With Disparate Physical Separation Patents (Class 203/39)
  • Patent number: 8404086
    Abstract: Effect separation of a composition of matter that includes at least two seed or plant oil derivatives into at least one desired product stream using at least two separation operations, which are independently selected from among several potential separation operations, in conjunction with at least one recycle stream from a separation operation.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: March 26, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: George J. Frycek, Shawn D. Feist, Timothy C. Frank, Zenon Lysenko, Joe D. Phillips, Bruce W. Pynnonen
  • Patent number: 8377257
    Abstract: A total evaporator for fluids, including a cold chamber to prevent pre-evaporation, an evaporation region connected thereto having narrow flow cross-section for fast evaporation of the fluid, and a subsequent vapor chamber for pulsation damping and the controlled superheating of the vapor, the evaporation region being formed by a gap between concentrically nested cylindrical and/or conical tube sections and heat required for the evaporation and superheating processes is supplied by electric heating and/or by hot fluid and/or by catalytic or homogeneous combustion via the wall of the concentric tubes.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: February 19, 2013
    Assignee: Universitat Stuttgart
    Inventors: Gerhart Eigenberger, Andreas Freund, Grigorios Kolios, Clemens Merten, Jens Bernnat, Gudrun Friedrich
  • Patent number: 8349185
    Abstract: The invention pertains to a method for rebalancing a solvent solution useful for treating photosensitive printing elements having a photopolymerizable layer. The solvent solution becomes contaminated with unpolymerized material and other materials that release from the photosensitive printing elements during washout treating, and separation of contaminates also removes some of one or more components in the used solvent solution. The method rebalances the proportion of the components in a solvent solution having 3 or more components. The method includes measuring a reclaimant, which has been separated from the contaminates, for two or more properties, calculating a mass of the components to be added to the reclaimant based on an equation generated for each measured property, and adding the mass of the component or components to the reclaimant to adjust the proportion of the components in the reclaimant to targeted proportions.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: January 8, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Mark A. Hackler, Rajgopal Subramanian
  • Patent number: 8349140
    Abstract: Device to extract organic chemical compounds from particulate material (MP) that comes from atmospheric samples, using solvents heated by the application of focalized microwaves (MW), performed in open systems, which consists of: a magnetron; an electronic control circuit of the magnetron; a distillation flask that holds the solvent with the sample to be heated; a filter for blocking microwaves, which allows getting out the vapor produced by the ebullition of the solvent with the sample to reach a reflux medium that allows condensing that vapor; and a waveguide connected at one extreme with the magnetron and electronic control circuit, and at the other extreme with the distillation flask to be heated, the microwave blocking filter and the reflux medium.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: January 8, 2013
    Inventors: Francisco Cereceda Balic, Hector Carrasco Espinosa, Manuel Olivares Salinas, Gabriel Cereceda Balic
  • Patent number: 8323500
    Abstract: A process for removing water from solid material using liquid-solid extraction and liquid-liquid extraction. In most embodiments, multiple solvents are used to step-wise remove the water from the solids and obtain dry solids. Multiple solvents facilitate the removal of the water from the solids, by step-wise replacing the water with a solvent, replacing that solvent with a different solvent, and then eventually removing the second solvent from the solids. The process utilizes a lesser amount of thermal energy to dry the solids and separate the solvents than conventionally used in drying processes. The first solvent selected has a lower heat of vaporization, enthalphy of vaporization, boiling point, or other such physical property, than water. Each subsequent solvent has a still lower heat of vaporization, enthalphy of vaporization, boiling point, or other such physical property then its predecessor.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: December 4, 2012
    Assignee: KFI Intellectual Properties, L.L.C.
