Measuring Or Testing (e.g., Of Operating Parameters, Property Of Article, Etc.) Patents (Class 204/192.13)
  • Publication number: 20090053836
    Abstract: A method for processing a semiconductor wafer in a plasma reactor comprises sensing transient voltages or currents on a conductor coupled to the wafer and providing a first comparator for comparing the transient voltages or currents with a threshold level stored in the comparator. The method further includes transmitting from the comparator an arc flag signal whenever a transient voltage or current is sensed that exceeds the threshold level, and deactivating the power generator in response to the arc flag signal.
    Type: Application
    Filed: August 15, 2007
    Publication date: February 26, 2009
    Applicant: Applied Materials Inc.
    Inventors: John Pipitone, Ryan Nunn-Gage
  • Publication number: 20090045046
    Abstract: A method of responding to voltage or current transients during processing of a wafer in a plasma reactor at each of plural RF power applicators and at the wafer support surface. For each process step and for each of the power applicators and the wafer support surface, the method includes determining an arc detection threshold lying above a noise level. The method further includes comparing each transient with the threshold determined for the corresponding power applicator or wafer support surface, and issuing an arc detect flag if the transient exceeds the threshold.
    Type: Application
    Filed: August 15, 2007
    Publication date: February 19, 2009
    Applicant: Applied Materials, Inc.
    Inventors: John Pipitone, Ryan Nunn-Gage
  • Patent number: 7476301
    Abstract: The present invention concerns a procedure for the production of a plasma that is at least co-produced in the vacuum chamber (1a) of a vacuum recipient (1) of a device suitable for plasma processing with at least one induction coil (2) carrying an alternating current, where the gas used to produce the plasma is fed into the vacuum chamber (1a) through at least one inlet (3) and the vacuum chamber (1a) is subject to the pumping action of at least one pump arrangement (4), and where a possibly pulsed direct current is also applied to the induction coil (2) in order to influence the plasma density.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: January 13, 2009
    Assignee: Oc Oerlikon Balzers AG
    Inventors: Jürgen Weichart, Dominik Wimo Amman, Siegfried Krassnitzer
  • Patent number: 7476302
    Abstract: An apparatus and method to deposit a MgO film on a large substrate area. The method includes applying a voltage to one or more magnesium targets; applying an electric current to the one or more magnesium targets when the voltage stops increasing so that a power with a negative square wave, which does not cause mutual interfere, is applied to the one or more magnesium targets; and forming a MgO film on a substrate using magnesium particles emitted from the one or more magnesium targets by the power applied.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: January 13, 2009
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Young Wook Choi, Jee Hyun Kim
  • Patent number: 7450233
    Abstract: A measuring device includes several sequentially disposed coating chambers for measuring optical properties of coated substrates. These coating chambers are separated from one another by partitioning walls, whose free ends are located closely above the substrate. The substrate is preferably a continuous film. By measuring the reflection, the transmission, etc. of the substrate between the individual coating chambers, it becomes possible to carry out measurements within only partially completed layer systems. This yields advantages for the technical operation control of the coating process.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: November 11, 2008
    Assignee: Applied Materials GmbH & Co. KG
    Inventors: Hans-Georg Lotz, Peter Sauer, Stefan Hein, Peter Skuk
  • Publication number: 20080271989
    Abstract: An apparatus for plating includes a plating bath for plating copper (Cu) film on the surface of a substrate under a prescribed plating condition using a plating solution, a chemical supplying unit for supplying each components constituting the plating solution into the plating bath, a plating solution analyzing unit for analyzing a concentration of a predetermined component contained in the plating solution, a plating controlling unit for storing correlation data between a parameter representing a state of the plating solution and the plating condition, extracting the parameter relating the plating solution, and determining the predetermined plating condition based on the parameter and the stored correlation data.
