Containing Over 50 Per Cent Metal, But No Base Metal Patents (Class 148/442)
  • Patent number: 8048369
    Abstract: A cobalt-nickel-chromium-molybdenum alloy useful in surgical implant applications includes, in weight percent based on total alloy weight, at least 20 cobalt, 33.0 to 37.0 nickel, 19.0 to 21.0 chromium, 9.0 to 10.5 molybdenum, and less than 30 ppm nitrogen. Embodiments of the alloy lack significant levels of titanium nitride and mixed carbonitride inclusions. The alloy may be cold drawn to thin-gauge wire without damage to the die as may be caused by hard particle inclusions in certain conventional alloy formulations.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: November 1, 2011
    Assignee: ATI Properties, Inc.
    Inventors: Robin M. Forbes Jones, Henry E. Lippard, Timothy A. Stephenson, Robert J. Myers, David J. Bradley
  • Publication number: 20110253262
    Abstract: An austenitic, substantially ferrite-free steel alloy and a process for producing components therefrom. This Abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.
    Type: Application
    Filed: April 15, 2011
    Publication date: October 20, 2011
    Applicants: SCHOELLER-BLECKMANN OILFIEND TECHNOLOGY GMBH
    Inventors: Gabriele SALLER, Herbert AIGNER, Josef BERNAUER, Raimund HUBER
  • Patent number: 8002909
    Abstract: Alloy compositions suitable for fabricating medical devices, such as stents, are disclosed. In certain embodiments, the compositions have small amounts of nickel, e.g., the compositions can be substantially free of nickel.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: August 23, 2011
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Charles Horace Craig
  • Patent number: 7988908
    Abstract: Provided is a filler metal alloy composition capable of improving appearance of a welded zone and fluidity, penetration, etc., of an inexpensive filler metal by minimizing a content of silver (Ag) and adding tin (Sn) and silicon (Si) components. The filler metal alloy composition, brazed to a joint between parent metals to stably join the parent metals formed of the same material or different materials, is characterized in that the composition comprises silver (Ag), copper (Cu), zinc (Zn), tin (Sn), silicon (Si), and other unavoidable impurities.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: August 2, 2011
    Assignee: Korea Bundy Co., Ltd.
    Inventors: Dong Ha Lee, Jae Jung Park, Chung Yun Kang, Myoung Bok Kim
  • Patent number: 7976776
    Abstract: Compositions are disclosed comprising mercury, titanium, copper and one or more of tin, chromium and silicon, useful for the release of mercury in applications requiring the same, in particular in fluorescent lamps. A process for the preparation of these compositions is also disclosed.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: July 12, 2011
    Assignee: Saes Getters S.p.A.
    Inventors: Alberto Coda, Alessio Corazza, Alessandro Gallitognotta, Vincenzo Massaro, Mario Porro, Luca Toia
  • Publication number: 20110088819
    Abstract: An austenitic heat resistant alloy, which comprises by mass percent, C: over 0.02 to 0.15%, Si?2%, Mn?3%, P?0.03%, S?0.01%, Cr: 28 to 38%, Ni: over 40 to 60%, Co?20% (including 0%), W over 3 to 15%, Ti: 0.05 to 1.0%, Zr: 0.005 to 0.2%, Al: 0.01 to 0.3%, N?0.02%, and Mo<0.5%, with the balance being Fe and impurities, in which the following formulas (1) to (3) are satisfied has high creep rupture strength and high toughness after a long period of use at a high temperature, and further it is excellent in hot workability. This austenitic heat resistant alloy may contain a specific amount of one or more elements selected from Nb, V, Hf, B, Mg, Ca, Y, La, Ce, Nd, Sc, Ta, Re, Ir, Pd, Pt and Ag. P?3/{200(Ti+8.5×Zr)} . . . (1), 1.35×Cr?Ni+Co?1.85×Cr . . . (2), Al?1.5×Zr . . . (3).
