Containing Over 50 Per Cent Metal, But No Base Metal Patents (Class 148/442)
  • Patent number: 5810981
    Abstract: There is provided a hydrogen occluding alloy exhibiting high absorption and desorption speeds. A hydrogen occluding alloy comprising as an overall composition: 25 to 45 weight % Zr+Hf, wherein the Hf comprises not more than 4%, 1 to 15 weight % Ti, 10 to 20 weight % Mn, 2 to 12 weight % V, 0.6 to 5 weight % rare earth elements, and a balance Ni (of which content is not less than 25 weight %) and unavoidable impurities, and basically having a three-phase structure consisting of: a net-shaped continuous phase which is made of a Ni--Zr type alloy, a main phase (in the net-shaped continuous phase) made of a Zr--Ni--Mn based alloy, and a dispersed granular phase made of a rare earth elements-Ni type alloy distributed along the net-shaped continuous phase.
    Type: Grant
    Filed: March 8, 1996
    Date of Patent: September 22, 1998
    Assignee: Mitsubishi Materials Corporation
    Inventors: Norikazu Komada, Mitsugu Matsumoto, Shinichiro Kakehashi, Yoshitaka Tamo, Chris N. Christodoulou
  • Patent number: 5792286
    Abstract: A high-strength thin plate, such as for IC lead frames, of an iron-nickel-cobalt alloy which is able to withstand repeated bending and is corrosion resistance and etchable, the alloy containing 27 to 30 wt. % N:, 5 to 18 wt. % Co, 0.10 to 3.0 wt. % Mn, 0.10 wt. % or less Si, 0.010 to 0.075 wt. % C, 0.001 to 0.014 wt. % N, less than 2.0 ppm H, 0.0040 wt. % or less S, 0.004 wt. % or less P, 0.0050 wt. % or less O, 0.01 to 0.06 wt. % Cr, 0.01 to 1.0 wt. % Mo and the balance being Fe and unavoidable impurities wherein 63.5 wt. %.ltoreq.2Ni+Co+Mn.ltoreq.65 wt. % for Co<10 wt. % and 69.5 wt. %.ltoreq.2Ni+Co+Mn.ltoreq.74.5 wt. % for Co>10 wt. %.
    Type: Grant
    Filed: March 20, 1995
    Date of Patent: August 11, 1998
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Kiyoshi Tsuru, Naotsugu Yamanouchi, Tomoyoshi Okita
  • Patent number: 5759300
    Abstract: Alloy foils for liquid-phase diffusion bonding of heat-resisting metals in an oxidizing atmosphere comprise 6.0 to 15.0 percent silicon, 0.1 to 2.0 percent manganese, 0.50 to 30.0 percent chromium, 0.10 to 5.0 percent molybdenum, 0.50 to 10.0 percent vanadium, 0.02 to 1.0 percent niobium, 0.10 to 5.0 percent tungsten, 0.01 to 0.5 percent nitrogen, 0.10 to 5.0 percent boron, plus 0.005 to 1.0 percent carbon, and/or either or both of 0.01 to 5.0 percent titanium and 0.01 to 5.0 percent zirconium, all by mass, with the balance comprising nickel and impurities, and have a thickness of 3.0 to 300 .mu.m. Alloy foils for liquid-phase diffusion bonding of heat-resisting metals in an oxidizing atmosphere are also available with substantially vitreous structures.
    Type: Grant
    Filed: September 27, 1996
    Date of Patent: June 2, 1998
    Assignee: Nippon Steel Corporation
    Inventors: Yasushi Hasegawa, Hisashi Naoi, Yuuichi Satoh, Hiroshi Ukeba
  • Patent number: 5755896
    Abstract: Solder compositions (by weight percent) (1) comprising between 37-53% tin, 37-57% bismuth, and 6-10% indium and having a melting temperature between 99.degree.-124.degree. C., and (2) comprising between 48-58% tin, 40-50% bismuth, and 2-5% indium and having a melting temperature between 125-157.
    Type: Grant
    Filed: November 26, 1996
    Date of Patent: May 26, 1998
    Assignee: Ford Motor Company
    Inventors: Mohan R. Paruchuri, Dongkai Shangguan
  • Patent number: 5753054
    Abstract: Addition of Mo to a Zr--Mn--V--Cr--Co--Ni, a Zr--Mn--Cr--Co--Ni hydrogen storage alloy, or those including Ti as substitution for Zr improves high-rate discharge characteristics of the hydrogen storage alloy at low temperatures. The hydrogen storage alloy is of the general formula ZrMn.sub.a V.sub.b Mo.sub.c Cr.sub.d Co.sub.e Ni.sub.f, wherein 0.4.ltoreq.a.ltoreq.0.8, 0.ltoreq.b<0.3, 0<c.ltoreq.0.3, 0<d.ltoreq.0.3, 0<e.ltoreq.0.1, 1.0.ltoreq.f.ltoreq.1.5, 0.1.ltoreq.b+c.ltoreq.0.3, and 2.0.ltoreq.a+b+c+d+e+f.ltoreq.2.4, or Zr.sub.1-x Ti.sub.x Mn.sub.a V.sub.b Mo.sub.c Cr.sub.d Co.sub.e Ni.sub.f, wherein 0<x.ltoreq.0.5, 0.4.ltoreq.a.ltoreq.0.8, 0.ltoreq.b<0.3, 0<c.ltoreq.0.3, 0<d.ltoreq.0.3, 0<e.ltoreq.0.1, 1.0.ltoreq.f.ltoreq.1.5, 0.1.ltoreq.b+c.ltoreq.0.3, x.ltoreq.b+c+d+e, and 1.7.ltoreq.a+b+c+d+e+f.ltoreq.2.2 or Zr.sub.1- Ti.sub.x Mn.sub.a Mo.sub.c M.sub.y Cr.sub.d Ni.sub.f, wherein M is at least one selected from the group consisting of Fe, Cu, and Zn, and wherein 0<x.ltoreq.
