And Return Of Distillation Product To A Previous Distillation Zone Patents (Class 203/75)
  • Publication number: 20040182752
    Abstract: This invention is an improved distillation sequence for the separation and purification of ethylene from a cracked gas. A hydrocarbon feed enters a C2 distributor column. The top of the C2 distributor column is thermally coupled to an ethylene distributor column, and the bottoms liquid of a C2 distributor column feeds a deethanizer column. The C2 distributor column utilizes a conventional reboiler. The top of the ethylene distributor is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor feeds a C2 splitter column. The ethylene distributor column utilizes a conventional reboiler. The deethanizer and C2 splitter columns are also thermally coupled and operated at a substantially lower pressure than the C2 distributor column, the ethylene distributor column, and the demethanizer column. Alternatively, a hydrocarbon feed enters a deethanizer column.
    Type: Application
    Filed: March 20, 2003
    Publication date: September 23, 2004
    Inventors: Rian Reyneke, Michael Foral, Christos G. Papadopoulos, Jeffery S. Logsdon, Wayne W. Y. Eng, Guang-Chung Lee, Ian Sinclair
  • Patent number: 6692616
    Abstract: A process is disclosed for the purification, by distillation, of trimethylolpropane originating from the hydrogenation of 2,2-dimethylolbutanal, said process including the following steps: (a) reaction of n-butyraldehyde with formaldehyde in the presence of catalytic amounts of a tertiary amine, and hydrogenation of the resulting mixture to give a mixture containing trimethylolpropane; (b) separation of water, methanol, trialkylamine and/or trialkylammonium formate by distillation; (c) heating of the residue obtained in (b) under reduced pressure to a temperature at which TMP is volatile and compounds boiling above TMP are cleaved, in order to separate off, by distillation, TMP and compounds more volatile than TMP; (d) distillation of the distillate obtained in (c) in order to separate off the more volatile compounds and recover pure TMP; and (e) optional distillation of the TMP obtained in (d) in order to recover TMP with a low APHA color index.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: February 17, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Matthias Dernbach, Detlef Kratz, Achim Stammer, Harald Rust, Gerhard Schulz
  • Publication number: 20040020758
    Abstract: A process for the separation of diisobutylene from tertiary butyl alcohol utilizing pressure swing azeotropic distillation to achieve the desired separation. The pressure swing azeotropic distillation takes advantage of the fact that different azeotropes are formed at different pressures. Isobutylene in C4 streams is oligomerized in the presence of tertiary butyl alcohol to produce the diisobutylene. Tertiary butyl alcohol is present in the dimerization because it improves the selectivity to the dimer (diisobutylene) by suppressing further reaction to the trimer or higher. The diisobutylene is separated from the tertiary butyl alcohol utilizing two distillation columns. The first distillation is operated at a higher pressure than the second such that the minimum boiling azeotropes of tertiary butyl alcohol and diisobutylene have different concentrations of tertiary butyl alcohol. Diisobutylene is removed as bottoms from the first distillation column and unreacted C4's are removed as overheads at 60-130 psig .
    Type: Application
    Filed: December 9, 2002
    Publication date: February 5, 2004
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Jianhua Wang, Nishit Sahay, Mitchell E. Loescher, Montri Vichailak
  • Patent number: 6632330
    Abstract: A process for the recovery of substantially pure alkyl alkanoate, such as ethyl acetate, from an impure feedstock. The impure feedstock is contacted with a selective hydrogenation catalyst in the presence of hydrogen in a selective hydrogenation zone maintained under selective hydrogenation conditions effective for selective hydrogenation of impurities containing reactive carbonyl groups thereby to hydrogenate the impurities to the corresponding alcohols. After recovery from the selective hydrogenation zone of a selectively hydrogenated reaction product mixture including the alkyl alkanoate and the corresponding alcohols, this is distilled in one or more distillation zones so as to produce substantially pure alkyl alkanoate therefrom which is recovered.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: October 14, 2003
    Assignee: Davy Process Technology Limited
    Inventors: Stephen William Colley, Norman Harris, Colin Rathmell
  • Patent number: 6599398
    Abstract: Process for the recovery of a purified adiponitrile (ADN) from a mixture of adiponitrile, aminocapronitrile and hexamethylenediamine, utilizing two sequential distillations: (1) a first distillation in which the mixture is distilled in a distillation column at a head pressure that causes at least 7% of the ADN to go into the distillate, along with bishexamethylenetriamine (BHMT) and 2-cyanocyclopentylideneimine (CPI), and (2) a second distillation in which the distillate from the first distillation is distilled in a second distillation column at a head pressure sufficient to cause minimum-temperature azeotropy between ADN and BHMT, thereby allowing the majority of the BHMT and CPI to be removed from the second distillation as distillate, and ADN, substantially free of both BHMT and CPI, to be removed as bottoms.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: July 29, 2003
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: John Ostermaier, Leon Scott, James Hastings
  • Publication number: 20030024801
    Abstract: The present invention is a distillation system with individual fractionator tray temperature control, with the use of either a heating element or a cooling element, and in some preferred embodiments, the use of both a heating element and a cooling element in a plurality of fractionator trays. There is at least, and typically more than one distillation column having a plurality of fractionation trays, and having feed input, liquid removal, and vapor removal with the plurality of trays including at least one of a heating element and a cooling element. Controls are included for separate control of each of the heating element(s) and/or said cooling element(s). These controls may be regulated by a programmable microprocessor, and feedback from temperature sensors may be employed to provide discrete tray-by-tray temperature controls.
