Aluminum Containing Patents (Class 148/428)
  • Patent number: 5584663
    Abstract: A family of environmentally-resistant alloys is provided which are suitable for forming a blade tip for a turbine blade of a gas turbine engine. The blade tip alloys preferably have a chemical composition of, in weight percent, about 14 to about 18 percent chromium, about 6.45 to about 6.95 percent aluminum, about 9.75 to about 11.45 percent cobalt, about 5.95 to about 6.55 percent tantalum, about 1.85 to about 2.35 percent rhenium, about 0.05 to about 1.75 percent hafnium, about 0.006 to about 0.03 percent zirconium, about 0.02 to about 0.11 percent carbon, up to about 1.1 percent silicon, up to about percent 0.01 percent boron, with the balance being nickel and typical impurities.
    Type: Grant
    Filed: November 1, 1995
    Date of Patent: December 17, 1996
    Assignee: General Electric Company
    Inventors: Jerry D. Schell, Howard J. Farr, Thomas J. Kelley, Paul J. E. Monson, Stephen J. Ferrigno
  • Patent number: 5556594
    Abstract: An age hardenable nickel base chromium, molybdenum, alloy as well as intermediate products and articles made therefrom are disclosed which, in the solution treated and age hardened condition, have a 0.2% yield strength greater than 100 ksi combined with resistance to pitting and crevice corrosion and to stress corrosion cracking in chloride and sulfide environments at elevated temperatures up to about 500.degree. F. without requiring working below the recrystallization temperature of the alloy. Broad and preferred ranges are disclosed as follows:______________________________________ Broad (w/o) Preferred (w/o) ______________________________________ C 0.1 Max. 0.03 Max. Mn 5 Max. 2 Max. Si 1 Max. 0.5 Max. P 0.03 Max. 0.015 Max. S 0.03 Max. 0.010 Max. Cr 16-24 18-22 Mo 7-12 7.5-11 W 4 Max. -- Nb 2-6 2.75-4.25 Ti 0.50-2.5 0.75-1.5 Al Trace-1 0.05-0.35 B 0.02 Max. 0.001-0.006 Zr 0.50 Max. 0.08 Max. Co 5 Max. -- Cu 0-3 0.5 Max. N 0.04 Max. 0.01 Max. Fe 20 Max.
    Type: Grant
    Filed: May 30, 1986
    Date of Patent: September 17, 1996
    Assignee: CRS Holdings, Inc.
    Inventors: Richard B. Frank, Terry A. DeBold, Sunil Widge, James W. Martin
  • Patent number: 5549765
    Abstract: A nickel base superalloy composition consisting essentially of, in weight %, 9.3-10.0% Co, 6.4-6.8% Cr, 0.5-0.7% Mo, 6.2-6.6% W, 6.3-6.7% Ta, 5.45-5.75% Al, 0.8-1.2% Ti, 0.07-0.12% Hf, 2.8-3.2% Re, and balance essentially Ni wherein a carbon concentration of about 0.01 to about 0.08 weight % is provided for improving the cleanliness of a single crystal investment casting produced therefrom.
    Type: Grant
    Filed: February 16, 1995
    Date of Patent: August 27, 1996
    Assignee: Howmet Corporation
    Inventors: John R. Mihalisin, John Corrigan, Robert J. Baker, Eric L. Leonard, Jay L. Vandersluis
  • Patent number: 5543109
    Abstract: A high Cr austenitic heat resistant alloy excellent in high temperature strength which essentially consists of, in weight percent, from more than 0.02% to 0.10% C, not more than 1.0% Si, not more than 2.0% Mn, 28 to 38% Cr, 35 to 60% Ni, from more than 0.5% to 1.5% Ti, not more than 0.05% N, 0.01 to 0.3% Al, 0.001 to 0.01% B, 0 to 0.1% Zr, 0 to 1.0% Nb, one or both of 0.5 to 3.0% Mo and 1.0 to 6.0% W, and the balance being Fe and incidental impurities. The alloy may further contain one or both of 0.001 to 0.05% Mg and 0.001 to 0.05% Ca. This alloy is suitable for producing a single layered tube which is less expensive and more reliable than the conventional double layered tube.
    Type: Grant
    Filed: January 31, 1995
    Date of Patent: August 6, 1996
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Hiroyuki Senba, Yoshiatsu Sawaragi
  • Patent number: 5540789
    Abstract: Single crystal superalloy castings are described which have excellent oxidation resistance. The oxidation resistance is due to the presence of small but effective amounts of magnesium in the casting. Single crystal castings containing magnesium in the range of 5-200 parts per million, by weight, are described.
    Type: Grant
    Filed: February 15, 1995
    Date of Patent: July 30, 1996
    Assignee: United Technologies Corporation
    Inventors: Norman S. Bornstein, Stephen Chin, David N. Duhl, Donald R. Parille, Dilip M. Shah
  • Patent number: 5540790
    Abstract: This invention relates to a single crystal casting to be used under high stress, high temperature conditions up to about 2030.degree. F., characterized by an increased resistance to creep under such conditions. The casting is made from a nickel-based superalloy consisting essentially of the following elements in percent by weight: from 6.2 to 6.8 percent rhenium, from 1.8 to 2.5 percent chromium, from 1.5 to 2.5 percent cobalt, from 8 to 9 percent tantalum, from 3.5 to 6 percent tungsten, from 5.5 to 6.1 percent aluminum, from 0.1 to 0.5 percent titanium, from 0.01 to 0.1 percent columbium, from 0.25 to 0.60 percent molybdenum, from 0 to 0.05 percent hafnium, from 0 to 0.04 percent carbon, from 0 to 0.01 percent boron, from 0 to 0.01 percent yttrium, from 0 to 0.01 percent cerium, from 0 to 0.01 percent lanthanum, from 0 to 0.04 percent manganese, from 0 to 0.05 percent silicon, form 0 to 0.01 percent zirconium, from 0 to 0.001 percent sulfur, from 0 to 0.