    Type: Application
    Filed: December 13, 2010
    Publication date: April 21, 2011
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Hiroyuki SEMBA, Hirokazu OKADA, Masaaki IGARASHI
  • Publication number: 20110079944
    Abstract: Provided are an alloy for spring, a plate material for spring, and a spring member, all of which are high in mechanical strength, also high in fatigue strength, and excellent in corrosion resistance. An alloy for spring of the present invention includes, as composition in terms of weight ratio, 28 to 42% Co, 10 to 27% Cr, 3 to 12% Mo, 15 to 40% Ni, 0.1 to 1.0% Ti, 1.5% or less Mn, 0.1 to 26.0% Fe, 0.1% or less C, and inevitable impurities, and at least one kind selected from 3.0% or less Nb, 5.0% or less W, 0.5% or less Al, 0.1% or less Zr, and 0.01% or less B.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 7, 2011
    Inventors: Yasunori Akasaka, Kyotaro Takahashi, Takashi Kamada, Ryo Sugawara, Tomoo Kobayashi
  • Publication number: 20100322818
    Abstract: A gold alloy having, expressed by weight, about 24.5 to 25.5% Au, about 19.0 to 23.0% Ag, about 43.0 to 47.0% Cu, about 6.0 to 10.0% Zn, about 0.05 to 0.30% Si, and about 0.005 to 0.03% Ir. Alternatively, a alloy having, expressed by weight, about 16-17% Au, about 19-23% Ag, about 50-55% Cu, about 6-10% Zn, about 0.05-0.30% Si, and about 0.005-0.03% Ir.
    Type: Application
    Filed: May 12, 2010
    Publication date: December 23, 2010
    Inventors: Todd Cleabert Bridgeman, Suzanne M. Dauck
  • Publication number: 20100269958
    Abstract: The present disclosure describes methods of heat treating Ti-based alloys and various improvements that can be realized using such heat treatments. In one exemplary implementation, the invention provides a method of forming a metal member that involves forming an alloy into a utile shape and cooling the alloy from a first temperature above a beta transus temperature of the alloy to a second temperature below the beta transus temperature at a cooling rate of no more than about 30° F./minute. If so desired, the alloy my be treated for a period of about 1-12 hours at about 700-1100° F. Titanium alloys treated according to aspects of the invention may have higher tensile strengths and higher fracture toughness than conventional wrought, mill-annealed Ti 64 alloy.
    Type: Application
    Filed: July 6, 2010
    Publication date: October 28, 2010
    Applicant: The Boeing Company
    Inventor: Robert D. Briggs
  • Patent number: 7815850
    Abstract: Biphasic alloys, formed through a spinodal decomposition process, are disclosed. The alloys have improved strength and hardness, over single phase alloys, due to coherency strain between the phases. They are prepared from readily available transition metals, and they can be used to make large, high-strength parts, for example, of types that cannot be made by extrusion, forging or cold working techniques.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: October 19, 2010
    Assignee: The Trustees of Dartmouth College
    Inventors: Ian Baker, Markus Wolfgang Wittmann, James Anthony Hanna
  • Publication number: 20100230017
    Abstract: A method of making steel wire is described that includes the step of forming a length of wire from a high strength, corrosion resistant alloy. The alloy preferably has the following composition in weight percent. Carbon 0.03 max. Manganese 0.15 max. Silicon 0.15 max. Phosphorus 0.015 max. Sulfur 0.010 max. Chromium 19.00-21.00 Nickel 33.00-37.00 Molybdenum ?9.00-10.50 Titanium 1.00 max. Boron 0.010 max. Iron 1.00 max. The balance of the alloy is cobalt and usual impurities. The wire is annealed at a combination of temperature and time effective to provide a grain size of about ASTM 6 or finer. The annealed wire is then drawn such that the cross-sectional area of the wire is reduced by about 50 to 80%.
    Type: Application
    Filed: March 11, 2010
    Publication date: September 16, 2010
    Inventors: Richard B. Frank, Lyndon W. Burleson
  • Publication number: 20100230011
    Abstract: An austenitic stainless steel hot-rolled steel material can be provided which has sea-water resistance and strength superior to conventional steel. Low-temperature toughness can be maintained, which is preferable in a structural member of speedy craft. The steel material can include an austenitic stainless steel hot-rolled steel material which excels in the properties of corrosion resistance, proof stress, and low-temperature toughness. In such austenitic stainless steel hot-rolling steel material, e.g., PI [=Cr+3.3(Mo+0.5W)+16N] ranges from 35 to 40, ? cal [=2.9(Cr+0.3Si+Mo+0.5W)?2.6(Ni+0.3Mn+0.25Cu+35C+20N)?18] ranges from ?6 to +2, and a 0.2% proof stress at room temperature is not less than 550 MPa, Charpy impact value measured using a V-notch test piece at ?40° C. is not less than 100 J/cm2, and the pitting potential measured in a deaerated aqueous solution of 10% NaCl at 50° C. (Vc'100) is not less than 500 mV (as it relates to saturated Ag/AgCl).
