Magnesium Containing Patents (Class 148/440)
  • Publication number: 20030111139
    Abstract: Aluminum alloy die castings combine good as-cast strength with good as-cast ductility, without any heat treatment. The alloy comprises 2.75 5.25 wt. % magnesium, 1.85-3.15 wt. % zinc, 0.65-1.2 wt. % manganese, 0.10-0.18 wt. % iron, less than 0.10 wt. % copper, less than 0.10 wt. % silicon, less than 0.20 wt. % titanium and the balance aluminum ant-d Incidental impurities and furthermore the percent by weight magnesium is greater than or equal to the percent by weight zinc. A particularly high strength version of the alloy comprises 4.75%-5.25 wt. % magnesium and 2.85-3.15 wt. % zinc. A particularly high ductility version of the alloy comprises 2.75-3.25 wt. % magnesium, 1.85 2.5 wt. % zinc.
    Type: Application
    Filed: December 10, 2002
    Publication date: June 19, 2003
    Inventors: J. Fred Major, Lawrence Purdon
  • Publication number: 20030102060
    Abstract: An extrudable, drawable and brazeable aluminum alloy that has improved corrosion resistance and is suitable for use in thin-wall fluid-carrying tube lines. Preferred alloys consist essentially of, by weight, about 0.17 to about 0.22% iron, about 0.06 to about 0.10% silicon, about 0.30 to about 0.70% manganese, about 0.10 to about 0.30% magnesium, and about 0.19 to about 0.25% zinc, with the balance aluminum and incidental impurities.
    Type: Application
    Filed: April 3, 2002
    Publication date: June 5, 2003
    Inventors: Ole Daaland, Lars Auran, Trond Furu
  • Patent number: 6562154
    Abstract: Aluminum sheet products having highly anisotropic grain microstructures and highly textured crystallographic microstructures are disclosed. The products exhibit improved strength and improved resistance to fatigue crack growth, as well as other advantageous properties such as improved combinations of strength and fracture toughness. The sheet products are useful for aerospace and other applications, particularly aircraft fuselages.
    Type: Grant
    Filed: June 12, 2000
    Date of Patent: May 13, 2003
    Assignee: Aloca Inc.
    Inventors: Roberto J. Rioja, Robert W. Westerlund, Anne E. Roberts, Dhruba J. Chakrabarti, Diana K. Denzer, Anthony Morales, Paul E. Magnusen, Gregory B. Venema
  • Patent number: 6555247
    Abstract: An aluminum alloy plate for a planographic printing plate capable of being provided with a satisfactory roughed surface by electrolytic etching. The aluminum alloy plate contains 0.1 to 0.6% of Fe, 0.01 to 0.2% of Si, 5 to 150 ppm of Cu, and balance of Al and unavoidable impurities and has a surface layer portion formed of a metastable phase dispersion layer in which metastable phase AlFe-based intermetallic compound particles are dispersed. The metastable intermetallic compound particles each act as a starting point for pits. The alloy plate is formed with a roughed surface which is reduced in unetching and uniformly formed with pits, by electrolytic etching.
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: April 29, 2003
    Assignee: Mitsubishi Aluminum Kabushiki Kaisha
    Inventor: Keitarou Yamaguchi
  • Patent number: 6544358
    Abstract: An aluminium alloy in the AA5XXX series has the composition: Si 0.10-0.25 %; Fe 0.18-0.30 %; Cu up to 0.5 %; Mn 0.4-0.7 %; Mg 3.0-3.5%; Cr up to 0.2%; and Ti up to 0.1%. Rolled and annealed sheet of the alloy is readily formed into shaped components for use in vehicles which components have good strength and resistance to stress corrosion cracking.
    Type: Grant
    Filed: July 8, 1999
    Date of Patent: April 8, 2003
    Assignee: Alcan International Limited
    Inventors: Alan Robert Carr, Kevin Michael Gatenby, Michael Bull
  • Patent number: 6531004
    Abstract: Weldable, high-magnesium-content aluminum-magnesium alloy consisting of at least 5-6% w/w magnesium (Mg), 0.05-0.15% w/w zirconium (Zr), 0.05-0.12% w/w manganese (Mn), 0.01-0.2% w/w titanium (Ti), 0.05-0.5% w/w of one or more elements from the scandium group and/or terbium (Tb), wherein at least scandium (Sc) is included, 0.1-0.2% w/w copper (Cu) and/or 0.1-0.4% w/w zinc (Zn), along with aluminum (Al), and unavoidable contamination does not exceed 0.1% w/w silicon (Si).
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: March 11, 2003
    Assignee: EADS Deutschland GmbH
    Inventors: Blanka Lenczowski, Viktor Yelagin, Rainer Rauh, Valeri Zakharov, Yuri Filatov
  • Publication number: 20030037848
    Abstract: The newly proposed cast aluminum alloy product has the composition consisting of 6.5-8.0% Si, 0.25-0.45% Mg, 0.08-0.40% Fe, 0.001-0.01% Ca, P less than 0.001%, 0.02-0.1% Ti, 0.001-0.01% B, optionally one or two of 0.05-0.3% Cr and 0.05-0.2% Mn, and the balance being Al except inevitable impurities. It has the metallurgical structure that an &agr;-Al phase in a surface layer is of average grain size different by 50 &mgr;m or less from an &agr;-Al phase in an inner part, and that a maximum size of eutectic Si particles is 400 &mgr;m or smaller. It is manufactured by injecting a molten aluminum alloy into metal dies at an injection speed of 0.05-0.25 m/second, and then cooling the injected alloy at a cooling speed of 20° C./or higher in a temperature range between liquidus and solidus curves in a state charged with a pressure of 30 MPa or higher. Since the cast product is good of ductility, it is used as a member for coupling another member therewith by calking or the like.