    Type: Grant
    Filed: December 29, 1994
    Date of Patent: July 30, 1996
    Assignee: Cannon-Muskegon Corporation
    Inventor: Gary L. Erickson
  • Patent number: 5529642
    Abstract: A nickel-based alloy which is excellent not only in anti-corrosion properties but also in workability is disclosed. The alloy contains 15 to 35 weight % of chromium; 6 to 24 weight % of molybdenum; wherein the sum of chromium plus molybdenum is no greater than 43 weight %; 1.1 to 8 weight % of tantalum; and balance nickel and unavoidable impurities. The alloy may optionally include no greater than 0.1 weight % of nitrogen; no greater than 0.3 weight % of magnesium, no greater than 3 weight % of manganese, no greater than 0.3 weight % of silicon, no greater than 0.1 weight % of carbon, no greater than 6 weight % of iron, no greater than 0.1 weight % of zirconium, no greater than 0.01 weight % of calcium, no greater than 1 weight % of niobium, no greater than 4 weight % of tungsten, no greater than 4 weight % of copper, no greater than 0.8 weight % of titanium, no greater than 0.8 weight % of aluminum, no greater than 5 weight % of cobalt, no greater than 0.
    Type: Grant
    Filed: September 19, 1994
    Date of Patent: June 25, 1996
    Assignee: Mitsubishi Materials Corporation
    Inventors: Katsuo Sugahara, Hideo Kitamura, Saburo Wakita, Koji Toyokura, Yoshio Takizawa, Tsutomu Takahashi
  • Patent number: 5516485
    Abstract: Air meltable, weldable cast alloys of high hot strength and hot gas corrosion resistance especially in the service temperature range of about 1800.degree. F. to 2100.degree. F. which consist essentially of:______________________________________ Nickel 41-54% by weight Chromium 24-29% Iron 8-18% Cobalt 3-8% Tungsten 4.5-6.5% Molybdenum 4-6.5% Niobium 0.8-2% Manganese 0.1-1.5% Silicon 0.1-1.5% Carbon 0.2-0.4% ______________________________________provided, that the nickel plus cobalt content is at least about 45%.
    Type: Grant
    Filed: March 17, 1994
    Date of Patent: May 14, 1996
    Assignee: Carondelet Foundry Company
    Inventor: John H. Culling
  • Patent number: 5489346
    Abstract: This invention relates to a hot corrosion resistant nickel-based superalloy comprising the following elements in percent by weight: from about 11.5 to about 13.5 percent chromium, from about 5.5 to about 8.5 percent cobalt, from about 0.40 to about 0.55 percent molybdenum, from about 4.5 to about 5.5 percent tungsten, from about 4.5 to about 5.8 percent tantalum, from about 0.05 to about 0.25 percent columbium, from about 3.4 to about 3.8 percent aluminum, from about 4.0 to about 4.4 percent titanium, from about 0.01 to about 0.06 percent hafnium, and the balance nickel plus incidental impurities, the superalloy having a phasial stability number N.sub.V3B less than about 2.45. Single crystal articles can be suitably made from the superalloy of this invention. The article can be a component for a gas turbine engine and, more particularly, the component can be a gas turbine blade or gas turbine vane.
    Type: Grant
    Filed: May 3, 1994
    Date of Patent: February 6, 1996
    Assignee: SPS Technologies, Inc.
    Inventor: Gary L. Erickson
  • Patent number: 5482789
    Abstract: The present invention provides a nickel base superalloy having an improved combination of stress rupture life and microstructural stability with respect to the formation of TCP phases. A unique feature is the specific combination of the content of elements consisting of Al, Ti and W in a second range defined by their sum in a nickel base superalloy having high contents of rhenium, in excess of 1.3 atomic percent (about 4.0 weight percent) to lower the propensity for TCP phase formation and thus render the alloy more stable at high temperatures. The interaction of Ru with the remaining elements to modify the refractory element phase partitioning provides unique capabilities, causing elements to partition to the gamma phase or the gamma prime phase in a reverse direction than normally experienced in Ni-base superalloys. These Ni-base superalloys are termed Ru-containing Reverse Partitioning Ni-base Superalloys.
    Type: Grant
    Filed: January 3, 1994
    Date of Patent: January 9, 1996
    Assignee: General Electric Company
    Inventors: Kevin S. O'Hara, William S. Walston, Earl W. Ross, Ramgopal Darolia
  • Patent number: 5480283
    Abstract: A Ni-base superalloy consisting essentially of, by weight: 0.05 to 0.20% C, 20 to 25% Co, 15 to 25% Cr, 1.0 to 3.0% Al, 1.0 to 3.0% Ti, 1.0 to 3.0% Nb, 5 to 10% W, and at least 55% Ni, the combination of the [Al+Ti] and tungsten contents being determined as shown in FIG. 5. This superalloy has a high thermal-fatigue resistance, a great high-temperature strength, particularly, a great creep rupture strength, and a good weldability. The superalloy is used to form gas turbine nozzles, which are employed in a gas turbine. Using such a gas turbine, a combined power generating system is built.