    Type: Application
    Filed: February 23, 2009
    Publication date: September 16, 2010
    Applicant: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Yuusuke Oikawa, Shinji Tsuge, Shigeo Fukumoto, Kazuhiro Suetsugu, Ryo Matsuhashi, Hiroshige Inoue
  • Patent number: 7794652
    Abstract: A dental prosthesis may be cast and machined from a cobalt-, iron- and/or nickel-chromium base dental alloy comprising at least 25% metal selected from the group consisting of ruthenium, platinum, palladium, iridium, osmium, rhodium, and gold wherein the major portion or at least 15%, whichever is larger, of metal in this group is ruthenium; from 15 to 30% chromium; and a principal balance of metal selected from the group consisting of iron. nickel and cobalt.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: September 14, 2010
    Assignee: The Argen Corporation
    Inventor: Paul J. Cascone
  • Patent number: 7785427
    Abstract: High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: August 31, 2010
    Assignee: Shell Oil Company
    Inventors: Phillip James Maziasz, John Paul Shingledecker, Michael Leonard Santella, Joachim Hugo Schneibel, Vinod Kumar Sikka, Harold J. Vinegar, Randy Carl John, Dong Sub Kim
  • Publication number: 20100196799
    Abstract: The present invention relates to the use of the A286 alloy grade for the manufacture of a sheet, optionally surfaced, making it possible to obtain a conducting plate of mono polar or bipolar type for a fuel cell element. The invention also relates to this optional surface treatment process, which comprises a cold-rolling step followed by a continuous annealing step in an oxidizing atmosphere and by an acid pickling step.
    Type: Application
    Filed: June 19, 2007
    Publication date: August 5, 2010
    Applicants: L'Air Liquide Societe Anonyme Pour L'Etude et L'Exploration DesProcedes George Claude, Arcelormittal-Stainless & Nickel Alloys, Alfa Laval Corporate AB
    Inventors: Eric Claude, Richard Bousquet, Gilles Platen, Claude Roussel
  • Patent number: 7749431
    Abstract: A high-strength stainless steel, having good mechanical properties and corrosion resistance in a high-pressure hydrogen gas environment, is used as a container or other device for high-pressure hydrogen gas, and consists of, by mass %, C: not more than 0.04%, Si: not more than 1.0%, Mn: 7 to 30%, Cr: 15 to 22%, Ni: 5 to 20%, V: 0.001 to 1.0%, N: 0.20 to 0.50% and Al: not more than 0.10%, and the balance Fe and impurities. Among the impurities, P is not more than 0.030%, S is not more than 0.005%, and Ti, Zr and Hf are not more than 0.01% respectively, and the contents of Cr, Mn and N satisfy the relationship, 2.5Cr+3.4Mn?300N. The weld metal of the welded joint of the container or other device made of the said stainless steel satisfies the relationship, ?11?Nieq?1.1×Creq??8.
    Type: Grant
    Filed: April 18, 2005
    Date of Patent: July 6, 2010
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Masaaki Igarashi, Hiroyuki Semba, Mitsuo Miyahara, Kazuhiro Ogawa, Tomohiko Omura
  • Patent number: 7749341
    Abstract: A composition of the invention is a high temperature shape memory alloy having high work output, and is made from (Ni+Pt+Y)xTi(100-x), wherein x is present in a total amount of 49-55 atomic %, Pt is present in a total amount of 10-30 atomic %, Y is one or more of Au, Pd, and Cu and is present in a total amount of 0 to 10 atomic %. The alloy has a matrix phase wherein the total concentration of Ni, Pt, and the one or more of Pd, Au, and Cu is greater than 50 atomic %.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: July 6, 2010
    Assignee: The United States of America as represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Ronald Dean Noebe, Susan L. Draper, Michael V. Nathal, Edwin A. Crombie
  • Patent number: 7744706
    Abstract: The invention provides a solder alloy for bonding an oxide material, including more than 0% but not more than 1.0% of Mg and the balance being substantially Bi and Sn. Preferably, the alloy includes 0.01 to 0.6% of Mg, 35 to 86% of Bi, and the balance being substantially Sn. The invention can be used for bonding an oxide material, such as bonding glasses to each other. According to the invention, a low-cost solder joint of an oxide material is also provided.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: June 29, 2010
    Assignee: Hitachi Metals, Ltd.
    Inventors: Minoru Yamada, Nobuhiko Chiwata, Takayuki Moriwaki
  • Publication number: 20100116383
    Abstract: A heat treatment method for desensitizing a nickel-based alloy with respect to environmentally-assisted cracking, the alloy having the following composition in percentages by weight: C?0.10%; Mn?0.5%; Si?0.5%; P?0.015%; S?0.015%; Ni?40%; Cr=12%-40%; Co?10%; Al?5%; Mo=0.1%-15%; Ti?5%; B?0.01%; Cu?5%; W=0.1%-15%; Nb=0-10%; Ta?10%; the balance being Fe, and inevitable impurities that result from processing, characterized in that the alloy is held at 950° C.-1160° C. in an atmosphere of pure hydrogen or containing at least 100 ppm of hydrogen mixed with an inert gas. A part made of a nickel-based alloy having the composition and that has been subjected to the heat treatment.