    Type: Grant
    Filed: April 17, 1996
    Date of Patent: May 19, 1998
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yoichiro Tsuji, Osamu Yamamoto, Yasuharu Yamamura, Hajime Seri, Yoshinori Toyoguchi
  • Patent number: 5695716
    Abstract: The present invention relates to high chromium, corrosion resistant, austenitic alloys and to the use thereof.
    Type: Grant
    Filed: May 21, 1996
    Date of Patent: December 9, 1997
    Assignees: Bayer Aktiengesellschaft, Krupp VDM GmbH
    Inventors: Michael Kohler, Ulrich Heubner, Kurt-Wilhelm Eichenhofer, Michael Renner
  • Patent number: 5667600
    Abstract: Disclosed is a practical aluminum-based alloy containing 1 to 99 weight percent beryllium and improved methods for the investment casting of net shape aluminum-beryllium alloy parts.
    Type: Grant
    Filed: March 31, 1994
    Date of Patent: September 16, 1997
    Assignee: Brush Wellman, Inc.
    Inventors: Fritz C. Grensing, James M. Marder, Jere H. Brophy
  • Patent number: 5658401
    Abstract: A copper-zinc alloy for semi-finished products and articles which are highly loaded and subjected to extreme wear especially synchronizing rings. The alloy possesses a composition of 40 to 65% Cu, 8 to 25% Ni, 2.5 to 5% Si, 0 to 3% Al, 0 to 3% Fe, 0 to 2% Mn and 0 to 2% Pb, with the balance being zinc and unavoidable impurities. The Ni:Si ratio is about 3 to 5:1, and the structure consists of at least 75% .beta.-phase, with the balance .alpha.-phase, in the absence of a .gamma.-phase. Nickel silicides occur predominantly as a round intermetallic phase. The alloy provides quite substantially higher levels of resistance to wear.
    Type: Grant
    Filed: December 29, 1995
    Date of Patent: August 19, 1997
    Assignee: Diehl GmbH & Co.
    Inventors: Norbert Gaag, Peter Ruchel
  • Patent number: 5656104
    Abstract: The present invention aims to provide a metal mold for glass, which needs not apply any swab in molding of glass, enabling no-swabbing glass forming. The alloy for the mold comprises by weight Cu: 10 to 80%, Al: 4 to 11%, Cr: 3 to 16%, Ni: 2 to 36%, and at least one rare earth element: 0.02 to 2.08 with the balance consisting of Fe and further comprises at least one member selected from the group consisting of Ti: Al %.times.0.5 to 2, V: Al %.times.0.2 to 1, Zr: Al %.times.0.1 to 0.3, and Nb: Al %.times.0.1 to 0.3. The alloy is gradually cooled from the solidification initiation temperature to 500.degree. C. at a cooling rate of 10.degree. C./min. The surface of the mold is coated with an Al-containing coating or roughened to an average roughness of 0.3 to 5 .mu.m. A solid lubricating film is provided in a fitting portion of the mold, or alternatively a self-lubricating solid is embedded in the fitting portion of the mold.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 12, 1997
    Assignee: Nippon Steel Corporation
    Inventors: Hiroto Imamura, Michio Endo, Syoichi Sekiguchi, Shigeki Ogura, Isao Arikata, Mitsuji Hirata, Koji Akafuji, Hirokazu Taniguchi, Toru Ono
  • Patent number: 5637159
    Abstract: This invention relates to nickel-cobalt based alloys comprising the following elements in percent by weight: from about 0.002 to about 0.07 percent carbon, from about 0 to about 0.04 percent boron, from about 0 to about 2.5 percent columbium, from about 12 to about 19 percent chromium, from about 0 to about 6 percent molybdenum, from about 20 to about 35 percent cobalt, from about 0 to about 5 percent aluminum, from about 0 to about 5 percent titanium, from about 0 to about 6 percent tantalum, from about 0 to about 6 percent tungsten, from about 0 to about 2.5 percent vanadium, from about 0 to about 0.06 percent zirconium, and the balance nickel plus incidental impurities, the alloys having a phasial stability number N.sub.v3B less than about 2.60. Furthermore, the alloys have at least one element selected from the group consisting of aluminum, titanium, columbium, tantalum and vanadium. Also, the alloys have at least one element selected from the group consisting of tantalum and tungsten.
    Type: Grant
    Filed: April 7, 1995
    Date of Patent: June 10, 1997
    Assignee: SPS Technologies, Inc.
    Inventor: Gary L. Erickson
  • Patent number: 5637160
    Abstract: There is provided a machinable .alpha.+.beta. brass containing bismuth and phosphorous. By maintaining the phosphorous content within a critical range, the alloy exhibits good elevated temperature tensile elongation in the temperature range of 100.degree. C.-350.degree. C. without a decrease in machinability due to phosphide formation. In preferred embodiments, the alloy further contains a tin addition for enhanced corrosion resistance. The combination of tin and phosphorous provides enhanced corrosion resistance to the alloy than could be predicted from either addition alone.