    Type: Grant
    Filed: May 20, 1994
    Date of Patent: January 2, 1996
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyuki Doi, Ken Yasuda, Tetsuo Kashimura, Yutaka Fukui
  • Patent number: 5476555
    Abstract: This invention relates to nickel-cobalt based alloys comprising the following elements in percent by weight: from about 0.002 to about 0.07 percent carbon, from about 0 to about 0.04 percent boron, from about 0 to about 2.5 percent columbium, from about 12 to about 19 percent chromium, from about 0 to about 6 percent molybdenum, from about 20 to about 35 percent cobalt, from about 0 to about 5 percent aluminum, from about 0 to about 5 percent titanium, from about 0 to about 6 percent tantalum, from about 0 to about 6 percent tungsten, from about 0 to about 2.5 percent vanadium, from about 0 to about 0.06 percent zirconium, and the balance nickel plus incidental impurities, the alloys having a phasial stability number N.sub.v3B less than about 2.60. Furthermore, the alloys have at least one element selected from the group consisting of aluminum, titanium, columbium, tantalum and vanadium. Also, the alloys have at least one element selected from the group consisting of tantalum and tungsten.
    Type: Grant
    Filed: March 2, 1993
    Date of Patent: December 19, 1995
    Assignee: SPS Technologies, Inc.
    Inventor: Gary L. Erickson
  • Patent number: 5472663
    Abstract: To improve high-temperature strength, as well as increased resistance to wear due to sparking, a Ni-based alloy sparking plug electrode material for use in an internal combustion engine is provided. Such a Ni-based alloy sparking plug electrode material contain, by weight, from 3.1 to 4.3 of Al, from 0.5 to 1.5% of Si, from 0.45 to 0.65% of Mn, from 0.002 to 0.01% of C, from 0.005 to 0.05% of at least one of Mg and Ca, and, as necessitated, from to 2% of Cr, with the balance substantially Ni and inevitable impurities.
    Type: Grant
    Filed: July 1, 1993
    Date of Patent: December 5, 1995
    Assignee: Mitsubishi Materials Corporation
    Inventors: Hideo Kitamura, Kensho Sahira, Akira Mimura
  • Patent number: 5449490
    Abstract: The improved superalloy that possesses all the characteristics required of the high-temperature structural material of high-temperature gas-cooled reactors (i.e., high-temperature strength, corrosion resistance, good producibility, good hot workability and resistance to embrittlement due to thermal aging) consists essentially of 16-28% Cr, 15-24% W (provided that Cr+W=39-44%), 0.01-0.1% Zr, 0.001-0.015% Y, 0.0005-0.01% B, up to 0.05% C, up to 0.1% Si, up to 0.1% Mn (provided that Si+Mn.ltoreq.0.1%), up to 0.1% Ti, up to 0.1% Al and up to 0.1% Nb (provided that Ti+Al.ltoreq.0.1% and Ti+Al+Nb.ltoreq.0.15%), with the balance being Ni and inevitable impurities and all percentages being on a weight basis.
    Type: Grant
    Filed: September 6, 1994
    Date of Patent: September 12, 1995
    Assignee: Japan Atomic Energy Research Institute
    Inventors: Tatsuo Kondo, Hajime Nakajima, Masami Shindo, Hirokazu Tsuji, Ryohei Tanaka, Susumi Isobe, Sadao Ohta, Watanabe Rikizo
  • Patent number: 5435861
    Abstract: A nickel-based monocrystalline superalloy suitable for turbine engine blades is obtained by adding to the alloy at least one element chosen from erbium and silicon, at a concentration by weight of 50 to 500 ppm for Er and of 500 to 1000 ppm for Si and, optionally, hafnium at a concentration by weight of 500 to 1000 ppm.
    Type: Grant
    Filed: August 6, 1993
    Date of Patent: July 25, 1995
    Assignee: Office National d'Etudes et de Recherches Aerospatiales
    Inventors: Tasadduq Khan, Pierre Caron
  • Patent number: 5431750
    Abstract: The improved nickel-base heat-resistant alloy consists of 13.1-15.0% Cr (all percentages that follows are by weight), 8.5-10.5% Co, 1.0-3.5% Mo, 3.5-4.5% W, 3.0-5.5% Ta, 3.5-4.5% Al, 2.2-3.2% Ti, 0.06-0.12% C, 0.005-0.025% B, 0.010-0.05% Zr and 1-100 ppm of Mg and/or Ca, in the optional presence of 0-1.5% Hf and/or 0-0.5% of at least one element of Pt, Rh and Re, with the remainder being Ni and incidental impurities. The alloy has high strength and high resistance to oxidation and corrosion at elevated temperatures and, hence, is suitable for use as a constituent material for machine parts that are to be exposed to elevated temperatures.