    Type: Application
    Filed: May 13, 2002
    Publication date: February 27, 2003
    Applicant: Nippon Light Co., Ltd.
    Inventors: Akio Hashimoto, Takaaki Ikari, Hiromi Takagi, Sumi Yoshikawa
  • Patent number: 6521061
    Abstract: A porous preform includes at least one kind of preform-forming materials of ceramic particles, ceramic fibers and ceramic whiskers, and a film of a binder formed on a surface of said at least one kind of the preform-forming materials and comprising magnesium or a magnesium alloy. The preform is used for producing a metal matrix composite material.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: February 18, 2003
    Assignee: Hiroshima University
    Inventors: Hideharu Fukunaga, Gen Sasaki, Makoto Yoshida, Jin Pan
  • Publication number: 20030008165
    Abstract: A shock absorbing material comprising an Al—Mg—Si series aluminum alloy having high strength and showing excellent energy absorbing property when compressed in the axial direction of extrusion is obtained. The shock absorbing material of the invention has a hollow cross section, mainly comprises a fibrous structure and can be manufactured by press quenching just after extrusion followed by aging. In the press quenching, press quenching under air-cooling advantageous in view of the dimensional accuracy or the cost can be adopted. Further, the shock absorbing material of the invention has excellent cracking resistance to a compressive load in the lateral direction as well as in the axial direction. The shock absorbing material of the invention is suitable as side members or bumper stays in the frame structures of automobiles.
    Type: Application
    Filed: July 9, 2002
    Publication date: January 9, 2003
    Applicant: KABUSHI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Hitoshi Kawai, Shinji Yoshihara, Masakazu Hirano
  • Patent number: 6485583
    Abstract: A dispersion strengthened mechanically alloyed aluminium based alloy is provided which is prepared by mechanical alloying and is characterized by improved isotropic strength, fracture toughness and corrosion resistance. The alloy system contains by weight 1.2 to 1.6% lithium, 4.0 to 6.0% magnesium, 0.15 to 0.7% carbon, up to 1% oxygen and up to 2.0% in total of one or more grain controlling elements to provide microstructural optimization and control, the balance aluminium save for incidental impurities.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: November 26, 2002
    Assignee: Qinetiq Limited
    Inventors: Wendy J Vine, Andrew D Tarrant
  • Patent number: 6454883
    Abstract: A one-piece steering wheel skeleton is produced by die casting an aluminum alloy of the Al—Mg—Mn type. Such a steering wheel skeleton has a high strength in combination with a high ductility. An object is to further increase the ductility of such a steering wheel skeleton, so that severe deformation of the steering wheel skeleton without breakage of the steering wheel spokes occurs under the influence of a very high acting force. To achieve this, the steering wheel skeleton undergoes a heat treatment in age hardening at elevated temperatures and then is cooled in stationary air. A steering wheel skeleton heat treated in this way can endure at least 30% greater deformation without breakage of the spokes in comparison with an untreated workpiece.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: September 24, 2002
    Assignee: DaimlerChrysler AG
    Inventor: Franz Rückert
  • Patent number: 6447982
    Abstract: A litho strip for use as an offset printing plate is described which has a composition of 0.05-0.25% Si, 0.30-0.40% Fe, 0.10-0.30% Mg, max. 0.05% Mn, and max. 0.04% Cu. The strip is produced from a continuous cast ingot of the above composition which is hot rolled to a thickness of up to 2-7 mm. The residual resistance ratio of the hot rolled strip is RR=10-20. The cold rolling is carried out with or without intermediate annealing, wherein the degree of rolling reduction after intermediate annealing is >60%. The further processing up to the EC roughening takes place with the microstructure adjusted in the rolling process at <100° C. The litho strip is characterized by a high thermal stability, a good roughening behavior in the EC processes, and a high reverse bending fatigue strength perpendicular to the rolling direction.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: September 10, 2002
    Assignee: VAW Aluminium AG
    Inventors: Wolfgang von Asten, Bernhard Kernig, Barbara Grzemba
  • Patent number: 6444059
    Abstract: Rolled or extruded products for welded constructions are made of an aluminum-magnesium-manganese type aluminum alloy, consisting essentially of, by weight: 3.0<Mg<5.0 0.5<Mn<1.0 Fe<0.25 Si<0.25 Zn<0.40 Cr<0.25 Cu<0.20 Ti<0.20 Zr<0.20 The product has a volumetric fraction of Mn containing dispersoids grater than 1.2%.