    Type: Application
    Filed: August 1, 2001
    Publication date: February 6, 2003
    Inventor: Li Young
  • Patent number: 6508916
    Abstract: A process for recovering processing liquids such as gas-treating liquids wherein a feed mixture containing the processing liquid, water, and optionally additional components that are more volatile than the processing liquid and components that are less volatile than the processing liquid, is initially heated in a first heating zone to a temperature sufficient to volatilize at least some of the water and a portion of the processing liquid without decomposing the processing liquid to produce a vapor stream containing volatilized water and processing liquid and a residuum containing the bulk of the processing liquid and less volatile component, the vapor stream being separated from the residuum and treated to produce recycle streams of water, purified processing liquid, and low and high boiling liquid fractions recovered from the purified processing liquid.
    Type: Grant
    Filed: June 14, 1999
    Date of Patent: January 21, 2003
    Assignee: Canadian Chemical Reclaiming Ltd.
    Inventors: Minoo Razzaghi, Stephen G. Kresnyak, Brian A. Keast, Timothy W. Giles
  • Patent number: 6500310
    Abstract: A process for treating waste water streams containing at least hydrocarbons and salts to yield a clean water product, a concentrated brine product and a hydrocarbon-rich product, which process includes the steps of: (a) feeding the waste water feed into a first distillation column at a stage in the range of from 0.05 to 0.15 from the top, wherein n represents the total number of theoretical stages of the first distillation column and has a value in the range of from 20 to 40; (b) drawing off a vapor stream at a stage in the range of from 0.55 to 0.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: December 31, 2002
    Assignee: Shell Oil Company
    Inventors: Robert Frank Dee, Marinus Van Zwienen
  • Patent number: 6488817
    Abstract: A process for the purification of difluoromethane comprising: (a) subjecting a mixture comprising at least difluoromethane (HFC-32) and dichlorodifluoromethane (CFC-12) to a first distillation step in which a majority of either CFC-12 or HFC-32 is concentrated in a first distillate and a majority of the other component is concentrated in a first bottoms; and (b) subjecting the first distillate in step (a) to at least one additional second distillation step conducted at a different pressure in which a majority of the component concentrated in said first distillate is concentrated in a second bottoms and in which the other component is concentrated in a second distillate; and (c) recovering purified HFC-32 from one of said first or second bottoms.
    Type: Grant
    Filed: March 31, 1998
    Date of Patent: December 3, 2002
    Assignee: AlliedSignal Inc.
    Inventors: Charles Francis Swain, Rajiv Ratna Singh, Hang Thanh Pham
  • Patent number: 6472568
    Abstract: The invention relates to a process for preparing at least one aliphatic monoalcohol, generally in excess, and at least one olefin. The process is performed in a distillation and reaction device having a reaction section and a distillation-reaction section. The distillation-reaction section has a distillation zone with at least one means for circulation of the effluent from the reaction section to the distillation zone. Effluent from the reaction section is circulated to the distillation zone. The distillation-reaction section also has at least one distillation-reaction zone having at least one catalyst bed. The distillation-reaction zone is distinct from the distillation zone and provides at least partly the reflux of the distillation zone. The distillation-reaction section can also have at least one complementary reaction zone containing at least one catalyst bed.
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: October 29, 2002
    Assignee: Institute Francais du Petrole
    Inventors: Marie-Claire Marion, Alain Forestiere, Christophe Thille, Jean-Charles Viltard
  • Patent number: 6444096
    Abstract: A process for the recovery and purification of cyclobutanone from a crude product mixture obtained from an oxidation product mixture resulting from the oxidation of cyclobutanol to cyclobutanone in the presence of water. The process provides for the recovery of cyclobutanone in a purity of at least 90 weight percent by a combination of distillation steps.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: September 3, 2002
    Assignee: Eastman Chemical Company
    Inventors: Scott Donald Barnicki, Timothy Richard Nolen, Robert Sterling Kline, Dewey Wayne Fuller, Jr., Mary Kathleen Foster, Stephen Neal Falling
  • Publication number: 20020029952
    Abstract: A process for the enhanced recovery and operation of hydrogen cyanide (HCN)/heads column obtained from the reactor effluent of an ammoxidation reaction of propane, propylene or isobutylene by reducing the polymer formation above the feed tray in the heads tower.
    Type: Application
    Filed: August 31, 2001
    Publication date: March 14, 2002
    Inventor: Sanjay P. Godbole
  • Publication number: 20020008011
    Abstract: A method for preparing an organosilane functionalized in the 3 position includes reacting an allyl compound (H2C═CH—CH2X) with a silane (R2R3R4SiH) in a reaction column under a pressure between 1 bar and 25 bar, in the presence of a heterogeneous platinum catalyst. The silane reactant is present in the reaction column, and introduced into the reaction column, in a stoichiometric excess with respect to the allyl compound. The reaction column preferably includes a reaction zone, a first separation zone located above the reaction zone, and a second separation zone located below the reaction zone, wherein a first product exits the reaction zone and enters the first separation zone, and a second product exits the reaction zone and enters the second separation zone. Distillation occurs simultaneously with the reaction in the reaction chamber.