    Type: Application
    Filed: December 6, 2007
    Publication date: May 13, 2010
    Applicant: AREVA NP
    Inventors: Jean-Marc Cloue, Veronique Garat, Rric Andrieu, Julien Deleume
  • Patent number: 7708842
    Abstract: A metal gasket formed from a suitable iron-nickel chromium alloy includes at least one embossment that exhibits essentially full functional recovery at temperatures exceeding 1000° F. and including in the range of 1100° F. to 1600° F. or more and which is made from sheet material that is work hardened and strengthened by cold rolling, or a combination of cold rolling and precipitation hardening, without any post embossment heat treating that would act to further harden the material. Suitable iron-nickel-chromium alloys include those comprising, by weight, greater than 18% nickel; greater than 14% chrome and 0.1-10% of at least one element selected from the group consisting of Mo, Ti, V, Al, Co, Nb, Ta and Cu, with the balance being substantially Fe, wherein the gasket sheet alloy has a deformed microstructure.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: May 4, 2010
    Assignee: Federal-Mogul World Wide, Inc.
    Inventor: Thomas Zurfluh
  • Patent number: 7708841
    Abstract: An austenitic, substantially ferrite-free steel alloy and a process for producing components therefrom. This Abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: May 4, 2010
    Assignees: Boehler Edelstahl GmbH & Co KG, Schoeller-Bleckmann Oilfield Technology GmbH
    Inventors: Gabriele Saller, Herbert Aigner, Josef Bernauer, Raimund Huber
  • Patent number: 7704335
    Abstract: A refractory composition is described, containing niobium, silicon, titanium, and at least one of rhenium and ruthenium. The amount of silicon in the composition is at least about 9 atom %, and the amount of titanium present is less than about 26 atom %, based on total atomic percent. Turbine engine components formed from such a composition are also disclosed.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: April 27, 2010
    Assignee: General Electric Company
    Inventors: Bernard Patrick Bewlay, Laurent Cretegny, Pazhayannur Ramanathan Subramanian, Melvin Robert Jackson
  • Patent number: 7674428
    Abstract: Compositions are disclosed comprising mercury, titanium, copper and one or more of tin, chromium and silicon, useful for the release of mercury in applications requiring the same, in particular in fluorescent lamps. A process for the preparation of these compositions is also disclosed.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: March 9, 2010
    Assignee: Saes Getters S.p.A.
    Inventors: Alberto Coda, Alessio Corazza, Alessandro Gallitognotta, Vincenzo Massaro, Mario Porro, Luca Toia
  • Patent number: 7658883
    Abstract: Novel carbon-plus-nitrogen corrosion-resistant ferrous and austenitic alloys, apparatus incorporating an inventive alloy, and methods of making and using the apparatus are described. The corrosion-resistant ferrous and austenitic alloys comprise no greater than about 4 wt. % nickel, are characterized by a strength greater than about 700 MPa (100 ksi), and, when being essentially free of molybdenum (<0.3 wt. %), have minimum Pitting Resistance Equivalence (PRE) numbers of 20 and minimum Measure of Alloying for Corrosion Resistance numbers (MARC) of 30 because of the use of both carbon and nitrogen. The ferrous and austenitic alloys are particularly formulated for use in oilfield operations, especially sour oil and gas wells and reservoirs. This abstract allows a searcher or other reader to quickly ascertain the subject matter of the disclosure. It will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: February 9, 2010
    Assignee: Schlumberger Technology Corporation
    Inventors: Manuel Marya, Rashmi Bhavsar
  • Patent number: 7655183
    Abstract: A durable Pd-based alloy is used for a H2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes “X”, where “X” comprises at least one metal from group “M” that is BCC and acts to stabilize the ? BCC phase for stability during operating temperatures. The metal from group “M” is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. “X” may further comprise at least one metal from a group “N” that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group “N” is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd—Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of “X” in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: February 2, 2010
    Assignee: UTC Power Corporation
    Inventors: Raymond C. Benn, Susanne M. Opalka, Thomas Henry Vanderspurt
  • Patent number: 7611590
    Abstract: This invention related to a high carbon and high molybdenum/tungsten martenisitic type iron base alloy with excellent hot hardness and wear resistance for making valve seat insert. The alloy comprises of 2.05-3.60 wt % carbon, 0.1-3.0 wt % silicon, 0-2.0 wt % manganese, 3.0-10.0 wt % chromium, 11.0-25.0 wt % molybdenum and tungsten, 0.1-6.5 wt % nickel, 0-8.0 wt % vanadium, 0-6.0 wt % niobium, 0-8.0 wt % cobalt, and the balance being iron with impurities.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: November 3, 2009
    Assignee: Alloy Technology Solutions, Inc.