    Type: Grant
    Filed: July 25, 1997
    Date of Patent: September 3, 2002
    Assignee: Pechiney Rhenalu
    Inventors: Guy-Michel Raynaud, Jean-Luc Hoffmann, Laurent Cottignies, Georges Pillet
  • Patent number: 6440583
    Abstract: Disclosed is an Al alloy for a welded construction having excellent welding characteristics, which Al alloy comprises 1.5 to 5 wt % of Si (hereinafter, wt % is referred to as %), 0.2 to 1.5% of Mg, 0.2 to 1.5% of Zn, 0.2 to 2% of Cu, 0.1 to 1.5% of Fe, and at least one member selected from the group consisting of 0.01 to 1.0% of Mn, 0.01 to 0.2% of Cr, 0.01 to 0.2% of Ti, 0.01 to 0.2% of Zr, and 0.01 to 0.2% of V, with the balance being Al and inevitable impurities. Also disclosed is a welded joint having this Al alloy base metal welded with an Al—Mg- or Al—Si-series filler metal.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: August 27, 2002
    Assignees: The Furukawa Electric Co., Ltd., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Seizo Ueno, Yoichiro Bekki, Noboru Hayashi
  • Publication number: 20020088509
    Abstract: A recrystallization-hardenable aluminum cast alloy includes in addition to aluminum the following elements as functional elements: (1) 5 to 10 weight % silicon, (2) 0.2 to 0.35 weight % magnesium, (3) 0.3 to 3 weight % nickel and/or 0.6 to 3 weight % cobalt, and impurities due to manufacturing.
    Type: Application
    Filed: December 17, 2001
    Publication date: July 11, 2002
    Inventors: Andreas Barth, Mohamed Douaoui
  • Patent number: 6402860
    Abstract: The invention offers an aluminum alloy that not only has high hardness accompanied by balanced ductility but also has high toughness and superior processability. The invention also offers a method for manufacturing an aluminum-alloy member that not only has high hardness accompanied by balanced ductility but also has high toughness and superior processability. The aluminum alloy comprises (1) not less than 0.1 wt. % and not more than 8 wt. % Constituent A comprising one or more kinds of elements selected from the group consisting of titanium, vanadium, hafnium, and zirconium, (2) not less than 0.1 wt. % and not more than 20 wt. % Constituent B comprising one or more kinds of elements selected from the group consisting of lanthanum, cerium, praseodymium, neodymium, mischmetal, calcium, strontium, and barium, and (3) not less than 0.1 wt. % and not more than 20 wt. % Constituent C comprising one or more kinds of elements selected from the group consisting of magnesium and lithium.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: June 11, 2002
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Manabu Hashikura, Hisao Hattori, Toshihiko Kaji, Yoshinobu Takeda
  • Patent number: 6383314
    Abstract: Aluminum sheets and methods for manufacturing aluminum sheets are provided. The present invention involves control of processing conditions in order to achieve a fine grain size (i.e. ASTM rating of 8.5 or greater) in the material prior to a final cold working operation. Also included within the scope of the present invention are products having a fine grain size which have strength levels above what can be obtained in 5××× alloys.
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: May 7, 2002
    Assignee: Pechiney Rolled Products LLC
    Inventors: Brady Dunbar, Kenneth Paul Smith
  • Publication number: 20020048714
    Abstract: A support for a lithographic printing plate with no damage in appearance such as unevenness in the form of streaks and with excellent pit homogeneity. A support for a lithographic printing plate obtained by subjecting a surface of an aluminum alloy plate to a surface treatment including alkali etching and an electrochemical graining treatment, wherein the aluminum alloy plate shows dispersion of 50% or lower for each element, the dispersion being defined by an specific equation with regard to contents of Fe, Si, Mn, Mg and Sn in a surface layer portion thereof which is from the surface to a depth of 1 &mgr;m.
    Type: Application
    Filed: September 6, 2001
    Publication date: April 25, 2002
    Inventors: Hirokazu Sawada, Atsuo Nishino, Akio Uesugi
  • Publication number: 20020046786
    Abstract: A can end is manufactured by forming an end shell comprising a radially outer seaming flange, a chuck wall adjacent the seaming flange, a center panel, and an axially downward countersink joining the center panel to the chuck wall below the level of the seaming flange. The end shell is converted to an easy-open can end by forming a score on a portion of the center panel, raising a rivet on the center pane, and forming a tab and attaching the tab to the rivet. The end is subsequently formed by moving the center panel and the seaming flange one with respect to the other to raise the center panel above the level of the seaming flange.
    Type: Application
    Filed: May 22, 2001
    Publication date: April 25, 2002
    Inventors: David Andrew Roberts, Andrew Osborne Blow, John Alfred Perigo
  • Patent number: 6375767
    Abstract: A population of extrusion billets has a specification such that every billet is of an alloy of composition (in wt. %) : Fe<0.35; Si 0.20-0.6; Mn<0.10; Mg 0.25-0.9; Cu<0.015; Ti<0.10; Cr<0.10; Zn<0.03; balance Al of commercial purity. After ageing to T5 or T6 temper, extruded sections can be etched and anodized to give extruded matte anodized sections having improved properties.