    Type: Application
    Filed: March 28, 2001
    Publication date: January 24, 2002
    Inventors: Raymund Sonnenschein, Christoph Batz-Sohn
  • Patent number: 6299734
    Abstract: An aqueous solution of free hydroxylamine is prepared by treating a hydroxylammonium salt with ammonia by the countercurrent method in a stripping column by a process in which hydroxylamine is liberated and at the same time the solution obtained is separated by distillation into an aqueous hydroxylamine solution and a salt fraction. The novel process can be carried out in a simple and gentle manner and on a large scale. The danger of decomposition is minimized owing to the low thermal load, the low concentration of hydroxylamine and the short residence time in the process.
    Type: Grant
    Filed: July 24, 1998
    Date of Patent: October 9, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Otto Watzenberger, Peter Mauer, Eckhard Ströfer, Heiner Schelling, Hans-Michael Schneider
  • Patent number: 6296739
    Abstract: A process for the enhanced recovery and operation of hydrogen cyanide (HCN) / heads column obtained from the reactor effluent of an ammoxidation reaction of propane, propylene or isobutylene by reducing the polymer formation above the feed tray in the heads tower.
    Type: Grant
    Filed: January 8, 1999
    Date of Patent: October 2, 2001
    Assignee: The Standard Oil Company
    Inventor: Sanjay P. Godbole
  • Patent number: 6252110
    Abstract: A method for recovering acrylic acid from high boiling impurities containing acrylic acid dimer, acrylic acid and maleic acid at high efficiency with stability which includes the steps of (1) introducing said high boiling impurities containing acrylic acid dimer, acrylic acid and maleic acid into an acrylic acid recovery column, distilling acrylic acid from the column top and recovering the same, (2) introducing bottom liquid A from said acrylic acid recovery column into a pyrolyzing tank to decompose the acrylic acid dimer in the bottom liquid A, and (3) recirculating at least a part of bottom liquid B from said pyrolyzing tank into the acrylic acid recovery column.
    Type: Grant
    Filed: June 25, 1998
    Date of Patent: June 26, 2001
    Assignee: Nippon Shokubai Co LTD
    Inventors: Masahiro Uemura, Takahiro Takeda, Masatoshi Ueoka
  • Patent number: 6214173
    Abstract: Provided is a novel on-site system and method for providing ultra-high-purity nitric acid to a point of use. The system includes a source of nitric acid at a concentration greater than 68 wt %; a reflux distillation column having an inlet in communication with the nitric acid source for introducing nitric acid into the column, a reboiler, and a condensate outlet to provide a flow of nitric acid condensate from the column; a reservoir in communication with the condensate outlet for receiving the flow of nitric acid condensate; and piping for delivering nitric acid from the reservoir to a point of use. The system and method can be used as an on-site subsystem, in a semiconductor device fabrication facility for supplying the nitric acid condensate to points of use in the semiconductor device fabrication facility.
    Type: Grant
    Filed: December 5, 1996
    Date of Patent: April 10, 2001
    Assignee: Air Liquide Electronics Chemicals & Services, Inc.
    Inventors: Mindi Xu, Wallace I. Yuan, Tracey Jacksier, Hwa-Chi Wang, Joe G. Hoffman, R. Scot Clark
  • Patent number: 6214172
    Abstract: In a process for the preparation of methylglyoxal dimethyl acetal from methylglyoxal and methanol in the presence of an acidic ion exchanger, water is introduced in an amount sufficient to form an acidic reaction mixture in which the acetal product and water form an azeotropic mixture, with or without the retention of some methanol reactant. After subjecting a single phase acidic reaction mixture to an azeotropic distillation, it will separate into two distinct liquid phases with a simple recovery of the acetal product from the aqueous phase.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: April 10, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Carsten Gröning, Klaus Ebel, Gerd Kaibel, Jörg Therre, Jürgen Koopmann, Helmuth Menig, Gerhard Fritz, Rainer Dietz
  • Patent number: 6210583
    Abstract: A process for pre-treating a spent caustic stream prior to oxidation which includes countercurrent multi-stage elevated temperature solvent extraction of dissolved organic material from the spent caustic using a solvent to yield a spent caustic raffinate containing only residual amounts of organic solute and steam distilling the spent caustic raffinate to remove the residual organic solutes, yielding a pretreated spent caustic stream substantially free of organic material which is then subjected to wet air oxidation and thereafter to ozonolysis to yield a wastewater stream having a low COD and BOD, which is neutralized to a pH of 8.5 to 9.0.
