Measuring Or Testing (e.g., Of Operating Parameters, Property Of Article, Etc.) Patents (Class 204/192.13)
  • Patent number: 6436246
    Abstract: A method and apparatus are disclosed for electrically monitoring processing variations of a material deposited using a collimated process. In one embodiment, the method and apparatus are directed to monitoring variations in step coverage of a conductive material deposited using a collimated sputtering process. A substrate having a plurality of trenches is used to mimic features desired to be monitored, such as contact holes. The resistance of metal deposited into the trenches is monitored to determine the effectiveness of the collimated sputtering process.
    Type: Grant
    Filed: January 27, 1997
    Date of Patent: August 20, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu
  • Patent number: 6428658
    Abstract: A plurality of test pieces are taken from a long-sized substrate made of stainless steel, where the test pieces are arranged in parallel to the width direction TD of the substrate in a region near the forward end of the substrate. A variation among the curvatures of the test pieces is then measured. A substrate where the variation in the curvature is 0.002 [1/mm] or smaller is selected as a substrate used in manufacture of magnetic head suspensions. While the selected substrate is transported in its length direction, an insulating layer and a conductor layer are stacked on the substrate to form a plurality of magnetic head suspensions.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: August 6, 2002
    Assignee: Nitto Denko Corporation
    Inventors: Takeshi Asano, Atsushi Tanaka, Yasuhisa Toujou, Toshihiko Omote
  • Patent number: 6425988
    Abstract: A method and system for producing a film (preferably a thin film with highly uniform or highly accurate custom graded thickness) on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source operated with time-varying flux distribution. In preferred embodiments, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. A user selects a source flux modulation recipe for achieving a predetermined desired thickness profile of the deposited film. The method relies on precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: July 30, 2002
    Inventors: Claude Montcalm, James Allen Folta, Swie-In Tan, Ira Reiss
  • Patent number: 6425990
    Abstract: A method capable of fabricating a transparent conductive ITO film with a resistivity within a predetermined range until the end of the life of the target when transparent conductive ITO films are continuously formed on a plurality of substrates by continuous sputtering, and capable of fabricating a transparent conductive ITO film with a resistivity of within a predetermined range even when the film becomes thicker in forming it on a single substrate.
    Type: Grant
    Filed: July 28, 1995
    Date of Patent: July 30, 2002
    Assignee: Anelva Corporation
    Inventor: Keizi Ishibashi
  • Patent number: 6419801
    Abstract: The invention generally relates to various aspects of a plasma process, and more specifically the monitoring of such plasma processes. One aspect relates in at least some manner to calibrating or initializing a plasma monitoring assembly. This type of calibration may be used to address wavelength shifts, intensity shifts, or both associated with optical emissions data obtained on a plasma process. A calibration light may be directed at a window through which optical emissions data is being obtained to determine the effect, if any, that the inner surface of the window is having on the optical emissions data being obtained therethrough, the operation of the optical emissions data gathering device, or both. Another aspect relates in at least some manner to various types of evaluations which may be undertaken of a plasma process which was run, and more typically one which is currently being run, within the processing chamber.
    Type: Grant
    Filed: April 23, 1998
    Date of Patent: July 16, 2002
    Assignee: Sandia Corporation
    Inventors: Michael Lane Smith, Jr., Joel O'Don Stevenson, Pamela Peardon Denise Ward
  • Patent number: 6419802
    Abstract: A system and method for controlling a circumferential deposition thickness distribution on a substrate includes a motor that rotates the substrate and a position sensor that senses a position of the substrate. At least one deposition thickness sensor senses the deposition thickness of the substrate at multiple positions on a circumference of a circle centered about an axis of rotation of the substrate. At least one controller drives a vapor source used to emit material for a deposition on a substrate. The at least one controller is coupled to the position sensor and the deposition thickness sensor. The controller synchronously varies an emission rate of material from the vapor source with respect to the position of the substrate to control the circumferential deposition thickness distribution.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: July 16, 2002
    Inventors: David Alan Baldwin, Todd Lanier Hylton
  • Patent number: 6419803
    Abstract: A system and method for manufacturing thin-film structures disposed on a substrate. The thin-film structures have different respective thicknesses that vary along a radius of the substrate. A substrate rotates about an axis of rotation and a source of deposited material is directed at the rotating substrate. A mask having a stepped profile is positioned between the rotating substrate and the source. The stepped mask selectively blocks material emanating from the source from reaching the substrate. Each step of the profile of the mask corresponds to one of the respective thicknesses of the thin-film structures. The radius along which the different respective thicknesses of the film-thin structures vary is measured from the axis of rotation of the rotating substrate.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: July 16, 2002
    Assignee: 4Wave, Inc.