    Type: Grant
    Filed: June 19, 1992
    Date of Patent: July 11, 1995
    Assignees: Mitsubishi Materials Corporation, Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Hisataka Kawai, Ikuo Okada, Ichiro Tsuji, Koji Takahashi, Kensho Sahira, Akira Mitsuhashi
  • Patent number: 5419869
    Abstract: An Ni--Cr--W base alloy having superior creep strength and excellent corrosion resistance consists essentially of: by weight 21 to 25% of Cr, 18 to 25% of W, 0.5 to 2.0% Ti, 1 to 5% of Al, between zero and 0.2% of B, 0.025 to 0.5% of C, between zero and 0.3% of Zr and 0.3 to 3.0% of Ta, the balance being substantially Ni.
    Type: Grant
    Filed: December 15, 1993
    Date of Patent: May 30, 1995
    Assignee: Korea Institute of Science and Technology
    Inventors: Ju Choi, Hyon T. Kim
  • Patent number: 5413876
    Abstract: Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys.
    Type: Grant
    Filed: November 2, 1992
    Date of Patent: May 9, 1995
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Michael L. Santella, Gene M. Goodwin
  • Patent number: 5399313
    Abstract: There is provided by the present invention nickel-base superalloys for producing single crystal articles having improved tolerance to low angle grain boundaries and an improved balance between cyclic oxidation and hot corrosion resistance. The improved tolerance arises from the discovery that nickel-base superalloys suitable for casting as single crystal articles can be improved by the addition of small, but controlled, amounts of boron and carbon, and optionally hafnium, and is manifested principally by improved grain boundary strength. As one result of this increased grain boundary strength, grain boundary mismatches far greater than the 6.degree. limit for prior art single crystal superalloys can be tolerated in single crystal articles made from the nickel-base superalloys of this invention. This translates, for example, into lower inspection costs and higher casting yields as grain boundaries over a broader range can be accepted by visual inspection techniques without resort to expensive X-ray techniques.
    Type: Grant
    Filed: October 1, 1992
    Date of Patent: March 21, 1995
    Assignee: General Electric Company
    Inventors: Earl W. Ross, Carl S. Wukusick, Warren T. King
  • Patent number: 5393483
    Abstract: A nickel based superalloy composition is disclosed that provides increased high temperature stress-rupture strength and improved resistance to fatigue crack propagation at elevated temperatures up to about 760.degree. C. The composition is comprised of, by weight percent, about 10% to 12% chromium, about 17% to 19% cobalt, about 1.5% to 3.5% molybdenum, about 4.5% to 6.5% tungsten, about 3.25% to 4.25% aluminum, about 3.25% to 4.25% titanium, about 2.5% to 3,5% tantalum, about 0.02% to 0.08% zirconium, about 0.005% to 0.03% boron, less than 0.1% carbon, and the balance essentially nickel. Thermomechanical processing including isothermal forging at controlled strain rates and temperature ranges, supersolvus annealing, and slow cooling are disclosed for producing an enlarged grain structure that provides the improved properties in the alloy of this invention.
    Type: Grant
    Filed: April 2, 1990
    Date of Patent: February 28, 1995
    Assignee: General Electric Company
    Inventor: Keh-Minn Chang
  • Patent number: 5374323
    Abstract: Disclosed is a large alloy forging, the forging having an alloy composition selected from one of a nickel base alloy, a cobalt-chromium-nickel base alloy, a nickel-cobalt base alloy and an iron-nickel-chromium-molybdenum alloy, the forging having a grain size of ASTM grain size 3 or finer, as measured by ASTM method E112 and having a tensile strength in the range of 135 to 175 KSI.
    Type: Grant
    Filed: August 26, 1991
    Date of Patent: December 20, 1994
    Assignee: Aluminum Company of America
    Inventors: G. William Kuhlman, Richard A. Beaumont, Daniel F. Carbaugh, David Anderson, Al Farrell, Amiya K. Chakrabarti, Kenneth P. Kinnear
  • Patent number: 5374319
    Abstract: A process is provided for welding a gamma-prime precipitation-strengthened nickel base superalloy by heating the weld area and adjacent region to a ductile temperature, welding while maintaining the entire weld area and adjacent region at the ductile temperature and holding the weldment, weld area and adjacent region at the ductile temperature until the entire weld has solidified. The ductile temperature is above the aging temperature but below the incipient melting temperature of the superalloy.
    Type: Grant
    Filed: November 4, 1991
    Date of Patent: December 20, 1994
    Assignee: Chromalloy Gas Turbine Corporation
    Inventors: Richard J. Stueber, Thomas Milidantri, Moshen Tadayon
  • Patent number: 5372662
    Abstract: A nickel-chromium-molybdenum-cobalt alloy has additions of tantalum and tungsten to provide superior stress rupture strength in the presence of grain size control agents, and has the following composition:______________________________________ Carbon 0.04-0.15 Iron 0-8 Chromium 18-25 Cobalt 10-15 Molybdenum 5-9 Aluminum 0.7-1.5 Tungsten 0-5 Titanium 0-0.5 Tantalum 0.7-2.5 Manganese 0-1 Silicon 0.05-0.75 Zirconium 0.01-0.05 Boron 0-0.
    Type: Grant
    Filed: July 9, 1993
    Date of Patent: December 13, 1994
    Assignee: Inco Alloys International, Inc.