    Type: Grant
    Filed: December 17, 1998
    Date of Patent: April 3, 2001
    Assignee: Stone & Webster Engineering
    Inventors: Sabah A. Kurukchi, Joseph M. Gondolfe, Stephen Z. Masoomian
  • Patent number: 6159344
    Abstract: The invention relates to a distillation and reaction device having a reaction section and a distillation-reaction section. The distillation-reaction section has a distillation zone with at least one device for circulation of the effluent from the reaction section to the distillation zone. Effluent from the reaction section is circulated to the distillation zone. The distillation-reaction section also has at least one distillation-reaction zone having at least one catalyst bed. The distillation-reaction zone is distinct from the distillation zone and provides at least partly the reflux of the distillation zone. The distillation-reaction section can also have at least one complementary reaction zone containing at least one catalyst bed. The invention further relates to a process for preparing at least one aliphatic monoalcohol, generally in excess, and at least one olefin.
    Type: Grant
    Filed: July 25, 1997
    Date of Patent: December 12, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Marie-Claire Marion, Alain Forestiere, Christophe Thille, Jean-Charles Viltard
  • Patent number: 6160185
    Abstract: Provided is a process for high purification of methylal by removing water and methanol present as impurities from the methylal. The process for purification of methylal comprises subjecting a methylal gas containing water and methanol and a polyalkylene glycol or a derivative thereof to gas-liquid counter current contact to remove the water and methanol.
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: December 12, 2000
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Yoshio Tanaka, Shigeru Yamamoto
  • Patent number: 6106674
    Abstract: The present invention teaches an efficient and easier to operate distillation system to separate mixtures containing three or more components into streams enriched in one of the components. In this invention, a liquid stream enriched in the least volatile component is withdrawn from the bottom of one distillation column while a vapor stream enriched in the most volatile component is withdrawn from the top of another distillation column. Of these two distillation columns, the pressure of the distillation column with the bottom liquid enriched in the least volatile component is higher; and this higher pressure distillation column transfers at least two vapor streams from different locations to either one or more other distillation columns within the distillation system. For a ternary mixture, both the vapor streams are transferred to the distillation column with the top vapor enriched in the most volatile component.
    Type: Grant
    Filed: May 26, 1998
    Date of Patent: August 22, 2000
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Rakesh Agrawal, Zbigniew Tadeusz Fidkowski
  • Patent number: 6048441
    Abstract: Neopentyl glycol hydroxypivalate (NGH) is isolated from a mixture containing NGH, lower- and higher-boiling products and inorganic salts and purified in a two-stage process, whereinin a first separation stage, the inorganic salts and part of the higher-boiling products are separated off in a wiped-film evaporator and a vapor stream consisting of NGH, lower- and higher-boiling products is discharged and fed to a heat exchanger and condensed therein,and, in a second separation stage, the resulting condensate is distilled in a rectification column from which NGH is taken off in a side stream and condensed. Further discharges of the rectification column containing lower-boiling products or higher-boiling products are separately taken off. The higher-boiling products which comprise residual NGH are partly or completely recycled to the lower region of the rectification column.
    Type: Grant
    Filed: July 24, 1998
    Date of Patent: April 11, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Heinz Auer, Siegfried Kruger, Stephan Scholl, Theodor Weber, Johann-Peter Melder
  • Patent number: 6015875
    Abstract: Acetals are produced from the reaction of aldehydes and alcohols, e.g. methylal by the reaction of methanol and formaldehyde, by the reaction in a reaction distillation column of the alcohol and aldehyde in the presence of a catalyst and the concurrent fractional distillation of the reaction mixture to separate the reaction products, water and acetal.
    Type: Grant
    Filed: August 11, 1998
    Date of Patent: January 18, 2000
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Robert P. Arganbright
  • Patent number: 5993608
    Abstract: A process for recovering processing liquids such as gas-treating liquids wherein a feed mixture containing the processing liquid and components or impurities that are more volatile and less volatile than the processing liquid is initially heated in a first heating zone to a temperature sufficient to volatilize at least one of the more volatile components and a portion of the processing liquid, the temperature being maintained below the decomposition temperature of the processing liquid to produce a vapor stream containing the less volatile component and the vaporized portion of the processing liquid and a residuum containing the processing liquid, a reduced concentration of the more volatile components and the less volatile components, the vapor stream being separated from the residuum in a first separation zone, a portion of the residuum being passed through a second heating zone at a temperature below the decomposition temperature of the processing liquid to produce a first heated recycle stream, the heated
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: November 30, 1999
    Assignee: Canadian Chemical Reclaiming Ltd.