    Inventor: Xuecheng Liang
  • Publication number: 20090260727
    Abstract: A Sn-containing copper alloy, contains Sn: 0.01 to 16 mass %, Zr: 0.001 to 0.049 mass %, P: 0.01 to 0.25 mass %, and Cu: remainder; satisfying f0=[Cu]?0.5[Sn]?3[P]=61 to 97, f1=[P]/[Zr] 0.5 to 100, f2=3[Sn]/[Zr]=30 to 15000 and f3=3[Sn]/[P]=3 to 2500 (the content of element ‘a’ is represented as [a] mass %). ? and ?-phases and/or ?-phase are included and the total content of the ? and ?-phases and/or ?-phase reaches 90% or more by area ratio, and the mean grain size of the macrostructure during melt-solidification is 300 ?m or less.
    Type: Application
    Filed: August 10, 2005
    Publication date: October 22, 2009
    Applicant: SANBO SHINDO KOGYO KABUSHIKI KAISHA
    Inventor: Keiichiro Oishi
  • Patent number: 7601230
    Abstract: Alloy compositions suitable for fabricating medical devices, such as stents, are disclosed. In certain embodiments, the compositions have small amounts of nickel, e.g., the compositions can be substantially free of nickel.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: October 13, 2009
    Assignee: Scimed Life Systems, Inc.
    Inventor: Charles Horace Craig
  • Publication number: 20090120542
    Abstract: The invention concerns an iron-nickel alloy strip comprising the following expressed in wt. %: 32?Co+Ni?45%, 0?Co?6.5%, 0?Cr=6.5%, Cu?3%, Si?0.5%, Mn?0.75%, the rest being made up of iron and unavoidable impurities resulting from production, whereof the microstructure has a recrystallized volume fraction ranging from 3 to 97%, whereof the thickness is less than 0.5 mm. The invention also concerns the use thereof in the manufacture of support grids for integrated circuits.
    Type: Application
    Filed: November 4, 2005
    Publication date: May 14, 2009
    Applicant: IMPHY ALLOYS
    Inventors: Georges Martinez, Pierre-Louis Reydet, Gilles Bresson, Gilles Coccoz, Jean-Luc Spire, Jerome Giusti
  • Patent number: 7514036
    Abstract: A (Nb, Ti) phase in an Nb—Ti—Co alloy is composed of a granular structure. The Nb—Ti—Co alloy is preferably subjected to heat treatment at 800° C. or more so that the eutectic structure in the casted state can be changed to a granular structure. The Nb—Ti—Co alloy used there is preferably NbxTi(100-x-y)Coy, (x?70, 20?y?50 (mol %)). By properly predetermining the heating temperature and time, the resulting alloy exhibits improved hydrogen permeability in combination with a good hydrogen embrittlement resistance characteristic in the CoTi phase, making it possible to provide a practical hydrogen permeable membrane having an advantageously high performance.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: April 7, 2009
    Assignees: The Japan Steel Works, Ltd., National University Corporation Kitami Institute of Technology
    Inventors: Kiyoshi Aoki, Kazuhiro Ishikawa, Tsuyoshi Sasaki, Toshiki Kabutomori
  • Patent number: 7507306
    Abstract: An Fe—Ni—Cr alloy formulated to contain a strengthening phase that is able to maintain a fine grain structure during forging and high temperature processing of the alloy. The alloy contains a sufficient amount of titanium, zirconium, carbon and nitrogen so that fine titanium and zirconium carbonitride precipitates formed thereby are near their solubility limit in the alloy when molten. In the production of an article from such an alloy by thermomechanical processing, a dispersion of the fine titanium and zirconium carbonitride precipitates form during solidification of the melt and remain present during subsequent elevated processing steps to prohibit austenitic grain growth.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: March 24, 2009
    Assignee: General Electric Company
    Inventors: Jianqiang Chen, Jon Conrad Schaeffer, Anjilivelil Kuruvilla
  • Patent number: 7501032
    Abstract: According to the invention, compositions of Ni—Ti—Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100° C.; have narrow hysteresis; and produce a high specific work output.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: March 10, 2009
    Assignee: The United States of America as represented by the Administration of NASA
    Inventors: Ronald D. Noebe, Susan L. Draper, Michael V. Nathal, Anita Garg
  • Patent number: 7445681
