3% to about 0.7% hafnium, by weight, and a balance of nickel.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: April 20, 2010
    Assignee: Honeywell International Inc.
    Inventor: Yiping Hu
  • Patent number: 7547188
    Abstract: A Ni-based alloy member has resistance against grain boundary fracture, fatigue strength, and oxidation resistance at temperatures near 1000° C. or higher. The Ni-based alloy member includes a non-repaired region made of a Ni-based alloy base and a region repaired by welding, which is formed on the non-repaired region and which is made of a buildup-welded layer, the buildup-welded layer being made of a Ni-based alloy containing, by weight, 15% or less of Co, 18-22% of Cr, 0.8-2.0% of Al, 5.0% or less of Ta, 0.5% or less of Mo, 0.5% or less of Ti, 13-18% of W, 0.05-0.13% of C, 0.06% or less of Zr, 0.015% or less of B, 0.4-1.2% of Mn, and 0.1-0.3% of Si, the balance of the alloy being preferably essentially made of Ni.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: June 16, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Shinya Imano, Hiroyuki Doi, Kunihiro Ichikawa, Katsumi Tanaka
  • Patent number: 7531054
    Abstract: Embodiments of the present disclosure relate to nickel-base alloys and methods of direct aging nickel-base alloys. More specifically, certain embodiments of the present disclosure relate to methods of direct aging 718Plus® nickel-base alloy to impart improved mechanical properties, such as, but not limited to, tensile strength, yield strength, low cycle fatigue, fatigue crack growth, and creep and rupture life to the alloys. Other embodiments of the present disclosure relate to direct aged 718Plus® nickel-base alloy, and articles of manufacture made therefrom, having improved mechanical properties, such as, but not limited to, tensile strength, yield strength, low cycle fatigue, fatigue crack growth, and creep and rupture life.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: May 12, 2009
    Assignee: ATI Properties, Inc.
    Inventors: Richard L. Kennedy, Wei-Di Cao
  • Patent number: 7507306
    Abstract: An Fe—Ni—Cr alloy formulated to contain a strengthening phase that is able to maintain a fine grain structure during forging and high temperature processing of the alloy. The alloy contains a sufficient amount of titanium, zirconium, carbon and nitrogen so that fine titanium and zirconium carbonitride precipitates formed thereby are near their solubility limit in the alloy when molten. In the production of an article from such an alloy by thermomechanical processing, a dispersion of the fine titanium and zirconium carbonitride precipitates form during solidification of the melt and remain present during subsequent elevated processing steps to prohibit austenitic grain growth.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: March 24, 2009
    Assignee: General Electric Company
    Inventors: Jianqiang Chen, Jon Conrad Schaeffer, Anjilivelil Kuruvilla
  • Patent number: 7481970
    Abstract: A low cost, economical and less resource-consuming heat resistant alloy for use as material of engine valve is disclosed, while the alloy has excellent mechanical properties at high temperature and excellent toughness after heated for a long time that conventional heat resistant alloys have not had. The alloy consists essentially of, in mass percent, C of 0.01 to 0.15%, Si of 0.01 to 0.8%, Mn of 0.01 to 0.8, Cr of 14 to 17%, Mo of more than 3.0% but equal to or less than 5.0%, Al of 1.6 to 2.5%, Ti of 1.5 to 3.0%, Nb or Nb+Ta of 0.5 to 2.0%, Ni of 50 to 60%, B of 0.001 to 0.015%, at least one of Mg of 0.001 to 0.015% and Ca of 0.001 to 0.015%, and the balance being Fe, wherein value A defined by 0.293[Ni]?0.513[Cr]?1.814[Mo] is 2.0 to 5.8, value B defined by [Al]/([Al]+[Ti]+[Nb]+[Ta]) is 0.45 to 0.65, and value C defined by [Al]+[Ti]+[Nb]+[Ta] is 6.2 to 7.6, wherein brackets mean atomic % of each element in the alloy.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: January 27, 2009
    Assignees: Hitachi Metals, Ltd., Honda Motor Co., Ltd.