    Inventors: Robert A. Wills, James A. Faulconbridge
  • Publication number: 20120302776
    Abstract: Embodiments of the present disclosure provide processes, columns, and systems for removing acetaldehyde from alkylene oxide in a feed stream and for providing an alkylene oxide-water stream that can be directly transferred to a glycol reaction process. The alkylene oxide purification column includes a first section to convert a feed stream into a gas phase portion and a liquid phase portion and a second section located in the column above the first section to separate alkylene oxide from the acetaldehyde, water, and other impurities that enter the second section from the first section.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 29, 2012
    Applicant: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: John F. Szul, James H. McCain, Floyd L. Pfeffer, Harvey E. Andresen, Phillip R. Fairchild, Kent E. Newman
  • Patent number: 8313648
    Abstract: A method for producing biofuels is provided that includes dewatering intact algal cells to make an algal biomass, extracting neutral lipids from the algal biomass, and esterifying the neutral lipids with a catalyst in the presence of an alcohol. The method also includes separating a water soluble fraction comprising glycerin from a water insoluble fraction comprising fuel esters and distilling the fuel esters under vacuum to obtain a C16 or shorter fuel esters fraction, a C16 or longer fuel ester fraction, and a residue comprising carotenoids and omega-3 fatty acids. The method further includes hydrodeoxygenating at least one of (i) the C16 or shorter fuel esters to obtain a jet fuel blend stock and (ii) the C16 or longer fuel esters to obtain a diesel blend stock. The method further includes supplying the hydrogenation and deoxygenation processes with hydrogen produced from reformed light hydrocarbons or an algae culture.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: November 20, 2012
    Assignee: Heliae Development, LLC
    Inventors: Aniket Kale, Luca Costantino Zullo, Sandip Shinde
  • Patent number: 8308949
    Abstract: Methods for selective extraction and fractionation of algal lipids and algal products are disclosed. A method of selective removal of products from an algal biomass provides for single and multistep extraction processes which enable efficient separation of algal components. Among these components are neutral lipids synthesized by algae, which are extracted by the methods disclosed herein for the production of renewable fuels.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: November 13, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8308951
    Abstract: A method for separating proteins from plant material, in particular, intact algal cells, using an amphipathic solvent set and a hydrophobic solvent set. Some embodiments include dewatering intact algal cells and then extracting proteins from the algal cells. The methods provide for single and multistep extraction processes which allow for efficient separation of algal proteins from a wet algal biomass. These proteins are high value products which can be used as renewable sources of food and food additives. Neutral lipids remaining in the algal biomass after extraction of proteins can be used to generate renewable fuels.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: November 13, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8293108
    Abstract: A method for producing biofuels is provided. A method of making biofuels includes dewatering substantially intact algal cells to make an algal biomass, extracting neutral lipids from the algal biomass, and esterifying the neutral lipids with a catalyst in the presence of an alcohol. The method also includes separating a water soluble fraction comprising glycerin from a water insoluble fraction comprising fuel esters and distilling the fuel esters under vacuum to obtain a C16 or shorter fuel esters fraction, a C16 or longer fuel ester fraction, and a residue comprising carotenoids and omega-3 fatty acids. The method further includes hydrogenating and deoxygenating at least one of (i) the C16 or shorter fuel esters to obtain a jet fuel blend stock and (ii) the C16 or longer fuel esters to obtain a diesel blend stock.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: October 23, 2012
    Assignee: Heliae Developmet, LLC
    Inventor: Aniket Kale
  • Patent number: 8277615
    Abstract: The present invention relates to a method for removing volatile compounds from sparingly volatile fluids by means of rectification using an auxiliary and also to separation methods and chemical reactions in which sparingly volatile fluids are used, the purification of which is effected by means of rectification and using an auxiliary.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: October 2, 2012
    Assignee: Bayer Technology Services GmbH
    Inventors: Gerhard Ruffert, Oliver Pfohl, Marcus Grün
  • Patent number: 8273248
    Abstract: A method for separating neutral lipids from plant material, in particular, intact algal cells, using an amphipathic solvent set and a hydrophobic solvent set. Some embodiments include dewatering intact algal cells and then extracting neutral lipids from the algal cells. The methods provide for single and multistep extraction processes which allow for efficient separation of algal neutral lipids from a wet algal biomass while avoiding emulsification of extraction mixtures. The neutral lipids are removed after first removing a polar lipid fraction and a protein fraction. These neutral lipids can be used to generate renewable fuels as well as food products and supplements.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: September 25, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Publication number: 20120228119
    Abstract: A distiller is provided. The distiller includes a liquid-tight enclosure and an input source connected thereto for inputting a quantity of water into the liquid-tight enclosure. A plurality of substantially vertical rotatable plates is aligned along a substantially horizontal axis within the liquid-tight enclosure. At least a portion of each of the substantially vertical rotatable plates is submerged within the quantity of water inside the liquid-tight enclosure, and each of the substantially vertical rotatable plates has an opening. At least one manifold, having one or more exit ports, extends through a plurality of the openings of the substantially vertical rotatable plates, wherein a portion of the quantity of water is transferred via the substantially vertical rotatable plates to the manifold during a rotation of the plurality of substantially vertical plates. An output opening is formed in the liquid-tight enclosure, the output opening arranged in fluid communication with the manifold.