    Abstract: There are provided an intermetallic-compound superconductor that is high in superconducting transition temperature, and an alloy superconductor that is high in superconducting transition temperature and excels in malleability and ductility, as well as a method of making such a superconductor with good reproducibility and at a low cost of manufacture. This entirely new intermetallic compound superconductor is made of magnesium (Mg) and beryllium (Be) and has a chemical composition expressed by formula: Mg1Be2, has a hexagonal AlB2 type crystallographic structure and has a superconducting transition temperature (Tc) of 35 K. An alloy containing this intermetallic compound excels in malleability and ductility and constitutes the alloy superconductor having a superconducting transition temperature (Tc) of 35 K and being low in specific resistance for normal conduction at a temperature ranging from the superconducting transition temperature to a room temperature.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: November 4, 2008
    Assignee: Japan Science and Technology Agency
    Inventors: Jun Akimitsu, Yuji Zenitani, Takahiro Muranaka, Kazunobu Kadomura
  • Patent number: 7422994
    Abstract: A composition for use as a catalyst in, for example, a fuel cell, the composition comprising platinum, copper and tungsten, or an oxide, carbide and/or salt of one or more of platinum, copper and tungsten, wherein the sum of the concentrations of platinum, copper and tungsten, or an oxide, carbide and/or salt thereof, is greater than 90 atomic percent.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: September 9, 2008
    Assignees: Symyx Technologies, Inc., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Konstantinos Chondroudis, Alexander Gorer, Peter Strasser, Martin Devenney, Qun Fan, Daniel M. Giaquinta, Keith James Cendak, Hiroyuki Oyanagi, Kenta Urata
  • Publication number: 20080202649
    Abstract: Composite phase structure of early transition metal-based metallic alloys, including those of crystalline, quasicrystalline and amorphous phases, can be obtained in a controllable way upon direct (in-situ) cooling (solidification) of the alloy, realized either by adjusting the alloy compositions at a fixed cooling rate or by changing the cooling rates for a given alloy composition. Some embodiments are based on the addition of later transition metals, mainly of Cu with Ni or Fe with Co in early transition metal based (mainly Ti and Zr or Hf and Nb) metallic alloys. If cooling rate is on the scale of 103° C./s, a wholly amorphous structure is obtained for most of the compositions. At reduced cooling rates, composite structures with different kinds of phases can be achieved, as illustrated graphically in FIG. 1. Nickel addition promotes the formation of quasicrystalline phases, especially for Ti-rich alloy compositions with beryllium.
    Type: Application
    Filed: June 13, 2006
    Publication date: August 28, 2008
    Inventors: Faqiang Guo, S. Joseph Poon, Gary J. Shiflet
  • Patent number: 7404866
    Abstract: A sliding member includes a superficial portion forming a sliding surface. The superficial portion includes an oxygen-containing alloy containing at least one metallic element selected from the group consisting of molybdenum and tungsten in an amount of from 2 to 80% by weight; and oxygen in an amount of from 0.5 to 15% by weight. The sliding member sustains lubricating characteristics given to the sliding surface over a long period of time to maintain a low friction coefficient and durability.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: July 29, 2008
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Kazuyuki Nakanishi, Hideo Tachikawa, Hiroyuki Mori, Tadashi Oshima
  • Patent number: 7381369
    Abstract: Provided is free cutting alloy excellent in machinability, preserving various characteristics as alloy. The free cutting alloy contains: one or more of Ti and Zr as a metal element component; and C being an indispensable element as a bonding component with the metal element component, wherein a (Ti,Zr) based compound including one or more of S, Se and Te is formed in a matrix metal phase. The free cutting alloy is more excellent in machinability, preserving various characteristics as alloy at similar levels to a conventional case. The effect is especially conspicuous, for example, when a compound expressed in a chemical form of (Ti,Zr)4C2(S,Se,Te)2 as the (Ti,Zr) based compound is formed at least in a dispersed state in the alloy structure.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: June 3, 2008
    Assignees: Daido Tokushuko Kabushiki Kaisha, Tohoku Tokushuko Kabushiki Kaisha, Japan Industrial Technology Association, Tohoku Technoarch Co., Ltd.