    Type: Application
    Filed: April 23, 2008
    Publication date: November 6, 2008
    Inventors: Fumito Shoji, Yoshio Kasai, Kazuhiro Murakami
  • Patent number: 7445695
    Abstract: A method and system for conditioning a vapor deposition target is described. In one illustrative embodiment, a vapor deposition system is operated in which a vapor deposition target is used, the occurrence of electrical arcs in the vapor deposition system is detected, and the vapor deposition target is conditioned by adjusting an output current of a power supply that powers the vapor deposition system and adjusting an interval during which energy is delivered to each arc to deliver substantially the same energy to each arc. In some embodiments, the energy delivered to each arc is approximately equal to the maximum energy that the vapor deposition target can withstand without being damaged. The described method and system significantly reduces the time required to remove impurities from a target and does not require the venting of the vacuum chamber or the removal of the target from the chamber.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: November 4, 2008
    Assignee: Advanced Energy Industries Inc.
    Inventors: Milan Ilic, Robert B. Huff, George W. McDonough
  • Publication number: 20080223715
    Abstract: The invention relates to apparatus and a method for depositing material onto substrates, particularly optical substrates, to form a coating thereon. The apparatus and method incorporates the use of a series of magnetrons provided to be controlled to sputter deposit material provided in targets mounted therein, on to the substrates. There is provided a voltage to the magnetrons to operate the same and the level of voltage which is required to form required coating or coating layer characteristics is determined by using monitoring apparatus, at least when forming the coating or coating layer for the first time. The appropriate voltage level data for operation of the magnetrons can be held in a database and subsequently used to control the voltage level when forming an identified coating or layers of coatings.
    Type: Application
    Filed: September 26, 2005
    Publication date: September 18, 2008
    Applicant: APPLIED MULTILAYERS LIMITED
    Inventors: Desmond Gibson, John Michael Walls
  • Publication number: 20080223716
    Abstract: A method and control system are provided for depositing a layer in a sputter-deposition system having a target cathode. A first dependence relationship of a deposition rate of the layer on an operating parameter, selected from cathode voltage, cathode current, and cathode power, is provided prior to deposition of the layer. A second dependence relationship of the operating parameter on time is measured during deposition of the layer, while a different operating parameter, also selected from cathode voltage, cathode current, and cathode power, is held substantially constant. On the basis of the first and second dependence relationships, a deposition time for the layer is dynamically determined during deposition of the layer.
    Type: Application
    Filed: March 10, 2008
    Publication date: September 18, 2008
    Applicant: JDS Uniphase Corporation
    Inventors: Georg J. Ockenfuss, Markus K. Tilsch
  • Patent number: 7422664
    Abstract: A method for igniting a plasma in a semiconductor process chamber is provided herein. In one embodiment, a method for igniting a plasma in a semiconductor substrate process chamber having an electrically isolated anode, wherein the plasma has failed to ignite upon applying a plasma ignition voltage to a cathode of the process chamber, includes the steps of reducing the magnitude of the voltage applied to the cathode; reapplying the plasma ignition voltage to the cathode; and monitoring the process chamber to determine if the plasma has ignited. The step of monitoring the process chamber may have a duration of a first period of time. The step of reducing the magnitude of the voltage applied to the cathode may have a duration of a second period of time. The steps of reducing the cathode voltage magnitude and reapplying the plasma ignition voltage may be repeated until a plasma ignites.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: September 9, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Alan Alexander Ritchie, Adolph Miller Allen
  • Publication number: 20080166551
    Abstract: A transparent conductive film comprising: an organic polymer film substrate; an Al2O3 thin film formed on the organic polymer film substrate; and a ZnO-based thin film that is formed on the Al2O3 thin film and comprises ZnO doped with at least one of Ga and Al. The transparent conductive film has a low resistance value, even when the thickness of the ZnO-based thin film is reduced (particularly to about 150 nm or less), and shows a low rate of resistance change even in a hot and humid environment.
    Type: Application
    Filed: January 10, 2008
    Publication date: July 10, 2008
    Applicant: NITTO DENKO CORPORATION
    Inventors: Kazuaki SASA, Kazunori KAWAMURA
  • Patent number: 7388201
    Abstract: A radiation detector has an electron emitter that includes a coated nanostructure on a support. The nanostructure can include a plurality of nanoneedles. A nanoneedle is a shaft tapering from a base portion toward a tip portion. The tip portion has a diameter between about 1 nm to about 50 nm and the base portion has a diameter between about 20 nm to about 300 nm. Each shaft has a length between about 100 nm to about 3,000 nm and an aspect ratio larger than 10. A coating covers at least the tip portions of the shafts. The coating exhibits negative electron affinity and is capable of emitting secondary electrons upon being irradiated by radiation. The nanostructure can also include carbon nanotubes (CNTs) coated with a material selected from the group of aluminum nitride (AlN), gallium nitride (GaN), and zinc oxide (ZnO).