    Inventors: Raymond G. Abry, Todd S. Beasley, Stephen W. Carlson, Stephen G. Kresoyak
  • Patent number: 5985100
    Abstract: Butanol and dibutyl ether are separated from a mixture containing water, dibutyl ether and n-butanol, 2-butanol and/or isobutanol by a process in whicha) the mixture is introduced into a first distillation column, essentially butanol is separated off at the bottom of this distillation column and the mixture taken off at the top of the distillation columnb) is introduced into a second distillation column and essentially dibutyl ether is separated off at the bottom of this second distillation column and the mixture formed at the top of the second distillation column is removed,c) the second distillation column being operated at a higher pressure than the first distillation column and at least one of the two mixtures taken off via the top of the distillation columns being subjected to phase separation, only the organic phase separated off being fed to the second distillation column in the case of phase separation downstream of the first distillation column, and separation into an aqueous and an organic phase als
    Type: Grant
    Filed: February 17, 1998
    Date of Patent: November 16, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Maik Aron, Harald Rust
  • Patent number: 5948213
    Abstract: A process is disclosed for producing 1,1,2,2,3,3,4,4-octafluorobutane. The process involves (a) reacting a mixture comprising 2,2,3,3-tetrafluorobutane and chlorine to form a mixture of chloro-compounds wherein compounds of the formula C.sub.4 H.sub.x Cl.sub.6-x F.sub.4 (where x is 0 or 1) comprise at least about 50 mole % of the mixture of chloro-compounds; (b) contacting certain chloro-compounds from (a) and hydrogen fluoride with a fluorination catalyst to form a mixture of fluoro-compounds; and (c) contacting certain fluoro-compounds from (b) and hydrogen with a hydrogenolysis catalyst to produce CHF.sub.2 CF.sub.2 CF.sub.2 CHF.sub.2. Sufficient chloro-compounds formed in (a) and sufficient fluoro-compounds formed in (b) are recycled to provide a selectivity to CHF.sub.2 CF.sub.2 CF.sub.2 CHF.sub.2 of at least about 75% based upon the moles of CH.sub.3 CF.sub.2 CF.sub.2 CH.sub.3 reacted in (a).
    Type: Grant
    Filed: July 17, 1998
    Date of Patent: September 7, 1999
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Ralph Newton Miller, V. N. Mallikarjuna Rao, Allen Capron Sievert
  • Patent number: 5908964
    Abstract: The invention concerns a process for preparing a tertiary alkyl ether product. The process comprises reacting the isoolefins of an olefinic hydrocarbon feedstock in a reaction zone (1-3) with an alkanol to form a reaction mixture, which is subjected to distillation in a first distillation zone (4). The bottoms product of the first distillation contains the ether(s), whereas the overhead stream contains unreacted alkanol and a mixture of light hydrocarbons. The overhead stream is subjected to a second distillation in a second distillation zone (15). The overhead product of the second distillation mainly contains the lightest hydrocarbons and a small amount of alkanol, and the bottoms product contains an essentially oxygenate-free hydrocarbon stream which can be used as such for alkylation. In order to increase the conversion of the process, a side drawoff is withdrawn from the second distillation zone (15) and recirculated to the reaction zone (1-3).
    Type: Grant
    Filed: February 19, 1997
    Date of Patent: June 1, 1999
    Assignee: Neste Oy
    Inventors: Matti Koskinen, Petri Lindqvist, Harri Jarvelin, Juhani Aittamaa
  • Patent number: 5885422
    Abstract: A process for pretreating a spent caustic stream prior to oxidation includes countercurrent multi-stage elevated temperature solvent extraction of dissolved organic material from the spent caustic using a solvent to yield a spent caustic raffinate containing only residual amounts of organic solute. The raffinate is steam distilled to remove the residual organic solutes, yielding a pretreated spent caustic stream substantially free of organic material. The pretreated spent caustic is suitable for use in a Kraft paper process or for oxidation prior to recycle or disposal. Solvent extract from the extractor is regenerated in a solvent regenerator having an overhead stream for purging light ends, a bottom stream for purging heavy ends, and a heart-cut side stream for recycling solvent to the extractor.
    Type: Grant
    Filed: February 26, 1997
    Date of Patent: March 23, 1999
    Assignee: Stone & Webster Engineering Corporation
    Inventors: Sabah A. Kurukchi, Joseph M. Gondolfe
  • Patent number: 5853551
    Abstract: The invention concerns a process for the separation of a mixture comprising ethylene, 1-butene, alpha-olefins containing at least 6 carbon atoms per molecule and possibly heavier hydrocarbon products, the ethylene content of the mixture being in the range 30% to 70% by weight, in which separation is effected in a distillation zone to obtain an overhead fraction comprising the major portion of the ethylene present in the mixture and between 0% and 100% by weight of the 1-butene present in the mixture, the process being characterized in that the zone is also supplied with supplemental 1-butene in an amount in the range 1 to 40 times the quantity (by weight) of 1-butene present in the mixture. In a preferred implementation of the process of the invention, the mixture originates form a homogenous liquid phase ethylene oligomerisation zone.
    Type: Grant
    Filed: July 23, 1996
    Date of Patent: December 29, 1998
    Assignee: Institut Francais du Petrole
    Inventors: Pierre Boucot, Jean-Alain Chodorge, Alain Forestiere, Yves Glaize, Fran.cedilla.ois Hughes
  • Patent number: 5804040
    Abstract: There is provided a purification process for dimethoxymethylsilane in which a mixture containing dimethoxymethylsilane and methanol is subjected to a first distillation step in which the mixture is distilled in the presence of methyl formate or methoxytrimethylsilane so that a distillate fraction containing methanol and methyl formate or methoxytrimethylsilane is distilled off and a balance fraction containing dimethoxymethylsilane and methanol is discharged, the amount of methanol in the balance fraction being substantially reduced relative to that of the mixture.