    Inventors: David Alan Baldwin, Todd Lanier Hylton
  • Patent number: 6416635
    Abstract: Thickness uniformity of films sputtered from a target onto a series of substrates is maintained as the target surface shape changes due to the consumption of the target. The eroded condition of the target is sensed by directly measuring the position of a point on the target surface, by measuring power consumption of the target, by measuring deposition from the surface of the target or by some other means. A controller responds to the measurement by moving a substrate holder to determine an amount to change the distance between the substrate and the target, usually by moving the substrate closer to the target, by an amount necessary to maintain uniformity of the coatings on the wafers being processed. A servo or stepper motor responds to a signal from the controller to move the substrate holder in accordance with the determined amount of distance change required. The adjustment is made following the coating of wafers at various times over the life of the target.
    Type: Grant
    Filed: July 24, 1995
    Date of Patent: July 9, 2002
    Assignee: Tokyo Electron Limited
    Inventors: Steven Hurwitt, Israel Wagner
  • Patent number: 6416638
    Abstract: The present invention is such that, in a circuit for preventing an arc discharge through the application of a reverse voltage pulse, in the case where, after the application of the reverse voltage pulse has been ended, the generation of an arc discharge is detected by an arc discharge detecting means (23), a reverse voltage generated by a reverse voltage generating means (12) is applied within 1 to 10 &mgr;s to a sputtering source to lower the probability of generating a continuous arc discharge and, through a diode (D10) connected in series with the sputtering source (14) and a resistor (r10) connected in parallel with the diode (D10), a current at a time of applying the reverse voltage is restricted, thus lowering a continuous arc discharge resulting from the reverse arc discharge.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: July 9, 2002
    Assignee: Shibaura Mechatronics Corporation
    Inventors: Noboru Kuriyama, Yutaka Yatsu, Yoshio Kawamata, Takashi Fujii
  • Patent number: 6416639
    Abstract: A magnetron including a target (2) for sputtering onto a substrate in described. The magnetron comprises a magnetic field generator (4) for generating a closed loop magnetic field adapted to generate a plasma race-track above the target (2) and a driving device for establishing relative substantially translational movement between the race-track and the target (2) and adapted to influence the magnetic field generated by the magnetic field generator (4) at least during part of the relative substantially translational movement, the distance between any point on the race track and the momentarily closest part of the one or more pieces (50) of ferromagnetic material varying in accordance with the relative substantially translational movement of the race-track and the target (2).
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: July 9, 2002
    Assignee: Sinvaco N.V.
    Inventors: Wilmert De Bosscher, Steven August Van Hove
  • Patent number: 6413383
    Abstract: A DC magnetron sputter reactor for sputtering copper, its method of use, particularly the ignition sequence, and shields and other parts promoting self-ionized plasma (SIP) sputtering, preferably at pressures below 5 milliTorr, preferably below 1 milliTorr. The SIP copper layer can act as a seed and nucleation layer for hole filling with conventional sputtering (PVD) or with electrochemical plating (ECP). Preferably, the plasma is ignited in a cool process in which low power is applied to the target in the presence of a higher pressure of argon working gas. After ignition, the pressure is reduced, and target power is ramped up to a relatively high operational level to sputter deposit the film.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: July 2, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Tony P. Chiang, Yu D. Cong, Peijun Ding, Jianming Fu, Howard H. Tang, Anish Tolia
  • Patent number: 6402905
    Abstract: A system and method for controlling a deposition thickness distribution on a substrate includes a motor that rotates the substrate and at least one deposition thickness sensor that senses the deposition thickness on the rotating substrate at two or more radii. At least one actuator varies a shadow of a mask that is disposed over the rotating substrate, wherein the shadow has a surface area that is less than an unmasked surface area of the rotating substrate. A vapor source deposits material on the rotating substrate. A process controller is coupled to the thickness deposition sensor and the at least one actuator. In response to an output of the deposition thickness sensor, the process controller varies the shadow of the mask along a radius of the substrate to control the deposition thickness distribution.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: June 11, 2002
    Assignee: 4 Wave, Inc
    Inventors: David Alan Baldwin, Todd Lanier Hylton
  • Patent number: 6402904
    Abstract: A system and method for performing sputter deposition on a substrate include ion and electron sources that generate ion and electron currents directed at a target. Biasing circuitry biases the target with an a-symmetric bi-polar DC voltage pulse signal. The biasing circuitry is formed from positive and negative voltage sources and a high frequency switch. A current sensor, coupled to the biasing circuitry, monitors positive and negative currents from the target. A control system, coupled to the current sensor, varies the ion and electron currents independently. The ion and electron sources create a continuos plasma that is proximate the target. Ions attracted from the plasma sputter the target, and material from the target is deposited on the substrate. Electrons attracted from the plasma neutralize accumulated charge on the target.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: June 11, 2002
    Assignee: 4 Wave, Inc.