    Type: Application
    Filed: May 8, 2012
    Publication date: September 13, 2012
    Inventor: Samuel T. Kjellman
  • Publication number: 20120181161
    Abstract: A method includes at least the following successive steps: A) preparing a paste (must) includes the starchy plant starting material (MPV) capable of being fermented; B) bringing about the fermentation of said paste with a view to obtaining a fermented mixture (MF); D) distilling said fermented mixture (MF), at least in part, so as to obtain bioethanol and light vinasse (VL); E1) producing at least a first fuel for the coproduction of energy, in particular thermal energy, using at least a part of the light vinasse.
    Type: Application
    Filed: July 3, 2007
    Publication date: July 19, 2012
    Inventor: John Mahler
  • Patent number: 8216351
    Abstract: An Apparatus for purifying a feed stream containing carbon dioxide in which the feed stream, after having been compressed and dried, is partly cooled and then used to reboil a stripping column. Thereafter, the feed stream is further cooled and expanded to a lower operational temperature of the stripping column. A carbon dioxide product stream composed of the liquid column bottoms of the stripping column is expanded at one or more pressures to generate refrigeration, then fully vaporized within the main heat exchanger and compressed by a compressor to produce a compressed carbon dioxide product. Refrigeration is recovered in the main heat exchanger from a column overhead stream extracted from the stripping column within the main heat exchanger either directly or indirectly by auxiliary processing in which carbon dioxide is further separated and optionally recycled back to the main compressor used in compressing the feed stream.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: July 10, 2012
    Assignee: Praxair Technology
    Inventors: Minish Mahendra Shah, Henry Edward Howard
  • Patent number: 8211308
    Abstract: A method for separating polar lipids from plant material, in particular, intact algal cells, using an amphipathic solvent set and a hydrophobic solvent set. Some embodiments include dewatering intact algal cells and then extracting polar lipids from the algal cells. The methods provide for single and multistep extraction processes which allow for efficient separation of algal polar lipids from a wet algal biomass while avoiding emulsification of extraction mixtures. These polar lipids are high value products which can be used as surfactants, detergents, and food additives. Neutral lipids remaining in the algal biomass after extraction of polar lipids can be used to generate renewable fuels.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: July 3, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8211309
    Abstract: A method for separating proteins from plant material, in particular, intact algal cells, using an amphipathic solvent set and a hydrophobic solvent set. Some embodiments include dewatering intact algal cells and then extracting proteins from the algal cells. The methods provide for single and multistep extraction processes which allow for efficient separation of algal proteins from a wet algal biomass. These proteins are high value products which can be used as renewable sources of food and food additives. Neutral lipids remaining in the algal biomass after extraction of proteins can be used to generate renewable fuels.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: July 3, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8207291
    Abstract: Process for devolatilization of a polymer of an aromatic alkylene, such as styrene and, in particular, an improved process using water as a stripping agent (i) in which the total amount of water to be disposed of can be reduced, (ii) which allows at least a portion of the water to be recycled as stripping agent, reducing make-up requirements for the stripping agent, and (iii) which allows at least a portion of the aromatic alkylene monomer in the water to be recycled to the polymerization process (via the devolatilization steps) rather than being disposed.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: June 26, 2012
    Assignee: Ineos Europe Limited
    Inventor: Jean-Marc Galewski
  • Patent number: 8202425
    Abstract: A method for separating neutral lipids from plant material, in particular, intact algal cells, using an amphipathic solvent set and a hydrophobic solvent set. Some embodiments include dewatering intact algal cells and then extracting neutral lipids from the algal cells. The methods provide for single and multistep extraction processes which allow for efficient separation of algal neutral lipids from a wet algal biomass while avoiding emulsification of extraction mixtures. The neutral lipids are removed after first removing a polar lipid fraction and a protein fraction. These neutral lipids can be used to generate renewable fuels as well as food products and supplements.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: June 19, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8202401
    Abstract: In one embodiment, a method includes moving a first volume of fluid from a region above a heat-transfer element to a region below the heat-transfer element after the first volume of fluid is boiled from a second volume of fluid within the region above the heat-transfer element. The first volume of fluid including an impurity concentration lower than an impurity concentration of the second volume of fluid. The region below the heat-transfer element has a temperature higher than a temperature of the region above the heat-transfer element. The method also includes transferring latent heat from the first volume of fluid to a third volume of fluid on a top surface of the heat transfer element. The latent heat is released when the first volume of fluid condenses.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: June 19, 2012
    Assignee: Hydrologic Industries, Inc.