    Type: Grant
    Filed: September 6, 1996
    Date of Patent: September 8, 1998
    Assignee: Kaneka Corporation
    Inventors: Yousuke Asai, Nobuo Ogawa
  • Patent number: 5779861
    Abstract: An apparatus and method for treating chemical production plant process condensate and low pressure purge gas such that a contaminant-rich stream is recoverable from the condensate and purge gas, wherein the contaminants are substantially removed from the condensate by steam stripping and subsequent rectification in a relatively low pressure stripping/rectification tower. The tower overhead is then condensed, and any non-condensed gases are subjected to water scrubbing, along with the low pressure purge gas to further recover contaminates from the non-condensed gas. A portion of the condensed overhead and scrubbing water containing contaminates is returned to the top of the rectification section of the tower as reflux and the balance being withdrawn as a concentrated stream for reuse in the plant. The apparatus may be used in conjunction with existing low pressure equipment, avoiding costly major modifications, and is particularly adapted to use in conjunction with ammonia and methanol plants.
    Type: Grant
    Filed: March 18, 1996
    Date of Patent: July 14, 1998
    Assignee: Farmland Industries, Inc.
    Inventors: Allan Holiday, Ralph A. Scott
  • Patent number: 5723026
    Abstract: The production of high purity benzene and high purity toluene is obtained by utilizing the initial gas separating column for the treatment of the aromatic containing starting material as a separating column for separating a benzene rich from a toluene rich component. The benzene rich component is subject directly to distillation while the toluene is subject to predistillation to separate high boiling components and only then to extractive distillation is distilled to separate the high purity benzene from the high purity toluene.
    Type: Grant
    Filed: August 18, 1995
    Date of Patent: March 3, 1998
    Assignee: Krupp Koppers GmbH
    Inventors: Martin Leisse, Hans-Jurgen Vollmer, Uwe Ranke
  • Patent number: 5707497
    Abstract: A process for the separation of hydrogen fluoride (HF) and of difluoromethane (F32) by fractional distillation and/or condensation, in at least one stage, including in at least one stage obtaining a stream whose HF and F32 contents correspond.
    Type: Grant
    Filed: February 27, 1995
    Date of Patent: January 13, 1998
    Assignee: Elf Atochem S.A.
    Inventors: Jean-Michel Galland, Dominique Rouzies
  • Patent number: 5705039
    Abstract: Impure 2,6-diisopropylphenol (DIP) is purified by use of a distillation process in which a single distillation column is used. The process comprises: (a) subjecting the impure DIP to a first continuous distillation in the column in an inert environment to distill off lower boiling components and produce first column bottoms enriched in DIP; (b) collecting, cooling and storing the first column bottoms while continuously maintaining them in an inert environment; (c) discontinuing the first continuous distillation; (d) subjecting the first column bottoms to a second continuous distillation in an inert environment in the same column to produce a second overhead distillate composed of purified DIP. The process avoids the formation in the distilling mixtures of dose boiling impurities due to seepage of air through standard pipe flanges and fittings and consequent oxidation reactions which occur under the conditions needed for batch distillations conducted in typical industrial distillation facilities.
    Type: Grant
    Filed: October 13, 1995
    Date of Patent: January 6, 1998
    Assignee: Albemarle Corporation
    Inventors: Sam F. Clarke, Venkataraman Ramachandran, J. Steve Staton, Paul L. Wiggins
  • Patent number: 5700358
    Abstract: Caprolactam is recovered from oligomers and/or polymers of caprolactam by cleavage of oligomers and/or polymers of caprolactam and subsequent working up by distillation of the caprolactam obtained in the cleavage, by a process including(a) cleaving oligomers and/or polymers of caprolactam to obtain an aqueous reaction mixture which contains caprolactam,(b) removing water from the reaction mixture obtained under (a) to obtain a residue,(c) distilling the residue obtained under (b) in an acidic medium and(d) then distilling the distillate in an alkaline medium to obtain caprolactam, or(c') distilling the residue obtained under (b) in an alkaline medium and(d') then distilling the distillate in an acidic medium to obtain caprolactam.
    Type: Grant
    Filed: March 1, 1995
    Date of Patent: December 23, 1997
    Assignee: BASF Aktiengesellschaft
    Inventors: Hugo Fuchs, Josef Ritz, Gerald Neubauer
  • Patent number: 5679223
    Abstract: An extractive distillation process using a high boiling polyol such as glycerol is employed for separating high purity catechol, 3-methylcatechol and 4-methylcatechol from a high boiling, pitch-like dihydric phenol fraction. Fractional distillation first separates an impure overhead mixture of the catechol and 3-methylcatechol and an impure 4-methylcatechol bottoms. The impure overhead is extractively distilled to remove impurities and then extractively distilled again to separate the catechol and 3-methylcatechol. This produces a pure overhead of 3-methylcatechol and a bottoms of catechol and polyol which is distilled to recover the catechol and recycle the polyol. The impure 4-methylcatechol is distilled to remove residual material and then extractively distilled to remove impurities. The resulting mixture of 4-methylcatechol and polyol is distilled to recover the pure 4-methylcatechol and to recycle the polyol.