    Inventors: David Alan Baldwin, Todd Lanier Hylton
  • Patent number: 6391377
    Abstract: A method of manufacturing workpieces, includes loading the workpieces into a treatment facility, surface treating the workpieces in at least one vacuum station of the facility grouped as a station batch and controlling at least the timing of the process by a freely programmable process controller unit. At least two stations operating each on workpiece batches can be grouped as respective station batches and be different with respect to number of workpieces. The workpieces can be transported to and from the grouped stations. An embodiment of vacuum treatment system for such a process includes at least one vacuum treatment station for workpieces grouped as a station batch. A transport system supplies the vacuum station with workpieces. A process controller unit has an output operationally connected to a drive arrangement for the transport system. The unit controls operating timing of the treatment system and is freely programmable.
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: May 21, 2002
    Assignee: Unaxis Balzers Aktiengesellschaft
    Inventors: Rudolf Wagner, Jacques Schmitt, Jerome Perrin
  • Patent number: 6383346
    Abstract: The present invention provides a method for forming a film of aluminum oxide in which a target containing aluminum is sputtered in a gas containing fluorine atoms. The thin film of aluminum oxide according to the present invention has little optical absorption and high refractive index in the ultraviolet and vacuum ultraviolet regions.
    Type: Grant
    Filed: March 21, 1997
    Date of Patent: May 7, 2002
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kenji Ando, Masaaki Matsushima, Minoru Otani, Yasuyuki Suzuki, Ryuji Biro, Hidehiro Kanazawa
  • Publication number: 20020046943
    Abstract: Since the transfer speed of a substrate is controlled to compensate for a film-forming rate, and an electric power applied to heating means for heating the substrate is controlled so that thermal equilibrium of the substrate is maintained, a film having a uniform thickness and quality can be stably formed even when sputtering is performed for a long time.
    Type: Application
    Filed: October 11, 2001
    Publication date: April 25, 2002
    Inventors: Hiroshi Echizen, Toshihiro Yamashita
  • Patent number: 6375810
    Abstract: A method and apparatus for depositing a layer of a material which contains a metal on a workpiece surface, in an installation including a deposition chamber; a workpiece support providing a workpiece support surface within the chamber; a coil within the chamber, the coil containing the metal that will be contained in the layer to be deposited; and an RF power supply connected to deliver RF power to the coil in order to generate a plasma within the chamber, a DC self bias potential being induced in the coil when only RF power is delivered to the coil. A DC bias potential which is different in magnitude from the DC self bias potential is applied to the coil from a DC voltage source.
    Type: Grant
    Filed: November 19, 1997
    Date of Patent: April 23, 2002
    Assignee: Applied Materials, Inc.
    Inventor: Liubo Hong
  • Publication number: 20020040846
    Abstract: A sputter coating apparatus includes at least a first sputter coating line and a second sputter coating line. The first and second sputter coating lines may be operated in parallel with one another in certain embodiments in order to independently form coating systems and respective coated articles. However, the two coating lines may also be utilized so as to operate in series with one another to form a coated article. In the latter case, a transition zone is provided between an end of the first line and an end of the second line so as to selectively couple an output of the first line to an input of the second line when it is desired to utilize the two sputter coating lines in series with one another. In such a manner, it is possible to avoid many of the inefficiencies associated with conventional sputter coating apparatuses and processes.
    Type: Application
    Filed: December 7, 2000
    Publication date: April 11, 2002
    Inventors: Marcel Schloremberg, Jean-Marc Lemmer
  • Patent number: 6365009
    Abstract: A combined RF-DC magnetron sputtering method stops the production of tracking arcs and promotes the consistent manufacture of thin films during the manufacture of thin films by such RF-DC magnetron sputtering. Magnets 121, 122 are placed behind the target 111. RF and DC power are simultaneously supplied to the target to produce a plasma, and sputtering is used to manufacture a thin film on a substrate 106 facing the target. The supply of RF and DC power to the target is simultaneously and periodically stopped. The time that the power is supplied is shorter than the time needed to produce tracking arcs. The RF and DC power is both supplied and stopped simultaneously, and RF and DC power is intermittently supplied to the target.