    Inventors: David B. Taylor, Stephen R. Topaz
  • Patent number: 8202402
    Abstract: The present invention relates to systems and related methods of water purification by distillation that will operate in a self-contained mode using a passive heat source, such as, without limitation, solar heat, air conditioning waste heat, or waste heat from the exhaust or cooling systems of an internal combustion engine, which may be used to desalinate sea water, saline water, or saline water containing contaminants. The present invention may also be used to distil sewage water, creek water, swamp water or water containing contaminants or used to cleanse or purify water contaminated with mud, chemicals, minerals, or bacteria in a local environment.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: June 19, 2012
    Assignee: Hse Hittt Solar Enerji Anonim Sirkerti
    Inventor: Rahmi Oguz Capan
  • Publication number: 20120145528
    Abstract: One exemplary embodiment can be an apparatus for treating a hydrocarbon stream having one or more compounds with a boiling point of about 140° to about 450° C. The apparatus can include an extraction zone and a regeneration zone. The extraction zone can include at least one settler. Each settler can have a height and a length. Typically the length is greater than the height. Also, the settler can form a boot, which can be adapted to receive a feed at one end. The regeneration zone may include a regenerator for an ionic liquid. The regenerator can include a column adapted to provide a regenerated ionic liquid to the extraction zone.
    Type: Application
    Filed: February 17, 2012
    Publication date: June 14, 2012
    Applicant: UOP LLC
    Inventors: David Nathan Myers, Manuela Serban, Kurt Vanden Bussche, Alakananda Bhattacharyya, Luigi Laricchia, John Patrick Brady
  • Publication number: 20120097520
    Abstract: The invention provides a process and apparatus for the separation of a gaseous feed comprising a mixture of hydrocarbons and nitrogen gas, the process comprising the steps of: (i) cooling and at least partially condensing the gaseous feed; (ii) feeding the cooled and at least partially condensed feed from step (i) to a fractionation column comprising reboil to produce an overhead hydrocarbon vapour stream enriched in nitrogen and a condensed hydrocarbon product stream low in nitrogen, wherein prior to the fractionation, the feed stream is divided into at least two streams including: a) a first stream which is expanded and fed to the fractionation column; b) a second stream which is expanded, heated and fed to a lower stage of the fractionation column than the first stream, (iii) removing a hydrocarbon product stream low in nitrogen from the fractionation column; and (iv) removing a hydrocarbon vapour stream enriched in nitrogen from the fractionation column.
    Type: Application
    Filed: March 23, 2010
    Publication date: April 26, 2012
    Applicant: COSTAIN OIL, GAS & PROCESS LIMITED
    Inventors: Grant Leigh Johnson, Adrian Joseph Finn, Terence Ronald Tomlinson
  • Publication number: 20120090981
    Abstract: This invention relates to processes for producing acetic acid and, in particular, to improved processes for recovering C2+ alkyl halides and removing permanganate reducing compounds formed during the carbonylation of methanol in the presence of a Group VIII metal carbonylation catalyst to produce acetic acid.