    Type: Grant
    Filed: July 20, 1994
    Date of Patent: June 10, 1997
    Assignee: Olin Corporation
    Inventors: Andrew J. Brock, John F. Breedis, Jack Crane, Julius C. Fister, Frank N. Mandigo, David D. McDevitt, Mark N. Pearman, Ronald N. Caron
  • Patent number: 5605582
    Abstract: An alloy sheet having a pierced hole face and providing a desirable etching performance, comprising {331}, {210}, and {211} planes on the surface; the gathering degree of the {311} plane being 14% or less, the gathering degree of the {210} plane being 14% or less, and the gathering degree of the {211} plane being 14% or less; and the ratio of the gathering degrees expressed by the equation {210}/({331}+{211}) being 0.2 to 1. An alloy sheet having a pierced hole face providing a desirable etching performance, comprising planes of {111}, {100}, {110}, {311}, {331}, {210} and {211}; the gathering degree of the {111} plane, S.sub.1, being 1 to 10%, the gathering degree of the {100} plane, S.sub.2, being 50 to 94%, the gathering degree of the {110} plane, S.sub.3, being 1 to 24%, the gathering degree of the {311} plane, S.sub.4, being 1 to 14%, the gathering degree of the {331} plane, S.sub.5, being 1 to 14%, the gathering degree of the {210} plane, S.sub.
    Type: Grant
    Filed: November 17, 1993
    Date of Patent: February 25, 1997
    Assignee: NKK Corporation
    Inventors: Tadashi Inoue, Hidekazu Yoshizawa, Kiyoshi Tsuru, Yoshiaki Shimizu, Tomoyoshi Okita
  • Patent number: 5556486
    Abstract: The invention relates to a composite material comprising a matrix mainly constituted by an intermetallic compound of the AlNi type containing in solid solution 1.5 to 30 atom % silicon and a reinforcement formed from silicon carbide (SiC) particles dispersed in said matrix.In said material, the presence of silicon leads to a thermodynamic equilibrium system no longer evolving by SiC reinforcement/matrix chemical reaction when raised to a high temperature.This material can be prepared by conventional processes by adding the silicon to the starting material or by carrying out a limited reaction during the preparation between an AlNi matrix and the silicon carbide particles.
    Type: Grant
    Filed: July 12, 1994
    Date of Patent: September 17, 1996
    Assignee: Aerospatiale SOciete Nationale Industrielle
    Inventors: Henri Abiven, Christophe Colin, Jean Bouix, Michel Macari, Jean-Claude Viala
  • Patent number: 5554232
    Abstract: An amorphous metal wire having the following composition by atomic %:(Fe.sub.a Co.sub.b).sub.100-(y+z) Si.sub.y B.sub.zwhere 0.4.ltoreq.a.ltoreq.0.6, a+b=1, 6.ltoreq.y.ltoreq.8, and 13.ltoreq.z.ltoreq.16. The wire shows a Large Barkhausen effect and is excellent in pulse voltage generating properties and toughness. The amorphous metal wire according to the present invention is widely applicable to pulse voltage generating elements and various magnetic markers.
    Type: Grant
    Filed: November 2, 1994
    Date of Patent: September 10, 1996
    Assignee: Unitika Ltd.
    Inventors: Katsuyuki Fujimoto, Kohati Nomura, Shuji Ueno
  • Patent number: 5543109
    Abstract: A high Cr austenitic heat resistant alloy excellent in high temperature strength which essentially consists of, in weight percent, from more than 0.02% to 0.10% C, not more than 1.0% Si, not more than 2.0% Mn, 28 to 38% Cr, 35 to 60% Ni, from more than 0.5% to 1.5% Ti, not more than 0.05% N, 0.01 to 0.3% Al, 0.001 to 0.01% B, 0 to 0.1% Zr, 0 to 1.0% Nb, one or both of 0.5 to 3.0% Mo and 1.0 to 6.0% W, and the balance being Fe and incidental impurities. The alloy may further contain one or both of 0.001 to 0.05% Mg and 0.001 to 0.05% Ca. This alloy is suitable for producing a single layered tube which is less expensive and more reliable than the conventional double layered tube.
    Type: Grant
    Filed: January 31, 1995
    Date of Patent: August 6, 1996
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Hiroyuki Senba, Yoshiatsu Sawaragi
  • Patent number: 5531962
    Abstract: Cadmium-free brazing solders with working temperatures under 630.degree. C. containing 45 to 80 wt. % silver, 14 to 25 wt. % copper 10 to 25 wt. % gallium, 1 to 7 wt. % zinc and 0 to 5 wt. % indium and/or tin. The alloys have good cold workability and ductility.
    Type: Grant
    Filed: August 3, 1994
    Date of Patent: July 2, 1996
    Assignee: Degussa Aktiengesellschaft
    Inventors: Wolfgang Weise, Alexander Voelcker, Dieter Kaufmann, Willi Malikowski, Joerg Beuers, Harald Krappitz
  • Patent number: 5516485
    Abstract: Air meltable, weldable cast alloys of high hot strength and hot gas corrosion resistance especially in the service temperature range of about 1800.degree. F. to 2100.degree. F. which consist essentially of:______________________________________ Nickel 41-54% by weight Chromium 24-29% Iron 8-18% Cobalt 3-8% Tungsten 4.5-6.5% Molybdenum 4-6.5% Niobium 0.8-2% Manganese 0.1-1.5% Silicon 0.1-1.5% Carbon 0.2-0.4% ______________________________________provided, that the nickel plus cobalt content is at least about 45%.
    Type: Grant
    Filed: March 17, 1994
    Date of Patent: May 14, 1996
    Assignee: Carondelet Foundry Company
    Inventor: John H. Culling
  • Patent number: 5489417
    Abstract: Spray cast copper-manganese-zirconium alloys are disclosed. In one embodiment, the alloy is spray cast in nitrogen and contains from about 1 ppm to about 20 ppm of dissolved nitrogen. In a second embodiment, the alloy contains an addition selected from the group consisting of chromium, titanium, erbium and mixtures thereof. The alloys are useful for sound damping as the combination of zirconium and the addition inhibits degradation of the specific damping capacity of the alloy.