    Type: Grant
    Filed: May 1, 1998
    Date of Patent: April 2, 2002
    Assignee: Anelva Corporation
    Inventor: Keiji Ishibashi
  • Patent number: 6358377
    Abstract: A sputter coating apparatus includes at least a first sputter coating line and a second sputter coating line. The first and second sputter coating lines may be operated in parallel with one another in certain embodiments in order to independently form coating systems and respective coated articles. However, the two coating lines may also be utilized so as to operate in series with one another to form a coated article. In the latter case, a transition zone is provided between an end of the first line and an end of the second line so as to selectively couple an output of the first line to an input of the second line when it is desired to utilize the two sputter coating lines in series with one another. In such a manner, it is possible to avoid many of the inefficiencies associated with conventional sputter coating apparatuses and processes.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: March 19, 2002
    Assignee: Guardian Industries Corp.
    Inventors: Marcel Schloremberg, Jean-Marc Lemmer
  • Publication number: 20020027429
    Abstract: A method and apparatus are disclosed for electrically monitoring processing variations of a material deposited using a collimated process. In one embodiment, the method and apparatus are directed to monitoring variations in step coverage of a conductive material deposited using a collimated sputtering process. A substrate having a plurality of trenches is used to mimic features desired to be monitored, such as contact holes. The resistance of metal deposited into the trenches is monitored to determine the effectiveness of the collimated sputtering process.
    Type: Application
    Filed: August 17, 2001
    Publication date: March 7, 2002
    Inventor: Gurtej S. Sandhu
  • Publication number: 20020014402
    Abstract: The present invention is characterized by; detecting the volume of impurities in said vacuum vessel wherein plasma is generated by radio frequency power supplied to the target electrode and substrate electrode, and a target is sputtered by ions in said plasma, thereby forming films on the substrate, and controlling the phase difference of radio frequency power supplied to each of said electrodes according to said detection value.
    Type: Application
    Filed: February 26, 2001
    Publication date: February 7, 2002
    Inventors: Yoshihiko Nagamine, Yoshiya Higuchi, Tadashi Sato, Tomoyuki Seino, Mitsuhiro Kamei
  • Patent number: 6344151
    Abstract: A gas purged viewport for endpoint detection in a gas phase processing chamber is provided which prevents contamination of an optical monitoring window by use of a purge gas flow. The purge gas purges the viewport and prevents deposition of byproducts and contaminants on the window which will adversely effect endpoint detection. The gas purge viewport includes a prechamber between the optically transparent window and the process chamber. The purge gas is passed through the prechamber and into the processing chamber to purge the window. The gas purge system may also be used to purge other parts such as sensors.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: February 5, 2002
    Assignee: Lam Research Corporation
    Inventors: Anthony L. Chen, John Holland
  • Patent number: 6344114
    Abstract: A method of coating a substrate by magnetron cathode sputtering includes a sputtering cathode having pole shoes and being arranged in a vacuum chamber. A target and a magnetic field are provided in an area of the surface of the target and the magnetic field is varied stepwise and/or continuously to displace the plasma radially such that the erosion groove is likewise displaced radially. The variable magnetic field is generated by coils between the back surface of the target and a yoke plate while a static magnetic field is gernated by an annularly arranged magnet in the area of the yoke plate and a target space between the target and the substrate is shielded by means of an iron core which also increases the field strength of the variable magnetic field.
    Type: Grant
    Filed: August 30, 1999
    Date of Patent: February 5, 2002
    Assignee: Singulus Technologies AG
    Inventors: Eggo Sichmann, Michael Muecke, Wolfgang Becker, Klaus Truckenmueller
  • Patent number: 6342132
    Abstract: Gas rarefaction, and loss of ionization efficiency, resulting from magnetron sputtering in IPVD may be avoided by operating the magnetron in a pulsed fashion, rather than in a steady state, during the deposition process. The magnetron is powered during a first time period to produce a flux of atoms which heat the gas, and depowered during a second time period. The gas flows through the device during the powering step and the depowering step so as to prevent rarefaction of the gas by heating. The flow of gas through the device is characterized by a residence time. If the residence time is given as &tgr;, and the first time period and the second time period are substantially equal, the operation of the magnetron may be characterized by a frequency of 1/&tgr;. The second time period may be greater than the first time period.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: January 29, 2002
    Assignee: International Business Machines Corporation
    Inventor: Stephen Mark Rossnagel
  • Patent number: 6342134
    Abstract: A quality-assurance method is described that is useful in the fabrication of piezoelectric films of electronic devices, particularly resonators for use in RF filters. For example, the method comprises determining the surface roughness of an insulating layer on which the piezoelectric film is to be deposited and achieving a surface roughness for the insulating layer that is sufficiently low to achieve the high-quality piezoelectric film. According to one aspect of the invention, the low surface roughness for the insulating layer is achieved with use of a rotating magnet magnetron system for improving the uniformity of the deposited layer. According to other aspects of the invention, the high-quality piezoelectric film is assured by optimizing deposition parameters including determination of a “cross-over point” for reactive gas flow and/or monitoring and correcting for the surface roughness of the insulating layer pre-fabrication of the piezoelectric film.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: January 29, 2002
    Assignee: Agere Systems Guardian Corp.