    Type: Application
    Filed: October 13, 2011
    Publication date: April 19, 2012
    Applicant: Celanese International Corporation
    Inventors: G. Paull Torrence, Raymond Zinobile, Oyeyemi Oyerinde
  • Patent number: 8142661
    Abstract: In the co-production of propylene oxide and styrene monomer, there is produced a sodium-containing heavy residue stream previously suitable only as a low grade fuel. In accordance with the invention, the heavy residue stream is mixed with a hydrocarbon and an aqueous acid, and the resulting mixture is separated into an aqueous sodium salt-containing slurry phase and an organic phase reduced in sodium.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: March 27, 2012
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Dan D. Lindsey, Karl P. Rufener
  • Patent number: 8137558
    Abstract: A method for producing biofuels is provided. A method of making biofuels includes dewatering substantially intact algal cells to make an algal biomass, extracting neutral lipids from the algal biomass, and esterifying the neutral lipids with a catalyst in the presence of an alcohol. The method also includes separating a water soluble fraction comprising glycerin from a water insoluble fraction comprising fuel esters and distilling the fuel esters under vacuum to obtain a C16 or shorter fuel esters fraction, a C16 or longer fuel ester fraction, and a residue comprising carotenoids and omega-3 fatty acids. The method further includes hydrogenating and deoxygenating at least one of (i) the C16 or shorter fuel esters to obtain a jet fuel blend stock and (ii) the C16 or longer fuel esters to obtain a diesel blend stock.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: March 20, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Patent number: 8137556
    Abstract: A method for producing biofuels is provided. A method of making biofuels includes dewatering substantially intact algal cells to make an algal biomass, extracting neutral lipids from the algal biomass, and esterifying the neutral lipids with a catalyst in the presence of an alcohol. The method also includes separating a water soluble fraction comprising glycerin from a water insoluble fraction comprising fuel esters and distilling the fuel esters under vacuum to obtain a C16 or shorter fuel esters fraction, a C16 or longer fuel ester fraction, and a residue comprising carotenoids and omega-3 fatty acids. The method further includes hydrogenating and deoxygenating at least one of (i) the C16 or shorter fuel esters to obtain a jet fuel blend stock and (ii) the C16 or longer fuel esters to obtain a diesel blend stock.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: March 20, 2012
    Assignee: Heliae Development, LLC
    Inventor: Aniket Kale
  • Publication number: 20120043197
    Abstract: The process relates improving terephthalic acid purge filtration rate by controlling % water in filter feed slurry and to the recovery of a metal catalyst from an oxidizer purge stream produced in the synthesis of carboxylic acid, typically terephthalic acid, while utilizing pressure filtration.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 23, 2012
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Kenny Randolph Parker, Larry Wayne Blair
  • Patent number: 8101048
    Abstract: This invention relates to methods of removing impurities from compounds having similar volatilities to form ultra high purity compounds.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: January 24, 2012
    Assignee: Rohm and Haas Company
    Inventors: Francis Joseph Lipiecki, Stephen G Maroldo, Deodatta Vinayak Shenai-Khatkhate, Robert A. Ware
  • Publication number: 20110313203
    Abstract: The present invention relates to a process for purifying crude polymethylol which comprises polymethylol of the formula (I) (HOCH2)2—C—R2 ??(I) in which each R is independently a further methylol group or an alkyl group having 1 to 22 carbon atoms or an aryl or aralkyl group having 6 to 22 carbon atoms, and also hydroxy acid of the formula (IV) in which each R is independently as defined above, which comprises performing the purification in a distillation column, the bottom of the distillation column being connected to an evaporator with a short residence time. The present invention further relates to a composition comprising polymethylol and 1 to 10 000 ppm by weight of an ester of polymethylol and of a hydroxy acid and to the use thereof.
    Type: Application
    Filed: December 7, 2009
    Publication date: December 22, 2011
    Applicant: BASF SE
    Inventors: Tilman Sirch, Michael Steiniger, Steffen Maas, Stefan Rittinger
  • Patent number: 8066852
    Abstract: Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: November 29, 2011
    Assignee: Los Alamos National Security, LLC
    Inventors: Dali Yang, David Devlin, Robert S. Barbero, Martin E. Carrera, Craig W. Colling
  • Publication number: 20110180384
    Abstract: In at least one embodiment, the present invention relates to a method and system for supercritical removal of an inorganic compound. The method includes: bringing a fluid including one or more inorganic fractions at supercritical conditions; separating at least one of the fractions in the fluid; cooling and/or depressurizing the fluid; and removing the at least one separated fraction.