    Inventors: Kiyohito Ishida, Katsunari Oikawa, Takashi Ebata, Tetsuya Shimizu, Michio Okabe
  • Patent number: 7371295
    Abstract: A shape memory alloy comprises Co, Ni and Al with a two-phase structure comprising a ?-phase having a B2 structure and a ?-phase having an fcc structure, at least 40% by area of crystal grain boundaries of the ?-phase being occupied by the ?-phase. The shape memory alloy can be produced by a first heat treatment step comprising heating at 1200 to 1350° C. for 0.1 to 50 hours and cooling at 0.1 to 1000° C./minute, and a second heat treatment step comprising heating at 1000 to 1320° C. for 0.1 to 50 hours and cooling at 10 to 10000° C./minute.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: May 13, 2008
    Assignees: Honda Motor Co., Ltd., National Institute of Advanced Industrial Science & Technology
    Inventors: Katsunari Oikawa, Kiyohito Ishida, Ryosuke Kainuma, Yuuki Tanaka, Masahiro Ohta, Toru Sukigara
  • Patent number: 7297214
    Abstract: Provided is free cutting alloy excellent in machinability, preserving various characteristics as alloy. The free cutting alloy contains: one or more of Ti and Zr as a metal element component; and C being an indispensable element as a bonding component with the metal element component, wherein a (Ti,Zr) based compound including one or more of S, Se and Te is formed in a matrix metal phase. The free cutting alloy is more excellent in machinability, preserving various characteristics as alloy at similar levels to a conventional case. The effect is especially conspicuous, for example, when a compound expressed in a chemical form of (Ti,Zr)4C2(S,Se,Te)2 as the (Ti,Zr) based compound is formed at least in a dispersed state in the alloy structure.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: November 20, 2007
    Assignees: Daido Tokushuko Kabushiki Kaisha, Tohoku Tokushuko Kabushiki Kaisha, Japan Industrial Technology Association, Tohoku Technoarch Co., Ltd.
    Inventors: Kiyohito Ishida, Katsunari Oikawa, Takashi Ebata, Takayuki Inoguchi, Tetsuya Shimizu, Michio Okabe
  • Patent number: 7294214
    Abstract: Alloy compositions suitable for fabricating medical devices, such as stents, are disclosed. In certain embodiments, the compositions have small amounts of nickel, e.g., the compositions can be substantially free of nickel.
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: November 13, 2007
    Assignee: Scimed Life Systems, Inc.
    Inventor: Charles Horace Craig
  • Patent number: 7273662
    Abstract: An alloy including a Pt-group metal, Ni and Al in relative concentration to provide a ?-Ni+??-Ni3Al phase constitution, and a coating including the alloy.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: September 25, 2007
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Brian Gleeson, Daniel Sordelet, Wen Wang
  • Patent number: 7267794
    Abstract: Density-enhanced compositions that are comprised of at least iron and tungsten, and articles, including firearm projectiles, formed therefrom. The articles have a density that exceeds that of steel, and which may be less than, equal to, or greater than that of lead. In some embodiments, iron is the majority component and tungsten is a minority component, with steel optionally forming a portion of the iron-containing component. In some embodiments, the article includes at least one additional minority component, such as one or more of nickel, manganese, tin, carbon, steel, chromium, molybdenum, silicon, aluminum, zinc, copper, potassium, sulfur, vanadium, and/or titanium. In some embodiments, the article is cast or otherwise formed from molten material, and in some embodiments the article is formed via powder metallurgy. In some embodiments, the article is firearm shot, a firearm slug, or a bullet.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: September 11, 2007
    Inventor: Darryl D. Amick
  • Patent number: 7244320
    Abstract: Systems and methods for repairing Thermo-Span® gas turbine engine components are described herein. Embodiments of these methods minimize post-weld residual stresses in a weld repaired Thermo-Span® component by solution heat treating the component by heating the component to about 2000° F.±25° F., holding the component at about 2000° F.±25° F. for about one hour; and cooling the component to below about 700° F. at a rate equivalent to cooling in air; and precipitation heat treating the component by heating the component to about 1325° F.±25° F., holding the component at about 1325° F.±25° F. for about 8 hours, cooling the component to about 1150° F.±25° F. at a maximum rate of about 100° F./hour, holding the component at about 1150° F.±25° F. for about 8 hours, and cooling the component at a predetermined cooling rate. Dimensions of the fully-machined and weld repaired component are maintained during solution heat treating and precipitation heat treating via custom designed furnace tools.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: July 17, 2007
    Assignee: United Technologies Corporation
    Inventors: David R. Malley, Carl E. Kelly, Robert P. Schaefer
  • Patent number: 7118636