    Inventors: Bradley Paul Barber, Ronald Eugene Miller
  • Patent number: 6338776
    Abstract: The present invention is directed to allowing a work piece to stabilize in regard to temperature and humidity/water content prior to precision operations so as to minimize any problems resulting from dimensional changes.
    Type: Grant
    Filed: February 24, 2000
    Date of Patent: January 15, 2002
    Assignee: Honeywell International Inc.
    Inventor: Richard J. Pommer
  • Patent number: 6338775
    Abstract: A thin film deposition apparatus and method are disclosed in this invention. The method includes a step of providing a vacuum chamber for containing a thin-film particle source for generating thin-film particles to deposit a thin-film on the substrates. The method further includes a step of containing a substrate holder in the vacuum chamber for holding a plurality of substrates having a thin-film deposition surface facing the thin-film particle source. The method further includes a step of providing a rotational means for rotating the substrate holder to rotate each of the substrates exposed to the thin-film particles for depositing a thin film thereon. And, the method further includes a step of providing a lateral moving means for laterally moving and controlling a duration of exposure time across a radial direction for each of the substrates for controlling thickness uniformity of the thin-film deposited on each of the substrates.
    Type: Grant
    Filed: August 7, 2000
    Date of Patent: January 15, 2002
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventor: Jiong Chen
  • Patent number: 6336999
    Abstract: A sputter coating apparatus includes at least a first sputter coating line and a second sputter coating line. The first and second sputter coating lines may be operated in parallel with one another in certain embodiments in order to independently form coating systems and respective coated articles. However, the two coating lines may also be utilized so as to operate in series with one another to form a coated article. In the latter case, a transition zone is provided between an end of the first line and an end of the second line so as to selectively couple an output of the first line to an input of the second line when it is desired to utilize the two sputter coating lines in series with one another. In such a manner, it is possible to avoid many of the inefficiencies associated with conventional sputter coating apparatuses and processes.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: January 8, 2002
    Assignee: Centre Luxembourgeois de Recherches pour le Verre et al Ceramique S.A. (C.R.V.C.)
    Inventors: Jean-Marc Lemmer, Marcel Schloremberg
  • Publication number: 20020000368
    Abstract: The invention relates to a vacuum treatment chamber for work pieces which comprises at least one induction coil for at least co-generating a treatment plasma in a discharge chamber which is located in the interior of the coil. It also comprises a screen which is arranged between the discharge chamber and the coil, and which is coaxial in relation to the axis of the coil. The screen comprises slots which have a directional component which is parallel to the coil axis. The screen is formed by a self-contained body. The slots are provided along at least the main part of the body's circumference in a slot density per circumferential length unit of S=(number of slots)/cm equaling 0.5≦S.
    Type: Application
    Filed: March 29, 2001
    Publication date: January 3, 2002
    Inventor: Juergen Weichart
  • Patent number: 6332961
    Abstract: A system and method for detecting and preventing arcing in plasma processing systems. Arcing is detected and characterized by measuring and analyzing electrical signals from a circuit coupled to the plasma. After characterization, the electrical signals can then be correlated with arcing events occurring during a processing run. Information can be obtained regarding location, severity, and frequency of arcing events. The system and method better diagnose the causes of arcing and provide improved protection against undesirable arcing, which can cause damage to the system and the workpiece.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: December 25, 2001
    Assignee: Tokyo Electron Limited
    Inventors: Wayne L. Johnson, Richard Parsons
  • Publication number: 20010052455
    Abstract: A method and apparatus for depositing a layer of a material which contains a metal on a workpiece surface, in an installation including a deposition chamber; a workpiece support providing a workpiece support surface within the chamber; a coil within the chamber, the coil containing the metal that will be contained in the layer to be deposited; and an RF power supply connected to deliver RF power to the coil in order to generate a plasma within the chamber, a DC self bias potential being induced in the coil when only RF power is delivered to the coil. A DC bias potential which is different in magnitude from the DC self bias potential is applied to the coil from a DC voltage source.