    Type: Grant
    Filed: April 14, 1994
    Date of Patent: February 6, 1996
    Assignee: Olin Corporation
    Inventors: William G. Watson, Harvey P. Cheskis, Sankaranarayanan Ashok
  • Patent number: 5486242
    Abstract: Tantalum-based and niobium-based alloys made up entirely of a crystalline medium exhibiting a substantially continuous centered cubic structure, comprising an intermetallic compound of formula Ti.sub.2 AlMo, and having the following compositions on an atomic basis:______________________________________ Ta + Cr 20 to 35% Cr 0 to 5% Ti 20 to 40% Al 8 to 20% Mo 8 to 20%, ______________________________________wherein the concentration of Ta is less than 30%; and ______________________________________ Nb + Cr 20 to 60% Cr 0 to 5% Ti 20 to 40% Al 8 to 20% Mo 8 to 20%. ______________________________________ .
    Type: Grant
    Filed: May 15, 1995
    Date of Patent: January 23, 1996
    Assignee: Office National d'Etudes et de Recherches Aerospatiales
    Inventors: Shigehisa Naka, Tasadduq Khan, Andre Walder, Michel Marty, Christophe Delaunay, Pierre Thevenin
  • Patent number: 5484569
    Abstract: A silver/palladium alloy for electronic applications comprises, on a percent by weight basis, 35-60 silver, 20-44 palladium, 5-20 copper, 1-7 nickel, 0.1-5 zinc, to 0.18 boron, up to 0.05 rhenium and up to 1 percent by weight of modifying elements selected from the group consisting of ruthenium, zirconium and platinum. This alloy exhibits high oxidation and tarnish resistance and is formed into wrought electronic components such as contacts and brushes to provide low noise.
    Type: Grant
    Filed: August 12, 1994
    Date of Patent: January 16, 1996
    Assignee: The J. M. Ney Company
    Inventors: Arthur S. Klein, Edward F. Smith, III
  • Patent number: 5478417
    Abstract: The invention provides a controlled coefficient of thermal expansion alloy having in weight percent about 26-50% cobalt, about 20-40% nickel, about 20-35% iron, about 4-10% aluminum, about 0.5-5% niobium plus 1/2 of tantalum weight percent and about 1.5-10% chromium. Additionally the alloy may contain about 0-1% titanium, about 0-0.2% carbon, about 0-1% copper, about 0-2% manganese, about 0-2% silicon, about 0-8% molybdenum, about 0-8% tungsten, about 0-0.3% boron, about 0-2% rhenium, about 0-2% hafnium, about 0-0.3% zirconium, about 0-0.5% nitrogen, about 0-1% yttrium, about 0-1% lanthanum, about 0-1% total rare earths other than lanthanum, about 0-1% cerium, about 0-1% magnesium, about 0-1% calcium, about 0-4% oxidic dispersoid and incidental impurities. The alloy may be further optimized with respect to crack growth resistance by annealing at temperature below about 1010.degree. C. or temperatures between 1066.degree. C. or 1110.degree. C.
    Type: Grant
    Filed: November 22, 1994
    Date of Patent: December 26, 1995
    Assignee: Goro Nickel S.A.
    Inventors: Karl A. Heck, Melissa A. Moore, Darrell F. Smith, Jr., Larry I. Stein, John S. Smith
  • Patent number: 5476555
    Abstract: This invention relates to nickel-cobalt based alloys comprising the following elements in percent by weight: from about 0.002 to about 0.07 percent carbon, from about 0 to about 0.04 percent boron, from about 0 to about 2.5 percent columbium, from about 12 to about 19 percent chromium, from about 0 to about 6 percent molybdenum, from about 20 to about 35 percent cobalt, from about 0 to about 5 percent aluminum, from about 0 to about 5 percent titanium, from about 0 to about 6 percent tantalum, from about 0 to about 6 percent tungsten, from about 0 to about 2.5 percent vanadium, from about 0 to about 0.06 percent zirconium, and the balance nickel plus incidental impurities, the alloys having a phasial stability number N.sub.v3B less than about 2.60. Furthermore, the alloys have at least one element selected from the group consisting of aluminum, titanium, columbium, tantalum and vanadium. Also, the alloys have at least one element selected from the group consisting of tantalum and tungsten.
    Type: Grant
    Filed: March 2, 1993
    Date of Patent: December 19, 1995
    Assignee: SPS Technologies, Inc.
    Inventor: Gary L. Erickson
  • Patent number: 5474737
    Abstract: An alloy comprising nickel, chromium, molybdenum, manganese, nitrogen and iron in amounts such that a weld metal formed therefrom is austenitic, wherein nitrogen is present in a concentration of from about 0.1 to about 0.2% of the alloy in weight percent. The weld metals prepared from the alloys of the present invention possess superior properties as compared to other stainless steels. These properties include inter alia a superior tearing modulus, fracture toughness, and yield strength, even at cryogenic temperatures.The present invention further provides a method for welding a metal part which is intended for exposure to cryogenic temperatures comprising welding the metal part using a welding electrode comprising nickel, chromium, molybdenum, manganese, nitrogen and iron in amounts such that a weld metal formed therefrom is austenitic, wherein nitrogen is present in the electrode in a concentration of from about 0.1 to about 0.2% of the electrode in weight percent.
    Type: Grant
    Filed: July 1, 1993
    Date of Patent: December 12, 1995
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Thomas A. Siewert, Christopher N. McCowan
  • Patent number: 5470404
    Abstract: A rare earth metal-nickel hydrogen occlusive alloy ingot contains 90 vol % or more of crystals having a crystal grain size of 1 to 50 .mu.m as measured along a short axis of the crystal and 1 to 100 .mu.m as measured along a long axis of the crystal. A method for producing the rare earth metal-nickel hydrogen occlusive alloy ingot involves melting a rare earth metal-nickel alloy and uniformly solidifying the alloy melt to have a thickness of 0.1 to 20 mm under cooling conditions of a cooling rate of 10.degree. to 1000.degree. C./sec and a sub-cooling degree of 10.degree. to 500.degree. C.