    Type: Grant
    Filed: June 15, 1995
    Date of Patent: October 21, 1997
    Assignee: Dakota Gasification Company
    Inventors: David H. Duncan, Gene G. Baker, Dana J. Maas, Kevin M. Mohl, Alfred K. Kuhn
  • Patent number: 5675054
    Abstract: The invention is a process for reducing capital and energy costs in ethylene recovery. Moderate pressure processing and thermally coupled fractionation steps are achieved through the use of integrator columns. Ethylene separation from cracked gas originating from ethane through gas oil feeds can now be done with thermodynamically efficient fractionation at capital cost competitive with low efficiency designs. Acetylene hydrogenation may be done before demethanization where desired, and dephlegmation is preferred to accomplish high-efficiency rectification of hydrogen and methane from ethylene. Open loop heat pumps can optionally be incorporated into the ethane/ethylene splitter fractionation step, whose desirability is controlled by optimization of capital and energy costs.
    Type: Grant
    Filed: July 17, 1995
    Date of Patent: October 7, 1997
    Inventors: David Manley, Hazem Haddad
  • Patent number: 5643420
    Abstract: An apparatus and method for treating chemical production plant process condensate such that a contaminant-rich stream and a relatively pure aqueous stream is separately recoverable from the condensate, wherein the contaminants are substantially removed from the condensate by steam stripping and subsequent rectification in a relatively low pressure stripping/rectification tower. The tower overhead is then condensed, and any non-condensed gases are subjected to water scrubbing to further recover contaminates from the non-condensed gas. A portion of the condensed overhead and scrubbing water containing contaminates is returned to the top of the rectification section of the tower as reflux and the balance being withdrawn as a concentrated stream for reuse in the plant. The apparatus may be used in conjunction with existing low pressure equipment, avoiding costly major modifications, and is particularly adapted to use in conjunction with ammonia and methanol plants.
    Type: Grant
    Filed: October 6, 1995
    Date of Patent: July 1, 1997
    Assignee: Farmland Industries, Inc.
    Inventor: Allan D. Holiday
  • Patent number: 5635590
    Abstract: The invention relates to a process for the treatment of contaminated ethylene glycol resulting during a polycondensation process for the production of polyester. In the course of this polycondensation process contaminated ethylene glycol is continuously predistilled, subjected as a distillation residue to secondary distillation, condensed and then returned to the polycondensation process as decontaminated ethylene glycol, so that an in-line recovery is achieved, which makes superfluous an external distillation installation for the treatment of contaminated ethylene glycol.
    Type: Grant
    Filed: August 10, 1995
    Date of Patent: June 3, 1997
    Assignee: John Brown Deutsche Engineering GmbH
    Inventors: Jurgen Rink, Klaus Stemmer, Rudolf Geier
  • Patent number: 5587047
    Abstract: A method for separating boric acid from a liquid, especially liquid waste obtained from a nuclear power plant. In the method, the waste solution containing the boric acid is contacted with steam in a reactor so that the boric acid evaporates from the liquid and passes into the steam vapor phase. Consequently, the radioactive wastes which are not evaporated with the steam remain in the waste water while the boric acid is removed from the waste water when it passes into the vapor or steam phase. The boric acid can then be separated and recovered from the steam by means of a distillation and fractionating column or a wash column. By removing the boric acid from the liquid waste, it is possible to obtain concentrated radioactive waste having a reduced volume due to the absence of boric acid in the waste.
    Type: Grant
    Filed: September 8, 1995
    Date of Patent: December 24, 1996
    Assignee: Studiecentrum voor Kernenergie
    Inventors: Aime Bruggeman, Johan Braet
  • Patent number: 5534151
    Abstract: A process is disclosed for separating components of an azeotropic or azeotrope-like mixture containing only organic compounds at least one of which compound is a halocarbon comprising contacting said azeotropic or azeotrope-like mixture with a semipermeable membrane to form at least one exit stream having an increased concentration of at least one component and at least one other exit stream having an increased concentration of at least one other component of the azeotropic or azeotrope-like mixture and, thereafter, recovering at least one exit stream.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: July 9, 1996
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: Kung H. Lee
  • Patent number: 5498317
    Abstract: An apparatus and method for treating chemical production plant process condensate such that a contaminant-rich stream and a relatively pure aqueous stream is separately recoverable from the condensate, wherein the contaminants are substantially removed from the condensate by steam stripping and subsequent rectification in a relatively low pressure stripping/rectification tower. The tower overhead is then condensed with a portion of the condensed overhead being returned to the top of the rectification section of the tower as reflux and the balance being withdrawn as a concentrated stream for reuse in the plant. In a second embodiment, separate stripping and rectification towers operate in series whereby the overhead of the stripping tower is delivered to the lower section of the rectification tower and the rectification bottoms are returned to the top of the stripping tower.
    Type: Grant
    Filed: October 17, 1994
    Date of Patent: March 12, 1996
    Assignee: Farmland Industries, Inc.
    Inventor: Allan D. Holiday
  • Patent number: 5468347
    Abstract: The present invention provides a method for separating boric acid from a liquid, especially liquid waste obtained from a nuclear power plant. In the process, the waste solution containing the boric acid is contacted with steam in a reactor so that the boric acid evaporates from the liquid and passes into the steam vapor phase. Consequently, the radioactive wastes which are not evaporated with the steam remain in the waste water while the boric acid is removed from the waste water when it passes into the vapor or steam phase. The boric acid can then be separated and recovered from the steam by means of a distillation and fractionating column or a wash column. By removing the boric acid from the liquid waste, it is possible to obtain concentrated radioactive waste having a reduced volume due to the absence of boric acid in the waste.