    Inventors: Pasupathy Ganesan, Gaylord D. Smith
  • Patent number: 5370497
    Abstract: A Ni-base superalloy consisting essentially of, by weight: 0.05 to 0.20% C, 20 to 25% Co, 15 to 25% Cr, 1.0 to 3.0% Al, 1.0 to 3.0% Ti, 1.0 to 3.0% Nb, 5 to 10% W, and at least 42.5% Ni, the combination of the [Al+Ti] and tungsten contents being determined as shown in FIG. 5. This superalloy has a high thermal-fatigue resistance, a great high-temperature strength, particularly, a great creep rupture strength, and a good weldability. The superalloy is used to form gas turbine nozzles, which are employed in a gas turbine. Using such a gas turbine, a combined power generating system is built.
    Type: Grant
    Filed: October 23, 1992
    Date of Patent: December 6, 1994
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyuki Doi, Ken Yasuda, Tetsuo Kashimura, Yutaka Fukui
  • Patent number: 5360496
    Abstract: Disclosed is a large alloy forging and method for making it. The forging having an alloy composition selected from one of a nickel base alloy, a cobalt-chromium-nickel base alloy, a nickel-cobalt base alloy and an iron-nickel-chromium-molybdenum alloy and having a grain size of ASTM grain size 4 or finer, as measured by ASTM method E112 and having a tensile strength in the range of 135 to 175 KSI. The process includes: (1) four upset forgings, (2) a rapid cooling after the final upset cooling, (3) a first and second upset forging with a reduction greater than 50%, (4) a third upset forging with a reduction greater than 25.%, and (5) a forging process with a fourth upset forging with a reduction greater than 50%.
    Type: Grant
    Filed: April 7, 1993
    Date of Patent: November 1, 1994
    Assignee: Aluminum Company of America
    Inventors: G. William Kuhlman, Richard A. Beaumont, Daniel F. Carbaugh, David Anderson, Amiya K. Chakrabarti, Kenneth P. Kinnear
  • Patent number: 5344510
    Abstract: Superalloy articles are made more oxidation resistant by a process which includes heating the article in an environment having a reduced pressure of inert gas and a low partial pressure of oxygen to a temperature at which the sulfur in the article diffuses out. The heat treatment is best carried out at a temperature within the range defined by the incipient melting temperature of the article and about 150.degree. C. below the incipient melting temperature of the article. Alternatively, the heat treatment may be carried out at a temperature above the gamma prime solvus temperature of the article and below the incipient melting temperature of the article. At such temperatures, sulfur readily diffuses out of the article, and a more oxidation resistant component is produced.
    Type: Grant
    Filed: April 14, 1993
    Date of Patent: September 6, 1994
    Assignee: United Technologies Corporation
    Inventors: William P. Allen, Donald R. Parille
  • Patent number: 5338379
    Abstract: Nickel base superalloys which contain niobium (columbium) to promote gamma double prime strengthening are improved by replacing the niobium with tantalum on an atom-for-atom basis and then heat treating the new alloy at temperatures in excess of those conventionally used for superalloys which include niobium. The resultant tantalum-bearing alloys are found to exhibit increased strength and greater phase stability than corresponding niobium-bearing alloys.
    Type: Grant
    Filed: December 17, 1992
    Date of Patent: August 16, 1994
    Assignee: General Electric Company
    Inventor: Thomas J. Kelly
  • Patent number: 5292385
    Abstract: A turbine rotor is formed from a turbine disk having a rim with a circumferential direction, and a plurality of turbine blade segments each fixed to the turbine disk around a circumference of the rim of the turbine disk. The turbine blade segments are oriented such that the elastic modulus of the turbine blade segments parallel to the circumferential direction is less than that of the rim of the turbine disk parallel to the circumferential direction. This arrangement is preferably achieved using single crystal turbine blade segments made of an an alloy having a cubic crystal structure, such as a nickel-based superalloy, with a <010> direction oriented radially and a <001> direction oriented circumferentially.
    Type: Grant
    Filed: December 18, 1991
    Date of Patent: March 8, 1994
    Assignee: AlliedSignal Inc.
    Inventor: Harry L. Kington
  • Patent number: 5270123
    Abstract: A nickel base superalloy capable of being made into a single crystal article is provided with high temperature strength and improved stability by limiting the Presence of an undesirable SRZ constituent. Significant to the control of formation of such undesirable constituents is the control of the amount of Re in the alloy in combination with elements such as Al, Cr, Ta, Mo, Co and W. A solution heat treatment is provided for additional control.
    Type: Grant
    Filed: March 5, 1992
    Date of Patent: December 14, 1993
    Assignee: General Electric Company
    Inventors: William S. Walston, Earl W. Ross, Kevin S. O'Hara, Tresa M. Pollock
  • Patent number: 5240518
    Abstract: A single crystal shroud, preferably used around the high pressure turbine section of a gas turbine engine, has a composition, in weight percent, of from about 5 to about 10 percent chromium, from about 5 to about 10 percent cobalt, from 0 to about 2 percent molybdenum, from about 3 to about 10 percent tungsten, from about 3 to about 8 percent tantalum, from 0 to about 2 percent titanium, from about 5 to about 7 percent aluminum, from 0 to about 6 percent rhenium, from 0 to about 0.50 percent hafnium, from 0 to about 0.07 percent carbon, from 0 to about 0.015 percent boron, and from 0 to about 0.075 percent yttrium, balance nickel. The environmentally- resistant shroud preferably is used in the as-cast condition without any oxidation and corrosion resistant flowpath coating.