    Type: Grant
    Filed: May 17, 1993
    Date of Patent: November 28, 1995
    Assignee: Santoku Metal Industry Co., Ltd.
    Inventors: Kazuhiko Yamamoto, Yuichi Miyake, Chikara Okada, Nobuyuki Kitazume
  • Patent number: 5462437
    Abstract: A dental alloy is provided which is compatible with a wide variety of composites and porcelain compositions. The alloy has a melting range of between about 870.degree. C. and 1230.degree. C. and a coefficient of thermal expansion of between 15.5.times.10.sup.-6 and 17.5.times.10.sup.-6 in/in/.degree. C. when heated from room temperature to 500.degree. C. The alloy contains between one and 85 percent by weight gold, between two and 65 percent by weight of a thermal expansion adjuster, between 0.25 and 34 percent by weight of a strengthener and oxide former, up to about one percent by weight grain refiner, and up to about 0.25 percent by weight deoxidizer.
    Type: Grant
    Filed: November 10, 1993
    Date of Patent: October 31, 1995
    Assignee: Jeneric/Pentron Incorporated
    Inventors: Arun Prasad, Martin Schulman
  • Patent number: 5451273
    Abstract: A cast alloy article suitable for improving the combustion characteristics and efficiency of a liquid fuel is disclosed. This cast alloy article is chiefly characterized by having coarse and irregular surface contour of interspersed peaks, valleys and pores that provide for increased surface area for increased fluid contact and provide for increased turbulence in fluid flow. The article has interspersed dendritic areas of solid dendrites and interdendritic areas of solid metal that also provide maximum surface area contact and turbulence of fluid flow of a fluid that is passed over the surface thereof. This article is made by heating selected quantities of selected metals including copper, zinc, nickel and tin to a temperature of above about 2000.degree. F. but not in excess of 2400.degree. F. intermixing the heated metals, pouring the heated metals into sand mold of a particular mesh to accomplish a coarse and irregular contour with pores and retaining the poured body at a temperature between about 2000.
    Type: Grant
    Filed: December 21, 1994
    Date of Patent: September 19, 1995
    Assignee: Hydro-Petro Technology, Inc.
    Inventors: Kathy D. Howard, Paul E. Howard
  • Patent number: 5447683
    Abstract: Dense monolithic SiC or SiC ceramic composites are strongly bonded using brazing compositions which, in their preferred composition, include a braze alloy consisting essentially of less than 50 weight percent silicon and at least two metals from the group of Fe, Cr, Co and V and produce a joint suitable for use in a high neutron flux environment. Brazing is carried out at a temperature of about 1200.degree. to 1500.degree. C. in an inert atmosphere and is complete in about 15 minutes. Broadly, a genus of brazing compounds are disclosed which include between about 10 and about 45 weight percent silicon and at least two elements selected from the following group: Li, Be, B, Na, Mg, P, Sc, Ti, V, Cr, Mn, Fe, Co, Zn, Ga, Ge, As, Rb, Y, Sb, Te, Cs, Pr, Nd, Ta, W and Tl.
    Type: Grant
    Filed: November 8, 1993
    Date of Patent: September 5, 1995
    Assignee: General Atomics
    Inventors: Frederick C. Montgomery, Holger H. Streckert
  • Patent number: 5441696
    Abstract: A copper-nickel based alloy, which comprises 3 to 25 wt % of Ni, 0.1 to 1.5 t % of Mn, 0.0001 to 0.01 wt % of B and the rest being Cu and an unavoidable element.
    Type: Grant
    Filed: June 26, 1992
    Date of Patent: August 15, 1995
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kenji Kubosono, Iwao Asamizu, Masazumi Iwase, Toshihiro Kurita
  • Patent number: 5431875
    Abstract: A precious metal alloy for dental restorations which develops a light oxide upon firing, on a percentage weight basis at makeup, consists of 60-95 precious metal(s) selected from the group consisting of 60-855 palladium, 0-10 gold, 0-10 platinum, 0-12 silver, and mixtures thereof; 1-15 tin; 2-7 zinc; 0.005-0.2 boron; 0-2 gallium; 0-2 cobalt; 0-15 indium; 0-0.2 of a deoxidant selected from the group consisting of silicon, germanium, magnesium, aluminum, lithium, tantalum and mixtures thereof; and 0-1.0 of a grain refiner selected from the group consisting of ruthenium, iridium, rhenium, and mixtures thereof. The alloy has a liquidus temperature of not more than 1400.degree. C., and the alloy has a tensile yield strength of at least 250 Mpa and an elongation of at least 2 percent. Restorations having a porcelain coating fired on castings of the alloy evidence a light oxide color.
    Type: Grant
    Filed: May 2, 1994
    Date of Patent: July 11, 1995
    Assignee: The J. M. Ney Company
    Inventors: Thomas B. Cameron, Edward F. Smith, III
  • Patent number: 5423680
    Abstract: A dental alloy is provided which is free of palladium, gallium and copper and which is compatible with a wide variety of composites and porcelain compositions. The alloy has a melting range of between about 870.degree. C. and 1230.degree. C. and a coefficient of thermal expansion of between 15.5.times.10.sup.-6 and 17.5.times.10.sup.-6 in/in/.degree. C. when heated from room temperature to 500.degree. C. The alloy contains between about 40 and 80 percent by weight gold, between 5 and 50 percent by weight of thermal expansion adjuster, between two and 15 percent by weight strengthener and oxide former, up to about 1.5 percent by weight grain refiner, and up to about 0.25 percent by weight deoxidizer.