    Inventors: Akihiro Toji, Toshihiro Uehara, Katsuhiko Tominaga, Shoichi Nakaya, Katsuaki Sato
  • Patent number: 7473326
    Abstract: A Ni-base directionally solidified superalloy and a Ni-base single-crystal superalloy, which have superior creep strength at a high temperature, consists essentially of from 5.0 percent by weight to 7.0 percent by weight of Al, from 4.0 percent by weight to 16.0 percent by weight of Ta+Nb+Ti, from 1.0 percent by weight to 4.5 percent by weight of Mo, from 4.0 percent by weight to 8.0 percent by weight of W, from 3.0 percent by weight to 8.0 percent by weight of Re, 2.0 percent by weight or less of Hf, 10.0 percent by weight or less of Cr, 15.0 percent by weight or less of Co, from 1.0 percent by weight to 4.0 percent by weight of Ru, 0.2 percent by weight or less of C, 0.03 percent by weight or less of B, and Ni and inescapable impurities as a balance. The superalloys can be used for a turbine blade, a turbine vane and the like of a jet engine, an industrial gas turbine and the like.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: January 6, 2009
    Assignees: National Institute for Materials Science, Ishikawajima-Harima Heavy Industries Co., Ltd.
    Inventors: Toshiharu Kobayashi, Yutaka Koizumi, Tadaharu Yokokawa, Hiroshi Harada, Yasuhiro Aoki, Shouju Masaki
  • Publication number: 20080302449
    Abstract: A cutter is composed of a Ni—Cr alloy containing from 32 to 44 mass percent of Cr, from 2.3 to 6.0 mass percent of Al, the balance being Ni, impurities, and additional trace elements and having a Rockwell C hardness of 52 or more. This Ni—Cr alloy provides a cutter produced with a superior workability and by a significantly simplified process, having a low deterioration in the hardness even when heated in use, having excellent corrosion resistance and low-temperature embrittlement resistance, and satisfactorily maintaining the cutting performance for a long time.
    Type: Application
    Filed: August 4, 2008
    Publication date: December 11, 2008
    Inventors: Tomohisa ARAI, Takashi Rokutanda, Tadaharu Kido
  • Publication number: 20080257457
    Abstract: A nickel-base alloy having favorable toughness and thermal fatigue resistance comprises, in weight percentages based on total alloy weight: 9 to 20 chromium; 25 to 35 iron; 1 to 3 molybdenum; 3.0 to 5.5 niobium; 0.2 to 2.0 aluminum; 0.3 to 3.0 titanium; less than 0.10 carbon; no more than 0.01 boron; nickel; and incidental impurities. Also disclosed are die casting dies, other tooling, and other articles of manufacture made from or comprising the nickel-base alloy.
    Type: Application
    Filed: April 19, 2007
    Publication date: October 23, 2008
    Applicant: ATI Properties, Inc.
    Inventors: Wei-Di Cao, Richard L. Kennedy, Michael M. Antony, John W. Smythe
  • Patent number: 7416618
    Abstract: A Ni—Fe—Cr alloy having high strength, ductility and corrosion resistance especially for use in deep-drilled, corrosive oil and gas well environments, as well as for marine environments. The alloy comprises in weight %: 35-55% Ni, 12-25% Cr, 0.5-5% Mo, up to 3% Cu, 2.1-4.5% Nb, 0.5-3% Ti, up to 0.7% Al, 0.005-0.04% C, balance Fe plus incidental impurities and deoxidizers. The alloy must also satisfy the ratio of (Nb-7.75 C)/(Al+Ti)=0.5-9 in order to obtain the desired high strength by the formation of ?? and ?? phases. The alloy has a minimum of 1% by weight ?? phase dispersed in its matrix for strength purposes and a total weight percent of ??+?? phases being between 10 and 30.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: August 26, 2008
    Assignee: Huntington Alloys Corporation
    Inventors: Sarwan K. Mannan, Brett Clark Puckett
  • Patent number: 7361302
    Abstract: The present invention relates to a metallic coating to be deposited on gas turbine engine components. The metallic coating comprises up to 18 wt % cobalt, 3.0 to 18 wt % chromium, 5.0 to 15 wt % aluminum, 0.1 to 1.0 wt % yttrium, up to 0.6 wt % hafnium, up to 0.3 wt % silicon, 3.0 to 10 wt % tantalum, up to 9.0 wt % tungsten, 1.0 to 6.0 wt % rhenium, up to 10 wt % molybdenum, and the balance nickel.