    Type: Application
    Filed: July 16, 2009
    Publication date: July 28, 2011
    Inventors: Sybrandus Jacob Metz, Ingo Leusbrock
  • Patent number: 7959807
    Abstract: To establish an efficient and economical useful component recovery method capable of recovering high purity useful components from a dyed polyester fiber. A method for recovering useful components from a dyed polyester fiber, includes a dye extraction step, a solid liquid separation step, a depolymerization reaction step, an ester interchange reaction step, and a useful component separation step, for recovering useful components from the dyed polyester fiber, wherein the dye extraction step includes a step of extracting and removing a dye at the glass transition temperature of the polyester or higher and at 220° C. or less with a xylene extracting solvent and an alkylene glycol extracting solvent in combination.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: June 14, 2011
    Assignee: Teijin Fibers Limited
    Inventors: Kouji Mukai, Minoru Nakashima
  • Patent number: 7943047
    Abstract: Process for the treatment of wastewater from an aldolization process which is contaminated with water-soluble and/or dispersed organic impurities by means of single-stage or multistage extraction with an organic liquid of the aldolization process wastewater which has been set to a pH of from 0 to 6, in which an organic liquid obtained by stripping of the acidified aldolization process wastewater or of the acidified and extracted aldolization process wastewater, condensation of the stripped compounds and phase separation of the condensate is used as extractant for the extraction of organic impurities from the acidified aldolization process wastewater and wastewater having a lower content of organic impurities than the aldolization process wastewater fed to the extraction is taken off from the stripping apparatus.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: May 17, 2011
    Assignee: BASF SE
    Inventors: Siegmar Maassen, Roland Krokoszinski, Detlef Kratz
  • Patent number: 7935228
    Abstract: A process to reduce emissions discharged from a natural gas processing system wherein the processing system includes a glycol dehydrator for absorbing water, moisture and absorbable hydrocarbons, a reboiler for heating water rich glycol, a still column in communication with the reboiler and a reflux condenser. The process includes the steps of directing vapors and gases from the still column and reflux condenser to a condenser in order to condense vapors to liquid. The gases and liquids from the condenser are directed to a condensate separator in order to separate by gravity. Non-condensible vapors and water from the condensate separator are delivered to a vaporization chamber immersed in the reboiler. Water is re-vaporized into steam and permitted to mix with non-condensible vapors in the vaporization chamber. The steam and non-condensible vapors are inducted into a combustion zone in a firetube in the reboiler. The hydrocarbons in the vapors are combusted in the firetube.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: May 3, 2011
    Assignee: Process Equipment & Service Company, Inc.
    Inventor: James E. Rhodes
  • Publication number: 20110048922
    Abstract: Methods and apparatuses for extractive distillation using internal addition of steam to an extractive distillation column from a reboiler are described herein. The apparatuses include an extractive distillation column, a reboiler (for example, a kettle reboiler) coupled to the extractive distillation column, and a steam input line. The steam input line is coupled to an internal steam sparger device of the reboiler. Methods utilizing the apparatuses to perform extractive distillation of a hydrocarbon feed stream are also described herein.
    Type: Application
    Filed: February 17, 2010
    Publication date: March 3, 2011
    Inventors: Mircea Cretoiu, Andrei Cimpeanu
  • Patent number: 7842121
    Abstract: A system and method are disclosed for providing aqueous stream purification services. The system includes at least one separation unit. Each separation unit may include a mechanical vapor recompression separator, a steam stripper, and a secondary recovery heat exchanger. The system for wastewater purification may receive water from a waste water storage, purify the water, and return the purified water to a purified water storage. The system may include a controller. The controller may include an operating conditions module configured to interpret at least one operating condition.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: November 30, 2010
    Assignee: General Electric Capital Corporation
    Inventors: Larry D. Sanderson, James W. Schleiffarth, Leslie D. Merrill, Bradford M. Rohwer
  • Patent number: 7837768