    Type: Grant
    Filed: September 5, 1990
    Date of Patent: August 31, 1993
    Assignee: General Electric Company
    Inventors: David J. Wortman, Brian H. Pilsner, Peter J. Linko, III
  • Patent number: 5217684
    Abstract: A precipitation-hardening-type Ni-base alloy exhibiting improved resistance to stress corrosion cracking in a sour gas atmosphere containing elemental sulfur at high temperatures is disclosed. The alloy consists essentially of, by weight %;______________________________________ Cr: 12-25%, Mo: over 9.0 and up to 15%, Nb: 4.0-6.0%, Fe: 5.0-25%, Ni: 45-60%, C: 0.050% or less, Si: 0.50% or less, Mn: 1.0% or less, P: 0.025% or less, S: 0.0050% or less, N: 0.050% or less, Ti: 0.46-1.0%, Al: 0-2.0%.
    Type: Grant
    Filed: November 30, 1990
    Date of Patent: June 8, 1993
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Masaaki Igarashi, Shiro Mukai, Yasutaka Okada, Akio Ikeda
  • Patent number: 5171380
    Abstract: The present invention provides an alloy having improved crack growth inhibition and having high strength at high temperatures. The composition of the alloy is essentially as follows:______________________________________ Ingredient Concentration in weight % ______________________________________ Ni balance Co 8 Cr 13 Mo 3.5 Al 3.5 Ti 2.5 Ta 3.5 Nb 3.5 Zr 0.06 C 0.05 B 0.
    Type: Grant
    Filed: June 9, 1989
    Date of Patent: December 15, 1992
    Assignee: General Electric Company
    Inventor: Michael F. Henry
  • Patent number: 5156808
    Abstract: The present invention provides an alloy having improved crack growth inhibition and having high strength at high temperatures. The composition of the alloy is essentially as follows:______________________________________ Ingredient Concentration in Weight % ______________________________________ Ni balance Co 15 Cr 10 Mo 3 Al 3.35 Ti 5.90 Ta 2.70 Nb 1.35 Zr 0.06 V 1 C 0.05 B 0.03.
    Type: Grant
    Filed: September 4, 1990
    Date of Patent: October 20, 1992
    Assignee: General Electric Company
    Inventor: Michael F. Henry
  • Patent number: 5154884
    Abstract: A nickel-base superalloy, particularly adapted for use in gas turbine engine single crystal blades and vanes is provided with a specific composition and heat treated in a particular manner to exhibit an improved balance of critical high temperature mechanical properties and resistance to oxidation and hot corrosion significantly superior to presently available alloys. In its broad form, the alloy composition comprises, by weight, 7-12% Cr, 1-5% Mo, 3-5% Ti, 3-5% Al, 5-15% Co, 3-12% W, up to 10% Re, 2-6% Ta, up to 2% Cb, up to 3% V, up to 2% Hf, the balance being essentially nickel and incidental impurities. Nickel-base superalloy single crystal articles formed of the alloy are described, as is the method, including heat treatment, employed to make the article.
    Type: Grant
    Filed: September 18, 1991
    Date of Patent: October 13, 1992
    Assignee: General Electric Company
    Inventors: Carl S. Wukusick, Leo Buchakjian, Jr.
  • Patent number: 5151249
    Abstract: A nickel-based superalloy consisting essentially of, in weight percent, from about 4 to about 5 percent chromium, from about 11 to about 14 percent cobalt, from about 4 to about 8 percent tungsten, from about 6 to about 10 percent tantalum, from about 5 to about 7 percent aluminum, from about 5.5 to about 8 percent rhenium, from about 0 to about 0.50 percent hafnium, from about 0 to about 0.07 percent carbon, from 0 to about 0.01 percent boron, from 0 to about 0.030 percent yttrium, from 0 to about 6 percent ruthenium, from 0 to about 1 percent molybdenum, from 0 to about 1 percent niobium, and the balance essentially nickel. Articles made from the superalloy of the invention are especially useful when cast as single crystal airfoils for use in advanced gas turbine engines.
    Type: Grant
    Filed: December 29, 1989
    Date of Patent: September 29, 1992
    Assignee: General Electric Company
    Inventors: Curtiss M. Austin, Ramgopal Darolia, Kevin S. O'Hara, Earl W. Ross
  • Patent number: 5143563
    Abstract: Improved, creep-stress rupture and hold-time fatigue resistant nickel base alloys for use at elevated temperatures are disclosed. The alloys consists essentially of, in weight percent, 10.9 to 12.9% Co; 11.8 to 13.8% Cr; 4.6 to 5.6% Mo; 2.1 to 3.1% Al; 4.4 to 5.4% Ti; 1.1 to 2.1% Nb; 0.005 to 0.025% B; 0.01 to 0.06% C; 0 to 0.6% Zr; 0.1 to 0.3% Hf; balance nickel. The article is characterized by a microstructure having an average grain size of from about 20 to 40 microns, with carbides, borides, and 0.3 to 0.4 micron-sized coarse gamma prime located at the grain boundaries, and 30 nanometer-sized fine gamma prime uniformly distributed throughout the grains. The alloys are suitable for use as turbine disks in gas turbine engines of the type used in jet engines, or for use as rim sections of dual alloy turbine disks for advanced turbine engines and are capable of operation at temperatures up to about 1500.degree. F. A method for achieving the desired properties in such turbine disks is also disclosed.