    Type: Grant
    Filed: September 4, 1998
    Date of Patent: April 23, 2002
    Assignee: Alcan International Limited
    Inventors: Nicholas Charles Parson, Barry Roy Ellard, Graeme John Marshall
  • Publication number: 20020043312
    Abstract: An aluminum sheet material for automobiles is herein disclosed, having an aluminum alloy composition: (i) comprising 3.5 to 5 wt % of Si, 0.3 to 1.5 wt % of Mg, 0.4 to 1.5 wt % of Zn, 0.4 to 1.5 wt % of Cu, 0.4 to 1.5 wt % of Fe, and 0.6 to 1 wt % of Mn, and one or more members selected from the group of 0.01 to 0.2 wt % of Cr, 0.01 to 0.2 wt % of Ti, 0.01 to 0.2 wt % of Zr, and 0.01 to 0.2 wt % of V, with the balance of aluminum and unavoidable impurities, or (ii) comprising between more than 2.6 wt % and 5 wt % of Si, 0.2 to 1.0 wt % of Mg, 0.2 to 1.5 wt % of Zn, 0.2 to 1.5 wt % of Cu, 0.2 to 1.5 wt % of Fe, and between 0.05 and less than 0.6 wt % of Mn, and one or more members selected from the group of 0.01 to 0.2 wt % of Cr, 0.01 to 0.2 wt % of Ti, 0.01 to 0.2 wt % of Zr, and 0.01 to 0.2 wt % of V, with the balance of aluminum and unavoidable impurities.
    Type: Application
    Filed: October 17, 2001
    Publication date: April 18, 2002
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kazuhisa Kashiwazaki, Yoichiro Bekki, Noboru Hayashi
  • Patent number: 6364970
    Abstract: The diecasting alloy based on aluminium-silicon contains 9.5 to 11.5 w. % silicon 0.1 to 0.5 w. % magnesium 0.5 to 0.8 w. % manganese max 0.15 w. % iron max 0.03 w. % copper max 0.10 w. % zinc max 0.15 w. % titanium with the remainder aluminium and for permanent refinement 30 to 300 ppm strontium.
    Type: Grant
    Filed: November 21, 1994
    Date of Patent: April 2, 2002
    Assignee: Aluminium Rheinfelden GmbH
    Inventors: Ulrich Hielscher, Horst Sternau, Hubert Koch
  • Publication number: 20020012606
    Abstract: The invention offers an aluminum alloy that not only has high hardness accompanied by balanced ductility but also has high toughness and superior processability. The invention also offers a method for manufacturing an aluminum-alloy member that not only has high hardness accompanied by balanced ductility but also has high toughness and superior processability. The aluminum alloy comprises (1) not less than 0.1 wt. % and not more than 8 wt. % Constituent A comprising one or more kinds of elements selected from the group consisting of titanium, vanadium, hafnium, and zirconium, (2) not less than 0.1 wt. % and not more than 20 wt. % Constituent B comprising one or more kinds of elements selected from the group consisting of lanthanum, cerium, praseodymium, neodymium, mischmetal, calcium, strontium, and barium, and (3) not less than 0.1 wt. % and not more than 20 wt. % Constituent C comprising one or more kinds of elements selected from the group consisting of magnesium and lithium.
    Type: Application
    Filed: October 28, 1999
    Publication date: January 31, 2002
    Inventors: MANABU HASHIKURA, HISAO HATTORI, TOSHIHIKO KAJI, YOSHINOBU TAKEDA
  • Patent number: 6342113
    Abstract: A high strength Al—Mg alloy in plate or extrusion form having significantly improved strength in both soft and work-hardened tempers as compared with AA5083 is provided. The materials have ductility, pitting, stress and exfoliation corrosion resistances equivalent to those of the AA5083. The materials have improved long term stress and exfoliation corrosion resistances at temperatures above 80° C. The composition is 5-6% Mg, >0.6-1.2% Mn, 0.4-1.5% Zn, 0.05-0.25% Zr, up to 0.3% Cr, up to 0.2% Ti, up to 0.5% each Fe and Si, up to 0.4% each Cu and Ag, remainder Al and inevitable impurities. Manufacture of plate of this alloy is by homogenizing an ingot, hot rolling the ingot into plate in the range 400-530° C., cold rolling the plate with or without inter-annealing, final and optionally inter-annealing of the cold rolled material at temperatures in the range 200-550° C.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: January 29, 2002
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventors: Alfred Johann Peter Haszler, Desikan Sampath
  • Patent number: 6342112
    Abstract: An Al—Mg based alloy sheet product in which the crystallographic texture exhibits a ratio of the volume fraction of grains in the S orientation {123}<634> to the volume fraction of grains in the CUBE orientation {100}<001> (S/Cube) being 1 or more, and is comprised of grains with a volume fraction of about 10% or less in the GOSS orientation {110}<001>, wherein the grain size is in a range of about 20 to 100 &mgr;m demonstrates good formability.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: January 29, 2002
    Assignees: Alcoa Inc., Kobe Steel Ltd.
    Inventors: Frederic Barlat, John C. Brem, Shigeo Hattori, Yasuhiro Havashida, Daniel J. Lege, Kwansoo Chung, Yasushi Maeda, Kuniaki Matsui, Shawn J. Murtha, Masahiro Yanagawa, Narikazu Hashimoto
  • Publication number: 20020007881
    Abstract: An aluminum-based, corrosion resistant, alloy comprising: 0.06-0.35% by weight of iron, 0.05-0.15% by weight of silicon, 0.01-1.0% by weight of manganese, 0.02-0.60% by weight of magnesium, 0.05-0.