    Type: Grant
    Filed: November 10, 1993
    Date of Patent: June 13, 1995
    Assignee: Jeneric/Pentron, Incorporated
    Inventor: Arun Prasad
  • Patent number: 5409663
    Abstract: An indium-free, gold-colored, tarnish and corrosion-resistant alloy having no greater than 10% by weight gold and a color value, as measured according to the Cielab Color Measurement System, of approximately L=87.4, a=1.1, b=15.3. The alloy comprises 28-35% copper, 19.5-22.5% silver, 6-11% palladium, 22-32% zinc, 0.1-1% aluminum, and 0.5-3% platinum.
    Type: Grant
    Filed: May 3, 1994
    Date of Patent: April 25, 1995
    Inventors: Arthur D. Taylor, Norman J. LaMontagne, Jr., Malcolm Warren
  • Patent number: 5393723
    Abstract: The catalyst is provided for improving the performance of hydrocarbon fuels used in internal combustion engines. The catalyst is a based metal alloy catalyst including tin, antimony, lead, mercury and thallium in the following proportions by weight percent:Sb 18-20Pb 4.5-5.5Hg 12-14Tl 0.1-0.5and the balance consisting essentially of Sn. The catalyst operates at ambient temperatures and atmospheric pressure. The catalyst is intended to pretreat fuel before combustion and may be disposed in the fuel tank, fuel line or return fuel line.
    Type: Grant
    Filed: May 11, 1993
    Date of Patent: February 28, 1995
    Inventor: Anthony W. Finkl
  • Patent number: 5387294
    Abstract: A hard surfacing alloy which has a Rockwell C hardness of greater than about 50 and which includes tungsten carbide, chromium carbide and bi-metallic chromium and tungsten carbide crystals which are precipitated in the alloy. Alloys of the present invention in their nominal composition comprise from about 12% to about 20% tungsten; from about 13% to about 30% chromium; an effective amount of carbon for forming carbides with the tungsten and chromium and include effective amounts of fluxes and melting point depressants and the like. The balance of the composition is nickel. The alloys include precipitated carbide crystals of chromium, tungsten and bi-metallic mixtures thereof which are interspersed through the hard surfacing alloy and are metallurgically bonded in the metal matrix of the alloy. The alloys have extremely low porosities and therefore are suitable for glass plunger and other applications where low porosity is essential.
    Type: Grant
    Filed: May 19, 1992
    Date of Patent: February 7, 1995
    Assignee: Wall Comonoy Corporation
    Inventor: Samuel C. DuBois
  • Patent number: 5372662
    Abstract: A nickel-chromium-molybdenum-cobalt alloy has additions of tantalum and tungsten to provide superior stress rupture strength in the presence of grain size control agents, and has the following composition:______________________________________ Carbon 0.04-0.15 Iron 0-8 Chromium 18-25 Cobalt 10-15 Molybdenum 5-9 Aluminum 0.7-1.5 Tungsten 0-5 Titanium 0-0.5 Tantalum 0.7-2.5 Manganese 0-1 Silicon 0.05-0.75 Zirconium 0.01-0.05 Boron 0-0.
    Type: Grant
    Filed: July 9, 1993
    Date of Patent: December 13, 1994
    Assignee: Inco Alloys International, Inc.
    Inventors: Pasupathy Ganesan, Gaylord D. Smith
  • Patent number: 5372661
    Abstract: A molybdneum, rhenium, and tungsten alloy having an improved erosion, ductility, strength and a higher recrystallization temperature. The alloy may be fabricated into equipment which is useful for manufacturing chemicals such as a hydrochlorofluorocarbon.
    Type: Grant
    Filed: July 6, 1993
    Date of Patent: December 13, 1994
    Assignee: E. I. Du Pont de Nemours and Company
    Inventors: Vinci M. Felix, Yong J. Park
  • Patent number: 5372779
    Abstract: A white gold alloy composition consisting essentially of about 35 to 50 weight percent of gold, about 35 to 63 weight percent of silver, about 0.1 to 7 weight percent of a whitening component of zinc, germanium or both, and palladium in an amount of about 9 weight percent or less. The whitening component and the palladium are present in an amount sufficient to impart a white gold appearance and a liquidus temperature of no greater than about 1950.degree. F. to the alloy, preferably between about 1700.degree. and 1900.degree. F., and more preferably less than about 1850.degree. F. Thus, the preferred amount of palladium is about 2 to 5 weight percent and the preferred amount of the whitening component is about 0.5 to 6 weight percent.
    Type: Grant
    Filed: May 12, 1993
    Date of Patent: December 13, 1994
    Assignee: Handy & Harman
    Inventor: Aldo M. Reti
  • Patent number: 5344507
    Abstract: An aluminum-alloy, which is wear-resistant and does not wear greatly the opposed cast iron or steel, and which can be warm worked. The alloyings the following composition and structure. Composition: Al.sub.a Si.sub.b M.sub.c X.sub.d T.sub.e (where M is at least one element selected from the group consisting of Fe, Co and. Ni; X is at least one element selected from the group consisting of Y, Ce, La and Mm (misch metal); Y is at least one element selected from the group consisting of Mn, Cr, V, Ti, Mo, Zr, W, Ta and Hf; a=50-85 atomic %, b=10-49 atomic %, c=0.5-10 atomic %, d=0.5-10 atomic %, e=0-10 atomic %, and a+b+c+d+e=100 atomic %. Structure: super-saturated face-centered cubic crystals and fine Si precipitates.