    Type: Grant
    Filed: October 4, 1989
    Date of Patent: September 1, 1992
    Assignee: General Electric Company
    Inventors: Daniel D. Krueger, Jeffrey F. Wessels, Keh-Minn Chang
  • Patent number: 5141704
    Abstract: The improved superalloy that possesses all the characteristics required of the high-temperature structural material of high-temperature gas-cooled reactors (i.e., high-temperature strength, corrosion resistance, good productibility, good hot workability and resistance to embrittlement due to thermal aging) consists essentially of 16-28% Cr. 15-24% W (provided that Cr+W=39-44%), 0.01-0.1% Zr, 0.001-0.015% Y, 0.0005-0.01% B, up to 0.05% C, up to 0.1% Si, up to 0.1% Mn (provided that Si+Mn.gtoreq.0.1%), up to 0.1% Ti, up to 0.1% Al and up to 0.1% Nb (provided that Ti+Al.gtoreq.0.1% and Ti+Al+Nb.gtoreq.0.15%), with the balance being Ni and inevitable impurities and all percentages being on a weight basis.
    Type: Grant
    Filed: July 26, 1991
    Date of Patent: August 25, 1992
    Assignee: Japan Atomic Energy Res. Institute
    Inventors: Tatsuo Kondo, Hajime Nakajima, Masami Shindo, Hirokazu Tsuji, Ryohei Tanaka, Susumu Isobe, Sadao Ohta, Rikizo Watanabe
  • Patent number: 5131961
    Abstract: A method of forming a Ni-base superalloy suitable for use as the material for gas turbine disks or the like has a composition containing, by weight, 0.01 to 0.15% of C, 15 to 22% of Cr, 3 to 6% of Mo, 3 to 6% of W, 5 to 15% of Co, 1.0 to 1.9% of Al, 1.5 to 3.0% of Ti, 3.0 to 6.0% of Ta, 0.001 to 0.020% of B and the balance substantially Ni except inevitable impurities. This alloy is produced using the conventional ingot making and a hot working process including working at a reducing ratio greater than or equal to 10%, first above the .gamma. solvus temperature, and then during cooling to the recrystallization temperature and then subjected to direct aging without solid-solution treatment. As a result, the alloy exhibits excellent strength properties well comparable to those of expensive alloys produced by powder metallurgy process.
    Type: Grant
    Filed: September 27, 1989
    Date of Patent: July 21, 1992
    Assignee: Hitachi Metals, Ltd.
    Inventors: Koji Sato, Rikizo Watanabe
  • Patent number: 5129970
    Abstract: The present invention provides an alloy having improved crack growth inhibition and having high strength at high temperatures. The composition of the alloy is essentially as follows:______________________________________ Ingredient Concentration in Weight % ______________________________________ Ni balance Co 15 Cr 10 Mo 3 Al 3.35 Ti 5.90 Ta 2.70 Nb 1.35 Zr 0.06 V 1 C 0.05 B 0.03.
    Type: Grant
    Filed: September 26, 1988
    Date of Patent: July 14, 1992
    Assignee: General Electric Company
    Inventor: Michael F. Henry
  • Patent number: 5130087
    Abstract: The present invention provides an alloy having improved crack growth inhibition and having high strength at high temperatures. The composition of the alloy is essentially as follows:______________________________________ Concentration in Weight % Claimed Composition Ingredient From To ______________________________________ Ni balance Co 4 12 Cr 7 13 Mo 2 6 Al 3.0 6.0 Ti 3.5 5.0 Ta 2.0 4.0 Nb 1.0 3.0 Re 0.0 3.0 Hf 0.0 0.75 Zr 0.0 0.10 V 0.0 3.0 C 0.0 0.20 B 0.0 0.10 W 0.0 1.0 Y 0.0 0.10.
    Type: Grant
    Filed: July 30, 1990
    Date of Patent: July 14, 1992
    Assignee: General Electric Company
    Inventor: Michael F. Henry
  • Patent number: 5130089
    Abstract: The present invention provides an alloy having improved crack growth inhibition and having high strength at high temperatures. The composition of the alloy is essentially as follows:______________________________________ Concentration in Weight % Ingredient From To ______________________________________ Ni balance Co 12 Cr 10 16 Mo 2 6 Al 4.5 Ti 3.2 Ta 5 6 Nb 1 3 Zr 0 0.1 C 0 0.20 B 0.01 0.10 Re 0 3.0 Hf 0 0.75 V 0 0.5 W 0 1.0 Y 0 0.
    Type: Grant
    Filed: August 15, 1990
    Date of Patent: July 14, 1992
    Assignee: General Electric Company
    Inventor: Michael F. Henry
  • Patent number: 5129971
    Abstract: The present invention provides an alloy having improved crack growth inhibition and having high strength at high temperatures. The composition of the alloy is essentially as follows:______________________________________ Ingredient Concentration in Weight % ______________________________________ Ni balance Co 13 Cr 16 Mo 4 Al 2.55 Ti 4.5 Ta 3.0 Nb 1.5 Zr 0.03 C 0.03 B 0.
    Type: Grant
    Filed: September 26, 1988
    Date of Patent: July 14, 1992
    Assignee: General Electric Company
    Inventor: Michael F. Henry
  • Patent number: 5129968
    Abstract: The present invention provides an alloy having improved crack growth inhibition and having high strength at high temperatures. The composition of the alloy is essentially as follows:______________________________________ Ingredient Concentration in Weight % ______________________________________ Ni balance Co 15 Cr 10 Mo 3 Al 4.9 Ti 2.0 Ta 4.7 Nb 2.3 Zr 0.06 V 1 C 0.05 B 0.