    Type: Application
    Filed: April 13, 1999
    Publication date: January 24, 2002
    Inventors: OLE DAALAND, LARS AURAN, TROND FURU
  • Patent number: 6337147
    Abstract: Improved shape and strength of the weld in a welded structure are obtained by use of a weldable aluminum product comprising a structural component which is a sheet, a plate or an extruded body and is made of an aluminum alloy containing not more than 1.5 wt % Zn. This component has, adhered on at least one side, a cladding layer made of an AA7xxx-series alloy having a corrosion potential lower than that of the alloy of the structural component. The alloy of the structural component is preferably an AA5xxx-series alloy containing Mg in the range 2 to 6 wt %.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: January 8, 2002
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventors: Alfred Johann Peter Haszler, Klaus Alfons Mechsner
  • Patent number: 6334916
    Abstract: The present invention provides an Al—Mg—Si based alloy sheet whose press-formability (particularly, deep-drawing formability, stretch-formability and bendability) is made higher than conventional Al—Mg—Si based alloy sheets of JIS 6000 series. For texture of the Al—Mg—Si based alloy sheet, orientation density of at least Cube orientation is controlled in accordance with a sort of press forming, so that press-formability improved to match with the press forming is provided. For example, to improve deep-drawing formability of an Al—Mg—Si based alloy sheet, the ratio of orientation density of Goss orientation to the orientation density of the Cube orientation (Goss/Cube) is set to 0.3 or less, and a grain size is set to 80 &mgr;m or less.
    Type: Grant
    Filed: May 10, 2000
    Date of Patent: January 1, 2002
    Assignee: Kobe Steel Ltd.
    Inventors: Katsushi Matsumoto, Yasuaki Sugizaki, Masahiro Yanagawa, Yuichi Seki
  • Patent number: 6334911
    Abstract: An aluminum alloy having a composition represented by the general formula: AlbalCuaMb or AlbalCuaMbTMc wherein M represents one or two elements selected between Mn and Cr; TM represents at least one element selected from the group consisting of Ti, Zr, V, Fe, Co, and Ni; and a, b and c each represent an atomic percentage of 0<a≦3, 2<b ≦5, and 0<c≦2, containing quasi-crystals in the structure thereof, and having an elongation of at least 10% at room temperature and a Young's modulus of at least 85 GPa. The aluminum alloy exhibits excellent mechanical properties such as high-temperature strength, ductility, impact strength and tensile strength and is provided as a rapidly-solidified material, a heat-treated material obtained by heat-treating the rapidly-solidified material, or a consolidated and compacted material obtained by consolidating and compacting the rapidly-solidified material.
    Type: Grant
    Filed: February 19, 1998
    Date of Patent: January 1, 2002
    Assignee: YKK Corporation
    Inventors: Kazuhiko Kita, Koji Saito, Koju Tachi, Teruaki Onogi, Kenji Higashi
  • Publication number: 20010050118
    Abstract: The invention relates to rolled or extruded products for welded constructions made of AlMgMn type aluminium alloy.
    Type: Application
    Filed: July 25, 1997
    Publication date: December 13, 2001
    Inventors: GUY-MICHEL RAYNAUD, JEAN-LUC HOFFMANN, LAURENT COTTIGNIES, GEORGES PILLET
  • Publication number: 20010047838
    Abstract: The invention includes a method of forming an aluminum-comprising physical vapor deposition target. An aluminum-comprising mass is deformed by equal channel angular extrusion. The mass is at least 99.99% aluminum and further comprises less than or equal to about 1,000 ppm of one or more dopant materials comprising elements selected from the group consisting of Ac, Ag, As, B, Ba, Be, Bi, C, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, Ir, La, Lu, Mg, Mn, Mo, N, Nb, Nd, Ni, O, Os, P, Pb, Pd, Pm, Po, Pr, Pt, Pu, Ra, Rf, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tl, Tm, V, W, Y, Yb, Zn and Zr. After the aluminum-comprising mass is deformed, the mass is shaped into at least a portion of a sputtering target.
    Type: Application
    Filed: February 13, 2001
    Publication date: December 6, 2001
    Inventors: Vladimir M. Segal, Jianxing Li, Frank Alford, Stephane Ferrasse
  • Publication number: 20010037844
    Abstract: An aluminum alloy energy-absorbing member, which satisfies the conditions of &agr;≧24 and (&agr;×&sgr;)≧6000, wherein &agr; (%) is the rupture elongation at a gauge distance of 5 mm, and &sgr; (MPa) is a 0.2% proof stress value, in the extruding direction of an aluminum alloy extruded material. This is an aluminum alloy energy-absorbing member that is lightweight, high in energy absorption, adequate in required mechanical strength, and preferable as an impact-absorbing member for an automobile, and the like.