    Type: Grant
    Filed: March 16, 1992
    Date of Patent: September 6, 1994
    Assignees: Tsuyoshi Masumoto, Yoshida Kogyo KK, Teikoku Piston Ring Co., Ltd.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Kazuhiko Kita, Hitoshi Yamaguchi
  • Patent number: 5338376
    Abstract: This invention relates to a Fe-Ni based high permeability amorphous alloy consisting of, in atom percent Ni 30-45%, Cr 0.5-1.2%, Si 5-14%, B 5-15%, P 1.0-3.0%, the balance Fe and inevitable impurities. The alloy is made by the rapid quenching melt method. It can be heat-treated in air and the excellent magnetic properties can be obtained as follows: B.sub.10 7900 Gs, B.sub.r 7500 Gs, H.sub.C 0.008 Oe, u.sub.m 68.times.10.sup.4. The present alloy is applied to make various magnetic devices which are used in electric apparatus and equipments.
    Type: Grant
    Filed: June 3, 1993
    Date of Patent: August 16, 1994
    Assignee: Central Iron and Steel Research Institute
    Inventors: Goudong Liu, Chuanli Zhang, Hongliang Ma, Shizhen Xu, Jingbei Li, Xuecai Li, Lidong Ding
  • Patent number: 5330710
    Abstract: A nickel-base alloy for a glass-contacting member used in an unenergized state and having a composition comprising by weight 25 to 40% of chromium, 10 to 45% of cobalt, optionally 0.1 to 3.0% of titanium and optionally 0.01 to 0.05% of at least one element selected from among rare earth metals with the balance consisting of nickel and unavoidable impurities.
    Type: Grant
    Filed: March 6, 1992
    Date of Patent: July 19, 1994
    Assignee: Doryokuro Kakunenryo Kaihatsu Jigyodan
    Inventors: Toshio Masaki, Noriaki Sasaki, Shin-ichiro Torata, Hiroshi Igarashi, Tetsuya Shimizu, Tomohito Iikubo
  • Patent number: 5330590
    Abstract: Cr.sub.3 Si is alloyed with molybdenum which produces a two-phase microstructure of (Cr,Mo).sub.3 Si and (Cr,Mo).sub.5 Si.sub.3. About 50 weight percent of molybdenum is present in the alloy. The alloy forms two protective oxides over a wide range of temperatures. Chromium and molybdenum oxide volatize under flowing air at high temperatures above 1200.degree. C. which facilitates the formation of SiO.sub.2 on the surface. Below 1200.degree. C. Cr.sub.2 O.sub.3 is formed. The new alloy has excellent high temperature strength and creep properties.
    Type: Grant
    Filed: May 26, 1993
    Date of Patent: July 19, 1994
    Assignee: The United States of America, as represented by the Administrator of the National Aeronautics & Space Administration
    Inventor: Sai V. Raj
  • Patent number: 5310522
    Abstract: Alloys are provided which consist essentially by weight percentages of from about 30% to about 35% Ni, from about 22% to about 25% Cr, from about 4% to about 6.5% Mo, from about 0.2% to about 1.5% W, from about 0.2% to about 0.6% Nb, from about 0.1% to about 0.6% Ti, from about 0.35% to about 1.75% Co, from about 0.05% to about 0.3% C, from about 0.2% to about 1.3% Si, from about 0.2% to about 1.5% Mn, and the balance essentially iron and the usual impurities.
    Type: Grant
    Filed: December 7, 1992
    Date of Patent: May 10, 1994
    Assignee: Carondelet Foundry Company
    Inventor: John H. Culling
  • Patent number: 5292382
    Abstract: An improved thermal sprayable molybdenum-iron alloy powder useful for forming wear and abrasion resistant coatings having high thermal conductivity and preferably good corrosion resistance. The preferred embodiment of the alloy powder includes two distinct substantially uniformly dispersed solid solution phases of molybdenum, including a first low molybdenum concentration matrix phase and a second higher molybdenum concentration phase for forming improved dual phase molybdenum coatings. The preferred alloy powder composition includes 15-60% by weight molybdenum, 20-60% by weight iron and the preferred corrosion resistant alloy includes 3-35% by weight nickel plus chromium. A more preferred composition includes by weight 25-50% molybdenum, 4-10% chromium, 10-18% nickel and 1-3% carbon, plus silicon as required to promote fluidity and atomization. The most preferred composition comprises by weight 25-40% molybdenum, 4 to 8% chromium, 12 to 18% nickel, 1-2.5% carbon, 2-3% silicon, 0.2-1% boron and 25-50% iron.
    Type: Grant
    Filed: September 5, 1991
    Date of Patent: March 8, 1994
    Assignee: Sulzer Plasma Technik
    Inventor: Frank N. Longo
  • Patent number: 5290371
    Abstract: A noble metal dental casting alloy for use in making dental restorations comprises 35-70 percent by weight palladium, 25-50 percent by weight silver, 0.5-10 percent by weight manganese, and 1-30 percent of at least one modifier element selected from (i) the group of gold, platinum, copper, tin, gallium, zinc, indium and cobalt in amounts of up to 15 percent by weight each, and (ii) the group of ruthenium, rhenium, aluminum, germanium, lithium, silicon, iridium, boron, tantalum and niobium in amounts of up to 5 percent by weight each. The alloy has a solidus temperature of at least 1100.degree. C., a liquidus temperature of not more than 1400.degree. C., tensile elongation of at least 2 percent, thermal expansion coefficient of at least 14.0.times.10.sup.-6 per .degree.C., Vickers hardness of at least 150, and offset yield strength at 0.2 percent of at least 250 MPa.