    Type: Application
    Filed: November 19, 1997
    Publication date: December 20, 2001
    Inventor: LIUBO HONG
  • Publication number: 20010047933
    Abstract: DC plasma power supply for a sputter deposition of material layers on a substrate includes a plasma controller and a plasma input for the settings of the output voltage and output current providing plasma ignition and termination with no arcing and no striking voltage. Pre-defined voltages are applied in the vacuum state before sputtering and after sputtering until vacuum is restored in a sputtering apparatus.
    Type: Application
    Filed: April 20, 2001
    Publication date: December 6, 2001
    Inventor: Alexander D. Lantsman
  • Publication number: 20010047931
    Abstract: Before submitting a sample, including a first material layered upon a substrate, to an ion milling process, whereby a second material is sputtered onto the surface of the first material and the sample is then submitted to an etching process, an irregularity is formed on the surface of the first material. The overall process results in the formation of cones, or micro-tip structures, which may then be layered with a layer of low work function material, such as amorphous diamond. The irregularity in the surface of the first material may be formed by polishing, sandblasting, photolithography, or mechanical means such as scratching.
    Type: Application
    Filed: February 7, 2001
    Publication date: December 6, 2001
    Applicant: SI Diamond Technology, Inc.
    Inventors: Chenggang Xie, Dean Joseph Eichman
  • Publication number: 20010045352
    Abstract: In accordance with one specific embodiment of the present invention, an ion-beam deposition apparatus uses a plurality of stationary sputter targets so located so as to provide a predetermined thickness distribution of the target material on a substrate. This distribution is obtained without mechanical motion of ion sources, sputter targets, or a shaper located between the sputter targets and deposition substrate.
    Type: Application
    Filed: June 13, 2001
    Publication date: November 29, 2001
    Inventors: Raymond S. Robinson, Viacheslav V. Zhurin, James R. Kahn, Harold R. Kaufman
  • Publication number: 20010037938
    Abstract: A refractory metal silicide target is characterized by comprising a fine mixed structure composed of MSi2 (where M: refractory metal) grains and Si grains, wherein the number of MSi2 grains independently existing in a cross section of 0.01 mm2 of the mixed structure is not greater than 15, the MSi2 grains have an average grain size not greater than 10 &mgr;m, whereas free Si grains existing in gaps of the MSi2 grains have a maximum grain size not greater than 20 &mgr;m. The target has a high density, high purity fine mixed structure with a uniform composition and contains a small amount of impurities such as oxygen etc. The employment of the target can reduce particles produced in sputtering, the change of a film resistance in a wafer and the impurities in a film and improve yield and reliability when semiconductors are manufactured.
    Type: Application
    Filed: May 2, 2001
    Publication date: November 8, 2001
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Michio Sato, Takashi Yamanobe, Tohru Komatsu, Yoshiharu Fukasawa, Noriaki Yagi, Toshihiro Maki, Hiromi Shizu
  • Patent number: 6313430
    Abstract: A high frequency plasma processing apparatus and a high frequency plasma processing method according to the invention can suitably be used for uniformly forming on a substrate a deposition film over a large area. The apparatus and the related method solve the problem wherein high frequency power supplied to a known plasma processing apparatus can become distorted to produce harmonics and give rise to difficulty in correctly reading the incident and reflected powers and realizing an accurate matching when a VHF is used in order to raise the processing rate.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: November 6, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yasushi Fujioka, Shotaro Okabe, Masahiro Kanai, Akira Sakai, Tadashi Sawayama, Yuzo Kohda
  • Publication number: 20010025783
    Abstract: A method of improving the temperature control of a clamped substrate mounted on a substrate support that is biased, the substrate support having a passage therethrough to permit a flow of backside gas for heating or cooling the substrate, whereby the pressure of the backside gas is maintained at at least 15 torr. A high gas pressure improves the thickness uniformity of processing across the substrate. For plasma deposition of sputtered seed layers, the morphology of the seed layer is improved near the edge of the substrate and the uniformity of the layer across the substrate is also improved.
    Type: Application
    Filed: March 29, 2000
    Publication date: October 4, 2001
    Inventors: Arvind Sundarrajan, Darryl Angelo, Tse-Yong Yao, Peijun Ding
  • Patent number: 6280579
    Abstract: A method and apparatus for detecting target misalignment and plasma instability in a sputtering chamber in a semiconductor fabrication system is provided. In certain embodiments, a detector is utilized to monitor the voltage of the power applied to bias the target. If the voltage fluctuates excessively, plasma instability and target misalignment is indicated.