    Abstract: A system and method are disclosed for purifying a waste fluid stream. The system includes a recirculation pump having an inlet for a recirculation stream and an outlet to expel a pressurized stream. The system includes a compressor having an inlet for an evaporation stream and an outlet for a pressurized evaporation stream. A primary heat exchanger has inlets for the pressurized stream and the pressurized evaporation stream, an internal surface area for heat transfer from the evaporation stream to the pressurized stream, and outlets for a cooled product stream and a heated pressurized stream. The heated pressurized stream is formed by heating the pressurized stream and the cooled product stream is formed by cooling the evaporation stream. The system includes an evaporation unit having an inlet for the heated pressurized stream and outlets for an evaporation stream and the recycled liquid bottoms stream.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: November 23, 2010
    Assignee: General Electric Capital Corporation as Administrative Agent
    Inventors: Larry D. Sanderson, James W. Schleiffarth, Leslie D. Merrill, Bradford M. Rohwer
  • Patent number: 7811420
    Abstract: A method of and apparatus is disclosed for water desalination including steps of transferring water vapor from salt-water in a vaporization zone 7, via a water vapor transfer zone 12, to a condensation zone 11, and condensing the water vapor into fresh-water. The water vapor transfer zone 12 is maintained substantially free of any gas other than water vapor. Heat is supplied to the vaporization zone 7 and extracted from the condensation zone 11, at relative rates such that there is a net transfer of water from the vaporization zone to the condensation zone. Also disclosed is a method of and apparatus for degassing salt water using at least two degassing chambers 17A, 17B each provided with a valved vent 47 and a valved inlet 21,29,90,91, with a valved pipe circuit 17a, 72-82,85-87, having a pump 71.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: October 12, 2010
    Inventor: Sven Olof Sonander
  • Patent number: 7771569
    Abstract: Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: August 10, 2010
    Assignee: Los Alamos National Security, LLC
    Inventors: Dali Yang, David Devlin, Robert S. Barbero, Martin E. Carrera, Craig W. Colling
  • Publication number: 20100163400
    Abstract: The invention comprises a method of reactive-distillation which includes the step of distillation of the surplus light components and separation of the heavy phase components in the same vessel. This may be achieved by utilising a reactive-distillation column having a plurality of trays. A weir is provided on at least most trays and at least most weirs have sufficient height to enable a residence time of material on the tray at least double the residence time of a conventional tray in normal distillation.
    Type: Application
    Filed: July 16, 2008
    Publication date: July 1, 2010
    Inventors: William Brian Earl, Praveen Kumar Bhagat
  • Patent number: 7705193
    Abstract: The invention relates to a process for conversion of a gasoline-range hydrocarbon feed into a gasoline fraction with a higher octane rating than that of the feedstream, and a gasoil fraction with a cetane number higher than 45, including the following steps: a) a membrane separation step (B) applied to the hydrocarbon feed under conditions enabling selective separation of the majority of the linear olefins present in said feed and constituting the ? fraction, the fraction containing the majority of the branched olefins, termed the ? fraction, constituting a gasoline with a high octane rating, greater than that of the feed; b) an oligomerisation step (C) applied to the linear olefins (? fraction) contained in the effluent stream from the membrane separation step (B) under moderate oligomerisation conditions; c) a distillation separation step (D) applied to the effluent stream arising from the oligomerisation step in at least two fractions; d) a hydrogenation step (E) applied to one of the fractions obtained at
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: April 27, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Patrick Briot, Arnaud Baudot, Vincent Coupard, Stéphane Morin, Alain Methivier
  • Patent number: 7666251
    Abstract: Method of purifying a feed stream containing carbon dioxide wherein the feed stream after having been compressed and dried is partly cooled and then used to reboil a stripping column. Thereafter, the feed stream is further cooled and expanded to a lower operational temperature of the stripping column. A carbon dioxide product stream composed of the liquid column bottoms of the stripping column is expanded at one or more pressures to generate refrigeration, then fully vaporized within the main heat exchanger and compressed by a compressor to produce a compressed carbon dioxide product. Refrigeration is recovered in the main heat exchanger from a column overhead stream extracted from the stripping column within the main heat exchanger either directly or indirectly by auxiliary processing in which carbon dioxide is further separated and optionally recycled back to the main compressor used in compressing the feed stream.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: February 23, 2010
    Assignee: Praxair Technology, Inc.
    Inventors: Minish Mahendra Shah, Henry Edward Howard
  • Publication number: 20090236213
    Abstract: Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.