    Type: Grant
    Filed: September 13, 2004
    Date of Patent: April 22, 2008
    Assignee: United Technologies Corporation
    Inventors: Russell Albert Beers, Allan A. Noetzel, Abdus Khan
  • Patent number: 7306682
    Abstract: An object of this invention is to provide a single-crystal nickel-based superalloy having high creep rupture strength at high temperatures and excel at corrosion resistance and oxidation resistance at high temperatures. Single-crystal nickel-based superalloys with high temperature strength, hot corrosion resistance and oxidation resistance comprising by weight, 3.0 to 7.0% Cr, 9.5 to 15.0% Co, 4.5 to 8.0% W, 3.3 to 6.0% Re, 4.0 to 8.0% Ta, 0.8 to 2.0% Ti, 4.5 to 6.5% Al, 0.01 to 0.2% Hf, less than 0.5% Mo, 0.01% or less C, 0.005% or less B, 0.01% or less Zr, 0.005% or less O, 0.005% or less N, and balance substantially Ni.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: December 11, 2007
    Assignees: Hitachi, Ltd., The Kansai Electric Power Co., Inc., Masahiko Morinaga, Yoshinori Murata
    Inventors: Akira Yoshinari, Ryokichi Hashizume, Masahiko Morinaga, Yoshinori Murata
  • Patent number: 7278829
    Abstract: A repaired gas turbine blade includes a turbine blade body having a monocrystalline airfoil made of a first nickel-base superalloy, and a repair squealer tip welded to a tip of the airfoil. The repair squealer tip is made of a second nickel-base superalloy different from the first nickel-base superalloy and having less than about 0.15 weight percent total of carbon, boron, silicon, zirconium, and hafnium.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: October 9, 2007
    Assignee: General Electric Company
    Inventors: Lawrence Joseph Roedl, Rabon Hensley
  • Publication number: 20070221298
    Abstract: The present invention provides a Ni-based super alloy including, by mass %, C: 0.01 to 0.15%; Si: 1% or less; Mn: 1% or less; P: 0.02% or less; S: 0.01% or less; Co: less than 0.10%; Cr: 16 to 22%; Mo: 4 to 10%; W: 5% or less; Al: 1.2 to 2.5%; Ti: 2.4 to 4%; B: 0.001 to 0.05%; Zr: 0.01 to 0.5%; Fe: 1% or less; and a balance of Ni and inevitable impurities.
    Type: Application
    Filed: March 20, 2007
    Publication date: September 27, 2007
    Applicant: DAIDO TOKUSHUKO KABUSHIKI KAISHA
    Inventors: Seiji Kurata, Shigeki Ueta, Tetsuya Shimizu
  • Patent number: 7273662
    Abstract: An alloy including a Pt-group metal, Ni and Al in relative concentration to provide a ?-Ni+??-Ni3Al phase constitution, and a coating including the alloy.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: September 25, 2007
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Brian Gleeson, Daniel Sordelet, Wen Wang
  • Patent number: 7261955
    Abstract: Protective layers of the MCrAlX type according to the prior art are often provided with a platinum layer to prevent diffusion of elements out of the base material into the MCrAlX. The MCrAlX alloy according to the invention includes halogens (F, Cl, Br, I), which prevent this diffusion, in particular of titanium.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: August 28, 2007
    Assignee: Siemens Aktiengesellschaft
    Inventors: Michael Schütze, Werner Stamm
  • Patent number: RE40501
    Abstract: An article, such as a turbine engine component, formed from a nickel-base superalloy, the nickel-base superalloy containing a ?? tetragonal phase and comprising aluminum, titanium, tantalum, niobium, chromium, molybdenum, and the balance nickel, wherein the article has a time dependent crack propagation resistance of at least about 20 hours to failure at about 1100° F. in the presence of steam. The invention also includes a nickel-base superalloy for forming such and article and methods of forming the article and making the nickel-base superalloy.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: September 16, 2008
    Assignee: General Electric Company
    Inventors: Michael Francis Henry, Elena Rozier, Samuel Vinod Thamboo, Sarwan Kumar Mannan, John Joseph deBarbadillo, II