    Type: Application
    Filed: January 24, 2001
    Publication date: November 8, 2001
    Inventors: Yoichiro Bekki, Seizo Ueno
  • Patent number: 6309481
    Abstract: An aluminium casting alloy contains: 2.0 to 3.5 w. % magnesium 0.15 to 0.35 w. % silicon 0.20 to 1.2  w. % manganese max. 0.40 w. % iron max. 0.10 w. % copper max. 0.05 w. % chromium max. 0.10 w. % zinc  max. 0.003 w. % beryllium max. 0.20 w. % titanium max. 0.60 w. % cobalt max. 0.80 w. % cerium and aluminium as the remainder with further impurities individually max. 0.02 w. %, total max. 0.2 w. %. The aluminium alloy is particularly suitable for diecasting, thixocasting and thixoforging. A particular application is diecasting for components with high requirements for mechanical properties, as these are present even in the cast state and thus no further heat treatment is required.
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: October 30, 2001
    Assignee: Aluminium Rheinfelden, GmbH
    Inventors: Hubert Koch, Horst Schramm
  • Patent number: 6302973
    Abstract: Aluminium-magnesium-zinc-silicon alloy, preferably in the form of a plate or a sheet or an extrusion, having the following composition in weight percent: Mg 0.5-1.5; Zn 0.1-3.8; Si 0.05-1.5; Mn 0.2-0.8; Zr 0.05-0.25; Cr 0.3 max.; Cu<0.3; Fe 0.5 max.; Ag 0.4 max.; Ti 0.2 max.; balance Al and inevitable impurities.
    Type: Grant
    Filed: January 22, 2000
    Date of Patent: October 16, 2001
    Assignees: Corus Aluminium Walzprodukte GmbH, Corus Aluminium Profiltechnik GmbH
    Inventors: Alfred Johann Peter Haszler, Desikan Sampath
  • Patent number: 6299706
    Abstract: A high-strength aluminum alloy having good porthole extrudability is provided. It has a Vickers hardness Hv of not less than 40 as measured in a homogenized state created by heat treatment before extrusion and a Vickers hardness Hv of not less than 20 imparted by plastic working after the heat treatment.
    Type: Grant
    Filed: November 24, 1997
    Date of Patent: October 9, 2001
    Assignees: Toyota Jidosha Kabushiki Kaisha, Nippon Light Metal, Co., Ltd.
    Inventors: Yoshiharu Miyake, Yoshihisa Serizawa, Yukio Okochi, Tetsuya Suganuma, Hajime Kamio, Takayuki Tsuchida, Hiroshi Nagashima
  • Publication number: 20010025675
    Abstract: A high strength Al-Mg alloy in plate or extrusion form having significantly improved strength in both soft and work-hardened tempers as compared with AA5083 is provided. The materials have ductility, pitting, stress and exfoliation corrosion resistances equivalent to those of the AA5083. The materials have improved long term stress and exfoliation corrosion resistances at temperatures above 80° C. The composition is 5-6% Mg, >0.6-1.2% Mn, 0.4-1.5% Zn, 0.05-0.25% Zr, up to 0.3% Cr, up to 0.2% Ti, up to 0.5% each Fe and Si, up to 0.4% each Cu and Ag, remainder Al and inevitable impurities. Manufacture of plate of this alloy is by homogenizing an ingot, hot rolling the ingot into plate in the range 400-530° C., cold rolling the plate with or without inter-annealing, final and optionally inter-annealing of the cold rolled material at temperatures in the range 200-550° C.
    Type: Application
    Filed: February 20, 2001
    Publication date: October 4, 2001
    Inventors: Alfred Johann Peter Haszler, Desikan Sampath
  • Publication number: 20010024734
    Abstract: An aluminum extruded door beam includes an outer flange, an inner flange, and at least one web for connecting the outer flange and the inner flange. The outer corners at the extended ends of the outer flange have a radius R of 2.5 mm or less. The outward corners at the connections between the web and the inner flange and between the web and the outer flange have a radius R of 2 mm to 4 mm. The radius of the outward corners at the connections between the web and the inner flange and between the web and the outer flange is 1.5 to 2 times the width of the web. The length of the extended ends of the outer flange is 1 to 2 times the radius R of the outward corner at the connections between the web and the outer and inner flanges. The aluminum alloy extruded door beam material contains 0.8 to 1.5% by weight (hereinafter the same) of Mg and 4 to 7% of Zn, and the recrystallization surface layer has a thickness of 50 &mgr;m or less.
    Type: Application
    Filed: December 26, 2000
    Publication date: September 27, 2001
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO
    Inventors: Hiroyuki Yamashita, Masakazu Hirano
  • Publication number: 20010018940
    Abstract: An AlMgSi-alloy suitable for manufacturing components having a high ductility, characterized in that the alloy comprising, in wt. %: 1 Mg 0.3 to 1.0 Si 0.3 to 1.2 Fe max. 0.35 Mn >0.15 to 0.4 V 0.05 to 0.20 Cu max. 0.3 Cr max. 0.2 Zn max. 0.2 Ti max. 0.
    Type: Application
    Filed: April 6, 2001
    Publication date: September 6, 2001
    Inventors: Gerhard Borst, Josef Morianz
  • Publication number: 20010016175
    Abstract: An aluminum casting alloy contains 1 0.5 to 2.0 w. % magnesium max. 0.15 w. % silicon 0.5 to 2.0 w. % manganese max. 0.7 w. % iron max. 0.1 w. % copper max. 0.1 w. % zinc max. 0.2 w. % titanium 0.1 to 0.6 w. % cobalt max. 0.8 w. % cerium 0.05 to 0.5 w. % zirconium max. 1.1 w. % chromium max. 1.1 w. % nickel 0.005 to 0.15 w. % vanadium max. 0.5 w.