    Type: Grant
    Filed: June 16, 1994
    Date of Patent: November 21, 1995
    Assignee: Studiecentrum Voor Kernenergie
    Inventors: Aime Bruggeman, Johan Braet
  • Patent number: 5456841
    Abstract: A process is disclosed for separating components of an azeotropic or azeotrope-like mixture containing only organic compounds at least one of which compound is a halocarbon comprising contacting said azeotropic or azeotrope-like mixture with a semipermeable membrane to form at least one exit stream having an increased concentration of at least one component and at least one other exit stream having an increased concentration of at least one other component of the azeotropic or azeotrope-like mixture and, thereafter, recovering at least one exit stream.
    Type: Grant
    Filed: March 21, 1994
    Date of Patent: October 10, 1995
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: Kung H. Lee
  • Patent number: 5385646
    Abstract: An apparatus and method for treating chemical production plant process condensate such that a contaminant-rich stream and a relatively pure aqueous stream is separately recoverable from the condensate, wherein the contaminants are substantially removed from the condensate by steam stripping and subsequent rectification in a relatively low pressure stripping/rectification tower. The tower overhead is then condensed with a portion of the condensed overhead being returned to the top of the rectification section of the tower as reflux and the balance being withdrawn as a concentrated stream for reuse in the plant. In a second embodiment, separate stripping and rectification towers operate in series whereby the overhead of the stripping tower is delivered to the lower section of the rectification tower and the rectification bottoms are returned to the top of the stripping tower.
    Type: Grant
    Filed: September 3, 1993
    Date of Patent: January 31, 1995
    Assignee: Farmland Industries, Inc.
    Inventor: Allan D. Holiday
  • Patent number: 5354431
    Abstract: Crude propylene oxide is purified by a distillation process wherein it is (a) extractively distilled in a first column using a C.sub.2 to C.sub.6 alkylene glycol extractive distillation agent to form a first overhead fraction comprising propylene oxide, C.sub.5 -C.sub.7 hydrocarbons, methanol, water and oxygen-containing impurities, (b) wherein the first overhead fraction is separated in a plurality of intermediate distillation columns to provide an intermediate propylene oxide overhead fraction consisting essentially of propylene oxide and water, and (c) the intermediate propylene oxide overhead fraction is charged to a final distillation column using a C.sub.2 to C.sub.6 alkylene glycol extractive distillation agent to form a final overhead fraction consisting essentially of propylene oxide.
    Type: Grant
    Filed: September 23, 1993
    Date of Patent: October 11, 1994
    Assignee: Texaco Chemical Company
    Inventor: Mark E. Taylor
  • Patent number: 5348624
    Abstract: For separating ETBE and ethanol the following principal stages are employed:(1) Extraction of ethanol by water, the raffinate being ETBE saturated in water and the extract an ethanol/water mixture containing a small proportion of ETBE;(2) Concentration of the above mixture, the distillate being a mixture close to the ethanol/water azeotrope in composition and containing a very small proportion of ETBE;(3) Heteroazeotropic distillation of this distillate in two coupled columns with an overhead decanter, this distillation using ETBE as azeotroping agent; the residue of the first column being ethanol which is ca. 99% by mole and the residue of the second column being practically pure water, this water and the water recovered during the concentration stage being used as extraction solvent in stage (1).Stage (3) may be an ethanol dehydration unit using ETBE as dehydrating agent.
    Type: Grant
    Filed: November 12, 1992
    Date of Patent: September 20, 1994
    Assignee: Institut Francais du Petrole
    Inventors: Annick Pucci, Paul Mikitenko, Massimo Zuliani
  • Patent number: 5346595
    Abstract: The invention generally relates to a process for the purification of a component of a binary azeotrope in which the composition of the azeotrope changes by about 10 mole percent with pressure comprising:(a) subjecting a binary azeotrope to a distillation step in which most of one of the binary components is removed as distillate (distillate 1) with the bottoms (bottoms 1) enriched in the other component;(b) subjecting distillate 1 to at least one additional distillation step conducted at a different pressure in which most of the component recovered as bottoms 1 is removed as distillate 2 with the bottoms 2 enriched in the component enriched in distillate 1;(c) optionally repeating step (b) as many times as desired; and(d) recovering the desired purified component.The invention is particularly useful in the purification of pentafluoroethane in a pentafluoroethane/chloropentafluoroethane azeotrope.
    Type: Grant
    Filed: February 23, 1993
    Date of Patent: September 13, 1994
    Assignee: AlliedSignal Inc.
    Inventors: Paul G. Clemmer, Hsueh S. Tung, Addison M. Smith
  • Patent number: 5282968
    Abstract: A process is disclosed for separating components of an azeotropic or azeotrope-like mixture containing only organic compounds at least one of which compound is a halocarbon comprising contacting said azeotropic or azeotrope-like mixture with a semipermeable membrane to form at least one exit stream having an increased concentration of at least one component and at least one other exit stream having an increased concentration of at least one other component of the azeotropic or azeotrope-like mixture and, thereafter, recovering at least one exit stream.
    Type: Grant
    Filed: August 3, 1992
    Date of Patent: February 1, 1994
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: Kung H. Lee