    Type: Application
    Filed: May 20, 2009
    Publication date: September 24, 2009
    Applicant: Los Alamos National Security, LLC
    Inventors: Dali Yang, David Devlin, Robert S. Barbero, Martin E. Carrera, Craig W. Colling
  • Patent number: 7592468
    Abstract: ?9 THC acid is obtained from plant material and extracted into an aqueous solvent under conditions of pH control. The acid is converted to a salt and the salt extracted into a polar solvent, yielding acid of high purity. The ?9 THC acid is then converted to ?9 THC which is further purified and combined with a carrier for pharmaceutical use.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: September 22, 2009
    Assignee: Resolution Chemicals Limited
    Inventors: Neil J Goodwin, Nicolas J. Archer, Christopher Murray, Alan K. Greenwood, Derek Mchattie
  • Patent number: 7569122
    Abstract: A highly pure nitrogen trifluoride having a carbon tetrafluoride content of 10 ppm or less can be effectively obtained by boiling crude liquid nitrogen trifluoride having carbon tetrafluoride contaminant under a pressure ranging from 35 to 45 atm, to remove carbon tetrafluoride therefrom through vaporization.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: August 4, 2009
    Assignee: Sodiff Advanced Materials Co., Ltd.
    Inventor: Young-Kyun Lee
  • Patent number: 7563360
    Abstract: A top temperature T1 of a distillation tower 1 is held below a liquefying temperature of a light fraction by returning a part of an exhaust gas W, which is cooled by a condenser 5, to the upper zone of the distillation tower 1. A bottom temperature T2 is raised up to 300° C. at highest by returning a part of a liquid product P from a re-boiler 3 to a lower zone of the distillation tower 1. When a liquid hydrocarbon L comes in countercurrent contact with a stripping gas G inside the distillation tower 1 with the temperature profile that an inner temperature gradually falls down along an upward direction, mercury is efficiently transferred from the liquid L to a vapor phase without effusion of the light fraction in accompaniment with the exhaust gas W.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: July 21, 2009
    Assignee: Japan Petroleum Exploration Co., Ltd.
    Inventors: Yoshiyuki Yamaguchi, Senichiro Kaku, Kazutoshi Chaki
  • Patent number: 7556717
    Abstract: A process for fractionating a starting mixture of two or more components by extractive distillation using a selective solvent in a dividing wall column aligned in the longitudinal direction of the column and extending to the upper end of the column and dividing the column interior into a first region, a second region, and a lower combined column region. The starting mixture is fed into the first region, a first top stream is taken off from the first region, and a second top stream is taken off from the second region, each stream having a prescribed specification. The selective solvent is introduced in the upper part of the first region and/or in the upper part of the second region, and solvent flow into the first region and/or solvent flow into the second region are set so that each of the prescribed specifications for the top streams are met.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: July 7, 2009
    Assignee: BASF Aktiengesellschaft
    Inventor: Bernd Heida
  • Publication number: 20090038931
    Abstract: Device to extract organic chemical compounds from particulate material (MP) that comes from atmospheric samples, using solvents heated by the application of focalized microwaves (MW), performed in open systems, which consists of: a magnetron; an electronic control circuit of the magnetron; a distillation flask that holds the solvent with the sample to be heated; a filter for blocking microwaves, which allows getting out the vapor produced by the ebullition of the solvent with the sample to reach a reflux medium that allows condensing that vapor; and a waveguide connected at one extreme with the magnetron and electronic control circuit, and at the other extreme with the distillation flask to be heated, the microwave blocking filter and the reflux medium.
    Type: Application
    Filed: March 15, 2007
    Publication date: February 12, 2009
    Inventors: Francisco Cereceda Balic, Hector Carrasco Espinosa, Manuel Olivares Salinas, Gabriel Cereceda Balic
  • Publication number: 20080308403
    Abstract: A method of separating salts from a feedwater stream includes the steps of (a) circulating a heat exchange media fluid serially between a holding tank, a condenser and an evaporator; (b) evaporating at least about 20% of the feedwater stream by thermal contact with the heat exchange media fluid in the evaporator to yield steam and a hot brine stream; (c) pressurizing the steam in a compressor operating at between about 30% and about 60% efficiency and at a pressure differential of between about 0.5 psi and about 5 psi; and (d) condensing the steam by thermal contact with the heat exchange media fluid in the condenser to yield a hot condensate stream and a heated heat exchange media fluid.
    Type: Application
    Filed: June 13, 2007
    Publication date: December 18, 2008
    Inventors: Gerald F. Maloney, Gregory L. Maloney