    Type: Application
    Filed: January 18, 2001
    Publication date: August 23, 2001
    Inventors: Hubert Koch, Horst Schramm, Peter Krug
  • Patent number: 6277217
    Abstract: An aluminum alloy comprises magnesium in a range of 3.0% by weight≦Mg≦5.5% by weight, manganese in a range of 1.5% by weight≦Mn≦2.0% by weight, nickel in a range of 0.5% by weight≦Ni≦0.9% by weight, and the balance of aluminum including inevitable impurities. Particularly, the Ni content is set in the above range in order to achieve an increase in toughness of a die-cast product. Thus, it is possible to suppress the amount of an intermetallic compound AlMnNi produced and to finely divide the intermetallic compound AlMnNi.
    Type: Grant
    Filed: April 13, 1999
    Date of Patent: August 21, 2001
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Sadafumi Yoshino, Seiichi Koike, Eitarou Koya, Masahiko Nakagawa
  • Patent number: 6267829
    Abstract: The present invention is a method for producing an iron-containing hypoeutectic alloy free from primary platelet-shaped beta-phase of the Al5FeSi in the solidified structure by the steps (a) providing an iron-containing aluminum alloy having a composition within the following limits, in weight percent, 6-10% Si, 0.05-1.0% Mn, 0.4-2% Fe, at least one of 1) 0.01-0.8% Ti and/or Zr 2) 0.005-0.5% Sr and/or Na and/or Ba, 0-6.0% Cu, 0-2.0% Cr, 0-2.0% Mg, 0-6.0% Zn, 0-0.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: July 31, 2001
    Assignee: Opticast AB
    Inventors: Lennart Bäckerud, Lars Arnberg, Guocai Chai
  • Publication number: 20010008155
    Abstract: The newly proposed cast aluminum alloy product has the composition consisting of 6.5-8.0% Si, 0.25-0.45% Mg, 0.08-0.40% Fe, 0.001-0.01% Ca, P less than 0.001%, 0.02-0.1% Ti, 0.001-0.01% B, optionally one or two of 0.05-0.3% Cr and 0.05-0.2% Mn, and the balance being Al except inevitable impurities. It has the metallurgical structure that an &agr;-Al phase in a surface layer is of average grain size different by 50 &mgr;m or less from an &agr;-Al phase in an inner part, and that a maximum size of eutectic Si particles is 400 &mgr;m or smaller. It is manufactured by injecting a molten aluminum alloy into metal dies at an injection speed of 0.05-0.25 m/second, and then cooling the injected alloy at a cooling speed of 20° C./or higher in a temperature range between liquidus and solidus curves in a state charged with a pressure of 30 MPa or higher. Since the cast product is good of ductility, it is used as a member for coupling another member therewith by calking or the like.
    Type: Application
    Filed: January 10, 2001
    Publication date: July 19, 2001
    Applicant: NIPPON LIGHT METAL CO., LTD
    Inventors: Akio Hashimoto, Takaaki Ikari, Hiromi Takagi, Sumi Yoshikawa
  • Patent number: 6261391
    Abstract: The present invention disclosed is an aluminum alloy plate for super plastic molding capable of cold pre-molding before super plastic molding. The alloy plate comprises Mg at from 2.0 to 8.0% (weight %, the same shall apply hereinafter) Be at from 0.0001 to 0.01%, at least one of Mn at from 0.3 to 2.5%, Cr at from 0.1 to 0.5%, Zr at from 0.1 to 0.5% and V at from 0.1 to 0.5%. Additionally, the alloy plate may comprise an Fe amount and an Si amount each within a range of 0.0 to 0.2%; amounts of Na and Ca within ranges of 3 ppm or less and 5 ppm or less, respectively; while the remainder of the alloy plate consists of Al and inevitable impurities. The resulting alloy plate a crystalline structure is a non-recrystallized crystal structure; the 90° critical bending radius is 7.5 times the plate thickness or less; and the yield strength ratio before and after the final annealing is 70% or more. The invention also discloses production methods for the alloy plate.
    Type: Grant
    Filed: March 10, 1995
    Date of Patent: July 17, 2001
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Sky Aluminum Co., Ltd.
    Inventors: Hideaki Ikeda, Masanori Kosugi, Shizuo Kimura, Mamoru Matsuo, Tsutomu Tagata, Nobuyuki Matsumoto
  • Patent number: 6258463
    Abstract: The invention relates to a process for producing anodic coatings with superior corrosion resistance and other properties on aluminum and aluminum alloy surfaces by cryogenically treating the aluminum prior to anodizing. The invention also relates to the anodic coatings and to the anodically coated articles produced by the process. The anodized coating has a thickness of 0.001 to 0.5 mm and a time to penetration of at least 5 hours for aqueous solutions of HCl.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: July 10, 2001
    Assignee: Praxair S.T. Technology, Inc.