    Type: Grant
    Filed: July 28, 1998
    Date of Patent: August 28, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Seh Kwang Lee, John Egermeier
  • Patent number: 6277251
    Abstract: An assembly for allowing stable power transmission into a plasma processing chamber comprising a dielectric member; and at least one material deposition support assembly secured to the dielectric member for receiving and supporting the deposition of materials during processing of a substrate and a chamber having a controlled environment and containing a plasma of a processing gas. A plasma reactor for processing substrates having a reactor chamber including a chamber sidewall and a dielectric window supported by the chamber sidewall. A plurality of deposition support members is coupled to an inside surface of the dielectric window for receiving and supporting a deposition of materials during processing of substrates. In an alternative embodiment of the invention, the plurality of deposition support members is connected to a liner assembly instead of to the dielectric window. The liner assembly is supported by the chamber sidewall.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: August 21, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Jeng H. Hwang, Steve S. Y. Mak, Yan Ye
  • Patent number: 6274007
    Abstract: A process for controllably forming silicon nanostructures such as a silicon quantum wire array. A silicon surface is sputtered by a uniform flow of nitrogen molecular ions in an ultrahigh vacuum so as to form a periodic wave-like relief in which the troughs of said relief are level with the silicon-insulator border of the SOI material. The ion energy, the ion incidence angle to the surface of said material, the temperature of the silicon layer, the formation depth of the wave-like relief, the height of said wave-like relief and the ion penetration range into silicon are all determined on the basis of a selected wavelength of the wave-like relief in the range 9 nm to 120 nm. A silicon nitride mask having pendant edges is used to define the area of the silicon surface on which the array is formed. Impurities are removed from the silicon surface within the mask window prior to sputtering.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: August 14, 2001
    Assignee: Sceptre Electronics Limited
    Inventors: Valery K Smirnov, Dmitri S Kibalov
  • Patent number: 6267852
    Abstract: Disclosed is a method of forming a PVD deposition chamber which is modified with an electrical circuit that allows a voltage bias to be applied to any one or more of a target, an in-process integrated circuit wafer, and collimator. The collimator can also be isolated from the electrical circuit. This configuration allows a preclean of the in-process integrated circuit wafer in situ in the PVD deposition chamber by ion sputtering and a subsequent sputter deposition through the collimator. A method is also disclosed wherein an in-process integrated circuit wafer is first precleaned in the PVD deposition chamber by applying a negative voltage bias to the in-process integrated circuit wafer. A film of conducting material is then sputter deposited on the surface of the in-process integrated circuit wafer by applying a negative voltage bias to the target. The collimator is electrically isolated during this process or is set at a higher potential than the in-process integrated circuit wafer.
    Type: Grant
    Filed: March 28, 2000
    Date of Patent: July 31, 2001
    Assignee: Micron Technology, Inc.
    Inventors: John H. Givens, Shane B. Leiphart
  • Publication number: 20010009222
    Abstract: A method of forming a fine wiring pattern by sputtering and patterning which is characterized in that the potential difference between the anode and cathode in the sputtering apparatus is lower than 570V. The resulting fine wiring pattern is free of defects due to splash. This method is effective particularly in the production of array substrates for the flat-panel display device which needs aluminum fine lines to meet the requirement for finer pixels and larger display area.
    Type: Application
    Filed: January 13, 1999
    Publication date: July 26, 2001
    Applicant: Kiyotsugu Mizouchi
    Inventors: KIYOTSUGU MIZOUCHI, HIROSHI TSUJI
  • Patent number: 6261423
    Abstract: A method for coating substrates having sides of the substrate with unequal adhesion properties includes the steps of non-symmetrically coating the substrate by coating a first side under a first set of coating conditions and coating a second side under a second set of operating conditions wherein the operating conditions used to coat each side are varied so as to compensate for the unequal adhesion properties of the sides.
    Type: Grant
    Filed: September 19, 2000
    Date of Patent: July 17, 2001
    Assignee: Honeywell International Inc.
    Inventors: Richard J. Pommer, Glen Roeters, Stephen M. Avery
  • Patent number: 6228186
    Abstract: Improved targets for use in DC_magnetron sputtering of aluminum or like metals are disclosed for forming metallization films having low defect densities. Methods for manufacturing and using such targets are also disclosed. Conductivity anomalies such as those composed of metal oxide inclusions can induce arcing between the target surface and the plasma. The arcing can lead to production of excessive deposition material in the form of splats or blobs. Reducing the content of conductivity anomalies and strengthening the to-be-deposited material is seen to reduce production of such splats or blobs. Other splat limiting steps include smooth finishing of the target surface and low-stress ramp up of the plasma.