    Type: Grant
    Filed: October 28, 1992
    Date of Patent: March 1, 1994
    Assignee: The J. M. Ney Company
    Inventors: Thomas B. Cameron, Edward F. Smith, III
  • Patent number: 5286314
    Abstract: A low melting (liquidus temperature <570.degree. C.) rapidly solidified brazing alloy consists essentially of about 14 to 52 weight percent germanium, 0 to 10 weight percent of at least one element selected from the group consisting of silicon, magnesium, bismuth, strontium, lithium, copper, calcium, zinc and tin, the balance being aluminum and incidental impurities. The alloy has the form of a foil and can be used to braze non-heat-treatable rapidly solidified Al-Fe-Si-V alloy foil, sheet plate and tubing to components such as deicing duct, overduct, radiator, heat exchanger, evaporator, honeycomb panel for elevated temperature applications.
    Type: Grant
    Filed: July 23, 1992
    Date of Patent: February 15, 1994
    Assignee: AlliedSignal Inc.
    Inventors: Santosh K. Das, Chin-Fong Chang
  • Patent number: 5246511
    Abstract: A high-strength lead frame material consists, by weight, of 0.5 to 22% Co, 22 to 32.5% Ni, not more than 1.0% Mn, not more than 0.5% Si, at least one kind of 0.1 to 3.0% in total selected from the group consisting of Nb, Ti, Zr, Mo, V, W and Be, and the balance Fe and incidental impurities; the total content of Ni and Co being selected so that the content of Ni is in the range of 27 to 32.5% when the content of Co is less than 12% and so that 66%.ltoreq.2Ni+Co.ltoreq.74% is met when the content of Co is not less than 12%; the lead frame material having a duplex-phase structure composed of a reverse-transformed austenite phase (which can involve a residual austenite phase) and a martensite phase; and the austenite phase being not less than 50%.
    Type: Grant
    Filed: September 18, 1992
    Date of Patent: September 21, 1993
    Assignee: Hitachi Metals, Ltd.
    Inventors: Shuichi Nakamura, Hakaru Sasaki, Hironori Nakanishi, Tsutomu Inui
  • Patent number: 5242511
    Abstract: A copper alloy composition comprising 100 parts by weight of powder of copper alloy represented by the general formula Ag.sub.x Cu.sub.y (wherein x and y are atomic ratio values; 0.001.ltoreq..times..ltoreq.0.999, 0.001.ltoreq.y.ltoreq.0.999, x+y=1), 5 to 200 parts by weight of one or more organic binders and 0.01 to 100 parts by weight of an additive capable of removing copper oxide; and a paste for screen printing, electromagnetic shielding, an electrically conductive additive, a paste for electrode and a paste for through hole, which are obtained by using said composition.
    Type: Grant
    Filed: October 18, 1991
    Date of Patent: September 7, 1993
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Akinori Yokoyama, Tsutomu Katsumata, Hitoshi Nakajima
  • Patent number: 5192625
    Abstract: New cobalt-base wrought alloys containing 24-32% chromium, 14-22% nickel, 2-8% tantalum, 0.02-0.75% cerium and 0.03%-0.10% carbon have an unique combination of high temperature strength, hot corrosion resistance, oxidation-resistance and resistance to thermal fatigue cracking are useful in making weld repairs of cracked nozzles of gas turbine engines, as protective coatings for hot stage components of such engines and other similar purposes.
    Type: Grant
    Filed: February 28, 1990
    Date of Patent: March 9, 1993
    Assignee: General Electric Company
    Inventor: Marvin Fishman
  • Patent number: 5192377
    Abstract: In a process of producing strip or wire, which consists of a monotectic aluminum-silicon alloy comprising a matrix consisting of aluminum and an aluminum-silicon eutectic system and as a minority phase 1 to 50% by weight lead or bismuth included in said matrix, which strip or wire has been continuously cast at a high casting velocity and a high cooling rate from a molten material which has been heated to a temperature above the segregation temperature, and which strip or wire has been subjected to plastic deformation and to a heat treatment, the minority phase which is embedded in the form of elongate platelets in the strip or wire is transformed to more compact shapes by a heat treatment at temperatures of 550.degree. to 600.degree. C.
    Type: Grant
    Filed: April 22, 1991
    Date of Patent: March 9, 1993
    Assignee: Metallgesellschaft Aktiengesellschaft
    Inventors: Bruno Prinz, Alberto Romero, Ingrid Muller
  • Patent number: 5188799
    Abstract: A wear-resistant copper-base alloy having superior self-lubricity includes, by weight %,Ni: 10.0 to 30.0%;Si: 0.5 to 3%;Co: 2.0 to 15.0%;at least one metal selected from the group consisting of Mo, W, Nb and V:2.0 to 15.0%; andthe balance being Cu and unavoidable impurities, and having a structure in which hard phase grains containing 5 vol% or more of silicide of at least one metal selected from the group consisting of Mo, W, Nb and V are uniformly dispersed in an amount of 10 to 60 vol% in a copper-rich matrix, to which 2.0 to 15.0% of Fe and/or 1.0 to 10.0% of Cr may be further added.
    Type: Grant
    Filed: March 19, 1992
    Date of Patent: February 23, 1993
    Assignees: Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Kazuhiko Mori, Minoru Kawasaki, Shin Yoshida, Hiroyuki Murase, Takashi Saito, Kouji Tanaka, Yoshio Shimura
  • Patent number: 5180446
    Abstract: Improvement of Nb-alloys, which are known as heat-resistant alloys, by giving anti-oxidation property thereto and increasing the high temperature strength thereof. In addition to a determined amount of Al, one of (1) suitable amounts of Ti, Cr and V, and (2) suitable amounts of Cr and Co, are added to Nb-matrix, and a high melting temperature metal oxide such as Y.sub.2 O.sub.3 or Al.sub.2 O.sub.3 is dispersed in the matrix. Preferable method of preparing the alloys is combination of mechanical alloying and subsequent hot processing.
    Type: Grant
    Filed: January 27, 1992
    Date of Patent: January 19, 1993
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventors: Kenji Tsukuta, Tomohito Iikubo