    Inventor: Michael Kevin Corridan
  • Patent number: 6248453
    Abstract: A high strength dispersion strengthened aluminum alloy comprising an aluminum solid solution matrix strengthened by a dispersion of particles based on the compound Al3X, where Al3X has an L12 structure, is described. Various alloying elements are employed to modify the lattice parameter of the matrix and/or the particles so that the matrix and particles have similar lattice parameters. The alloy is produced by rapid solidification from the melt.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: June 19, 2001
    Assignee: United Technologies Corporation
    Inventor: Thomas J. Watson
  • Patent number: 6238495
    Abstract: A high strength Al—Mg alloy in plate or extrusion form having significantly improved strength in both soft and work-hardened tempers as compared with AA5083 is provided. The materials have ductility, pitting, stress and exfoliation corrosion resistances equivalent to those of the AA5083. The materials have improved long term stress and exfoliation corrosion resistances at temperatures above 80° C. The composition is 5-6% Mg, >0.6-1.2% Mn, 0.4-1.5% Zn, 0.05-0.25% Zr, up to 0.3% Cr, up to 0.2% Ti, up to 0.5% each Fe and Si, up to 0.4% each Cu and Ag, remainder Al and inevitable impurities. Manufacture of plate of this alloy is by homogenizing an ingot, hot rolling the ingot into plate in the range 400-530° C., cold rolling the plate with or without inter-annealing, final and optionally inter-annealing of the cold rolled material at temperatures in the range 200-550° C.
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: May 29, 2001
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventors: Alfred Johann Peter Haszler, Desikan Sampath
  • Patent number: 6231809
    Abstract: An Al—Mg—Si type alloy sheet contains 0.2 to 1.5 wt % of Mg and 0.2 to 1.5 wt % of Si. The sheet has textures in which orientation distribution density of Goss orientation is 3 or lower, orientation distribution density of PP orientation is 3 or lower and orientation distribution density of Brass orientation is 3 or lower. The sheet may contain 0.01 to 1.5 wt % in total weight of one or more elements selected from the group consisting of Mn, Cr, Fe, Zr, V and Ti. The sheet may further contain 0.01 to 1.5 wt % in total weight of one or more elements selected from the group consisting of Cu, Ag, Zn and Sn. Thus, ridging marks is restrained in the aluminum alloy sheet.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: May 15, 2001
    Assignees: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe Alcoa Transporation Products Ltd.
    Inventors: Katsushi Matsumoto, Masahiro Yanagawa, Yasuo Takaki
  • Patent number: 6231995
    Abstract: An aluminum extruded door beam includes an outer flange, an inner flange, and at least one web for connecting the outer flange and the inner flange. The outer corners at the extended ends of the outer flange have a radius R of 2.5 mm or less. The outward corners at the connections between the web and the inner flange and between the web and the outer flange have a radius R of 2 mm to 4 mm. The radius of the outward corners at the connections between the web and the inner flange and between the web and the outer flange is 1.5 to 2 times the width of the web. The length of the extended ends of the outer flange is 1 to 2 times the radius R of the outward corner at the connections between the web and the outer and inner flanges. The aluminum alloy extruded door beam material contains 0.8 to 1.5% by weight (hereinafter the same) of Mg and 4 to 7% of Zn, and the recrystallization surface layer has a thickness of 50 &mgr;m or less.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: May 15, 2001
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Hiroyuki Yamashita, Masakazu Hirano
  • Patent number: 6224987
    Abstract: A conductive substrate of an electrophotographic photoconductor has magnesium suicide precipitated therein as an impurity compound. The conductive substrate has an aluminum oxide film of minimum thickness deviation, and an aluminum base which exhibits a light scattering effect. An electrophotographic photoconductor using such a conductive substrate suppresses interference fringes caused by the interference action of a semiconductor laser light. Furthermore, irregular printing density and the formation of black spots is eliminated. A method for making such a conductive substrate includes annealing an aluminum base doped with silicon and magnesium to precipitate out Ms2Si, followed by anodizing a surface of the aluminum base to form an aluminum oxide film. A charge generation layer and a charge transport layer are formed on the aluminum oxide film to complete the electrophotographic photoconductor.
    Type: Grant
    Filed: June 9, 1999
    Date of Patent: May 1, 2001
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Hidetaka Yahagi
  • Patent number: 6221182
    Abstract: By careful control of composition and processing, Al—Mg based alloy sheets with preferred grain sizes and crystallographic textures that result in good press formability are disclosed. The Al—Mg alloy preferably contains 2-6 wt % Mg, and at least 0.03 wt % of at least one element selected from Fe, Mn, Cr, Zr, and Cu. The crystallographic texture is comprised of grains with a volume fraction in a range of about 30-50% in the CUBE orientation {100}<001>, and a volume fraction in a range of about 10 to 20% in the BRASS orientation {110}<112>, wherein the grain size is within a range of about 50 to 100 &mgr;m.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: April 24, 2001
    Assignees: Alcoa Inc., Kobe Steel Ltd.
    Inventors: Frederic Barlat, John C. Brem, Shigeo Hattori, Yasuhiro Hayashida, Daniel J. Lege, Yasushi Maeda, Kuniaki Matsui, Shawn J. Murtha, Masahiro Yanagawa, Kwansoo Chung, Narikazu Hashimoto