    Abstract: An Fe—Ni—Cr alloy formulated to contain a strengthening phase that is able to maintain a fine grain structure during forging and high temperature processing of the alloy. The alloy contains a sufficient amount of titanium, zirconium, carbon and nitrogen so that fine titanium and zirconium carbonitride precipitates formed thereby are near their solubility limit in the alloy when molten. In the production of an article from such an alloy by thermomechanical processing, a dispersion of the fine titanium and zirconium carbonitride precipitates form during solidification of the melt and remain present during subsequent elevated processing steps to prohibit austenitic grain growth.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: October 10, 2006
    Assignee: General Electric Company
    Inventors: Jianqiang Chen, Jon Conrad Schaeffer, Anjilivelil Kuruvilla
  • Patent number: 7048813
    Abstract: The present invention provides a processing method capable of continuously working an Au—Sn soldering metal having a foil form in room temperature. The foil-form soldering metal containing from 10% by weight to 90% by weight of Au and balance comprising Sn is subjected to heat treatment for five minutes to ten hours at 200° C. to 270° C., and subsequently the foil-form soldering metal is slit. Thus, the heat treatment of the Au—Sn soldering metal before slitting enables continuous slitting of the Au—Sn foil-form soldering metal in room temperature and facilitates the production of a ribbon-form soldering metal.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: May 23, 2006
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventor: Ken-ichi Miyazaki
  • Patent number: 7041180
    Abstract: A method of joining workpieces using a solder alloy. The alloy contains either at least 1% or a maximum of about 10% by weight of an element or a mixture of elements selected from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, and tantalum; either at least 0.01% or 0.01–10% by weight of an element or a mixture of elements selected from the group of the lanthanides (rare earths); either at least 0.5% or 0.5–10% by weight of an element or a mixture of elements selected from the group consisting of silver, copper, and indium; optionally either at least 0.01% or 0.01–1% by weight of gallium; and a remainder consisting of tin, lead, or of a mixture of tin and lead.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: May 9, 2006
    Assignee: Materials Resources International
    Inventors: Erich Lugscheider, Wolfgang Tillmann, Hongshou Zhuang
  • Patent number: 6986951
    Abstract: The present invention relates to a cobalt-based alloy for the coating of organs subject to erosion by liquid comprising chromium 28–32% by weight, tungsten 6–8% by weight, silicon 0.1–2% by weight, carbon 1.2–1.7% by weight, nickel 3–6% by weight, molybdenum 1–3%, cobalt the complement to 100%. The invention also relates to an application method of the alloy on organs subject to erosion by liquid, in particular vapour turbine blades, to reduce the metal erosion rate following impact with liquids.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: January 17, 2006
    Assignee: Nuovo Pignone Holdings S.p.A.
    Inventor: Massimo Giannozzi
  • Patent number: 6984458
    Abstract: The present invention relates to a method for treating organs subject to erosion by liquids, in particular vapour turbine components, which contemplates laser plating with a cobalt-based alloy comprising chromium from 28 to 32% by weight; tungsten from 5 to 7% by weight; silicon from 0.1 to 2% by weight; carbon from 1.2 to 1.7% by weight; nickel from 0.5 to 3% by weight; iron from 0.01 to 1% by weight; manganese from 0.01 to 1% by weight; molybdenum from 0.2 to 1% by weight; possible impurities or other elements from 0 to 0.5% by weight and cobalt the complement to 100%.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: January 10, 2006
    Assignee: Nuovo Pignone Holding S.p.A.
    Inventor: Massimo Giannozzi
  • Patent number: 6929726
    Abstract: A sputtering target consists essentially of 0.1 to 50% by weight of at least one kind of element that forms an intermetallic compound with Al, and the balance of Al. The element that forms an intermetallic compound with Al is uniformly dispersed in the target texture, and in a mapping of EPMA analysis, a portion of which count number of detection sensitivity of the element is 22 or more is less than 60% by area ratio in a measurement area of 20×20 ?m. According to such a sputtering target, even when a sputtering method such as long throw sputtering or reflow sputtering is applied, giant dusts or large concavities can be suppressed in occurrence.
    Type: Grant
    Filed: January 8, 2004
    Date of Patent: August 16, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koichi Watanabe, Takashi Ishigami
  • Patent number: 6926778
    Abstract: An austenitic stainless steel suited for ultra supercritical boilers, which consists of C: 0.03-0.12%, Si: 0.1-1%, Mn: 0.1-2%, Cr: not less than 20% but less than 28%, Ni: more than 35% but not more than 50%, W: 4-10%, Ti: 0.01-0.3%, Nb: 0.01-1%, sol. Al: 0.0005-0.04%, B: 0.0005-0.01%, and the balance Fe and impurities; and also characterized by the impurities whose contents are restricted to P: not more than 0.04%, S: not more than 0.010%, Mo: less than 0.5%, N: less than 0.02%, and O (oxygen): not more than 0.005%. Heat resistant pressurized parts excellent in thermal fatigue properties and structural stability at high temperatures, which have a coarse grain whose grain size number is 6 or less, and whose mixed grain ratio is 10% or less.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: August 9, 2005
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Atsuro Iseda, Hiroyuki Semba