    Type: Grant
    Filed: October 14, 1999
    Date of Patent: May 8, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Vikram Pavate, Keith J. Hansen, Glen Mori, Murali Narasimhan, Seshadri Ramaswami, Jaim Nulman
  • Patent number: 6220204
    Abstract: A film deposition apparatus to which the present invention is applied comprises a vacuum chamber 11, a plasma beam generator 13, a main hearth 30 which is disposed within the vacuum chamber and which serves as an anode containing a vaporizable material Cu, and an auxiliary anode 31 surrounding the main hearth, the auxiliary anode being formed of an annular permanent magnet 35 and a coil 36. A Cu film is formed on a substrate 41 placed opposite to the main hearth.
    Type: Grant
    Filed: June 9, 1999
    Date of Patent: April 24, 2001
    Assignee: Sumitomo Heavy Industries, Ltd.
    Inventors: Hiroyuki Makino, Masaru Tanaka, Kiyoshi Awai, Toshiyuki Sakemi
  • Patent number: 6217720
    Abstract: A method is described for depositing a complex optical multilayer coating on a substrate. The coating consists of multiple layers of at least two material types. The layers are sequentially deposited in a deposition chamber by reactive deposition; preferably sputtering, and the thickness of the deposited layers is determined one or more times during the layer deposition by taking optical measurements of the deposited layer and fitting theoretical values derived from a model of the deposited layers to the corresponding actual values obtained from said measurements. A process variable is continually controlled to ensure homogeneity of the deposited layers so that a valid thickness determination can be made from said theoretical model.
    Type: Grant
    Filed: June 3, 1997
    Date of Patent: April 17, 2001
    Assignee: National Research Council of Canada
    Inventors: Brian T. Sullivan, Jerzy A. Dobrowolski, Glenn A. Clarke, Takayuki Akiyama, Takashi Ito
  • Patent number: 6217719
    Abstract: A process is provided for forming a thin film having refractive index thereof varying continuously or stepwise in a thickness direction. The process comprises sputtering in a vacuum chamber by introducing, during film formation, at least two kinds of gases selected from a nitrogen-containing gas, an oxygen-containing gas, and a fluorine-containing gas with the flow rate ratio of the gases varied continuously or stepwise. This process enables variation of the refractive index in the thickness direction, simply without difficulty.
    Type: Grant
    Filed: May 20, 1999
    Date of Patent: April 17, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hidehiro Kanazawa, Minoru Otani, Kenji Ando, Yasuyuki Suzuki, Ryuji Biro
  • Patent number: 6217717
    Abstract: An enhanced DC plasma processing system which acts to immediately stop current from flowing through the plasma allows a variety of alternative embodiments for varying applications. In one embodiment, a tapped inductor is switched to ground to achieve substantial voltage reversal of about 10% upon detection of an arc condition through voltage and/or rate of voltage change techniques. This reversal of voltage is maintained long enough to allow restoration of uniform charge density within the plasma prior to restoration of the initial driving condition. A technique for preventing arc discharges involving periodically applying a reverse voltage is effected through a timer system in the power supply.
    Type: Grant
    Filed: January 22, 1999
    Date of Patent: April 17, 2001
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Geoffrey N. Drummond, Richard A. Scholl
  • Patent number: 6210541
    Abstract: A process and apparatus for depositing thin films onto a substrate. The process comprises mounting a wafer onto a wafer chuck and pumping a cryogenic fluid through the chuck which cools the wafer chuck and the wafer to a temperature below about +20° C. A thin film is then deposited over the cooled wafer using a sputter deposition process while maintaining the temperature of the wafer chuck and the wafer below about +20° C. The preferred embodiment of the present invention includes the use of liquid nitrogen as the cryogenic fluid, and copper as the material to be deposited through the sputtering process. In addition, the preferred embodiment cools the wafer chuck and the wafer to a temperature of about −100° C. The apparatus includes the physical vapor deposition vessel, the wafer chuck, the source of material to be deposited, the wafer, and the cooling line which passes through the wafer chuck to carry the cooling fluid to the chuck.
    Type: Grant
    Filed: April 28, 1998
    Date of Patent: April 3, 2001
    Assignee: International Business Machines Corporation
    Inventors: Edward C. Cooney, III, Josef W. Korejwa, David C. Strippe