    Type: Grant
    Filed: September 28, 1988
    Date of Patent: July 14, 1992
    Assignee: General Electric Company
    Inventor: Michael F. Henry
  • Patent number: 5129969
    Abstract: The present invention provides an alloy having improved crack growth inhibition and having high strength at high temperatures. The composition of the alloy is essentially as follows:______________________________________ Ingredient Concentration in weight % ______________________________________ Ni balance Co 15 Cr 10 Mo 3 Al 4.5 Ti 4.0 Ta 2.70 Nb 1.35 Zr 0.06 V 1 C 0.05 B 0.03.
    Type: Grant
    Filed: September 28, 1988
    Date of Patent: July 14, 1992
    Assignee: General Electric Company
    Inventor: Michael F. Henry
  • Patent number: 5130088
    Abstract: The present invention provides an alloy having improved crack growth inhibition and having high strength at high temperatures. The composition of the alloy is essentially as follows:______________________________________ Ingredient Concentration in weight 5 ______________________________________ Ni balance Co 15 Cr 10 Mo 3 Al 5.5 Ti 2.25 Ta 2.70 Nb 1.35 Zr 0.06 V 1 C 0.05 B 0.03.
    Type: Grant
    Filed: August 13, 1990
    Date of Patent: July 14, 1992
    Assignee: General Electric Company
    Inventor: Michael F. Henry
  • Patent number: 5124123
    Abstract: The present invention provides an alloy having improved crack growth inhibition and having high strength at high temperatures. The composition of the alloy is essentially as follows:______________________________________ Ingredient Concentration in Weight % ______________________________________ Ni balance Co 10 Cr 15 Mo 4 Al 4 Ti 3.5 Ta 2.5 Nb 1.25 Zr 0.06 C 0.05 B 0.
    Type: Grant
    Filed: September 26, 1988
    Date of Patent: June 23, 1992
    Assignee: General Electric Company
    Inventor: Michael F. Henry
  • Patent number: 5122206
    Abstract: A precipitation strengthening type nickel base single crystal alloy, which consists essentially of, on a weight percent basis,10-30% chromium,0.1-5% niobium,0.1-8% titanium,0.1-8% aluminum,optionally one or more components selected from the group consisting of 0.1-3% tantalum, 0.05-0.5% copper, 0.05-3% hafnium, 0.05-3% rhenium, 0.05-3% molybdenum, 0.05-3% tungsten, 0.05-0.5% boron, 0.05-0.5% zirconium, andthe remainder being nickel and incidental impurities, and exhibits a narrow solidification temperature range.
    Type: Grant
    Filed: May 9, 1990
    Date of Patent: June 16, 1992
    Assignee: Mitsubishi Metal Corporation
    Inventors: Saburo Wakita, Junji Hoshi, Toshiyuki Shimamura, Akira Mitsuhashi, Toshio Yonezawa
  • Patent number: 5120614
    Abstract: A nickel-chromium-molybdenum-niobium alloy affords high resistance to aggressive corrosives, including chlorides which cause crevice corrosion and oxidizing acids which promote intergranular corrosion, the alloy also being readily weldable and possessing structural stability at very low as well as elevated temperatures. The alloy consists essentially of, (by weight), 19-23% Cr, 12-15% Mo, 2.25-4% W, 0.65-2% Nb, 2-8% Fe, balance Ni.
    Type: Grant
    Filed: October 21, 1988
    Date of Patent: June 9, 1992
    Assignee: Inco Alloys International, Inc.
    Inventors: Edward L. Hibner, Ralph W. Ross, Jr., James R. Crum
  • Patent number: 5108700
    Abstract: The specification discloses nickel aluminide alloys which include as a component from about 0.5 to about 4 at. % of one or more of the elements selected from the group consisting of molybdenum or niobium to substantially improve the mechanical properties of the alloys in the cast condition.
    Type: Grant
    Filed: August 21, 1989
    Date of Patent: April 28, 1992
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventor: Chain T. Liu
  • Patent number: 5104614
    Abstract: Superalloy with a nickel base matrix having good mechanical properties when ot in respect of tensile strength, creep resistance, low cycle fatigue and resistance to crack-propagation of which the composition in percentages by weight is as follows: Cr 11 to 13; Co 8 to 17; Mo 6 to 8; Nb less than or equal to 1.5; Ti 4 to 5; Al 4 to 5; Hf less than or equal to 1; C, B, Zr each less than or equal to 500 ppm; Ni remainder to 100. The alloy can be manufactured advantageously by powder metallurgy techniques and used in the manufacture of turbo machine disks.
    Type: Grant
    Filed: June 3, 1986
    Date of Patent: April 14, 1992
    Assignees: Societe Nationale d'Etude et de Construction de Moteurs d'Aviation "S.N.E.C.M.A.", Association pour la Recherche et le Developpement des Methodes et Processus Industriels - "A.R.M.I.N.E.S.", Tecphy, Office National d'Etudes et de Recherches Aerospatiales - "O.N.E.R.A."
    Inventors: Christian A. B. Ducrocq, Didier P. A. Lestrat, Bernard Paintendre, James H. Davidson, Michel Marty, Andre Walder