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: June 17, 2008
    Assignees: National University of Singapore, Agency for Science, Technology and Research, Pohang University of Science and Technology, Nanyang Technological University
    Inventors: Marian Cholewa, Shu Ping Lau, Gyu-Chul Yi, Jin Kyoung Yoo, Adrian Paul Burden, Lei Huang, Xingyu Gao, Andrew Thye Shen Wee, Herbert Oskar Moser
  • Publication number: 20080135401
    Abstract: An apparatus for generating sputtering of a target to produce a coating on a substrate with a current density on a cathode of a magnetron between 0.1 and 10 A/cm2 is provided. The apparatus comprises a power supply that is operably connected to the magnetron and at least one capacitor is operably connected to the power supply. A first switch is also provided. The first switch operably connects the power supply to the magnetron to charge the magnetron and the first switch is configured to charge the magnetron according to a first pulse. An electrical bias device is operably connected to the substrate and configured to apply a substrate bias.
    Type: Application
    Filed: December 12, 2007
    Publication date: June 12, 2008
    Applicant: OC OERLIKON BALZERS AG
    Inventors: Stanislav Kadlec, Jurgen Weichart
  • Publication number: 20080121518
    Abstract: A process in a plasma reactor for filling a trench formed in a wafer of semiconductor material, said trench having at least one lateral wall and a bottom wall, wherein the process includes depositing a layer of material in the trench, the layer of material having a non-uniform thickness with an overhang on the at least one lateral wall, at a distance from the bottom wall which is a function of a set of operative parameters of the plasma reactor, and repeatedly varying at least one of the operative parameters for varying the distance of the overhang from the bottom wall.
    Type: Application
    Filed: November 26, 2007
    Publication date: May 29, 2008
    Applicant: STMicroelectronics S.R.L.
    Inventor: Luca Ferrario
  • Publication number: 20080121517
    Abstract: An arc discharge in a plasma process is detected using a method that includes detecting arc discharges by monitoring one or more characteristic values of the plasma process, and comparing at least a first characteristic value with a predefinable first threshold value (SW1). When it is determined that the at least first characteristic value reaches the first threshold value, a potential arc discharge is recognized and a first countermeasure is triggered to suppress the arc discharge. The method includes comparing at least a second characteristic value with a pre-definable second threshold value (SW2) that differs from the first threshold value, and when it is determined that the second characteristic value reaches the second threshold value, triggering a second countermeasure for suppressing the arc discharge. After the second countermeasure has been triggered, a renewed triggering of the second countermeasure is prevented during a blocking time (Tt).
    Type: Application
    Filed: November 23, 2007
    Publication date: May 29, 2008
    Inventor: MORITZ NITSCHKE
  • Publication number: 20080121625
    Abstract: To detect arc discharges occurring in a plasma, a parameter of the plasma process is determined, and after a first period of time following the detection of an arc discharge the parameter is again determined. In the event that after the first period of time no arc discharge is detected, a first arc suppression countermeasure for suppression of arc discharges is executed.
    Type: Application
    Filed: November 28, 2007
    Publication date: May 29, 2008
    Applicant: HUETTINGER ELEKTRONIK GMBH + CO. KG
    Inventor: Gerhard Zaehringer
  • Patent number: 7378001
    Abstract: A magnetron sputtering apparatus has a controller for selectively releasing the spread of plasma on a substrate on a support. The controller can also contain the plasma when the substrate is to be coated with the target material. This enables cleaning of the target surface during intervals between deposition of target material onto a desired substrate, such as a wafer, and ensures that layers or flakes of back-scattered deposited target material do not build up on the target itself. A platen coil is located between the magnetron and the support to increase both uniformity and density of target material arriving nearly normal to the substrate surface.
    Type: Grant
    Filed: July 18, 2001
    Date of Patent: May 27, 2008
    Assignee: Aviza Europe Limited
    Inventors: Carsten Goergens, Stephen Robert Burgess
  • Patent number: 7338581
    Abstract: A sputtering apparatus includes paired targets 31 disposed in a vacuum chamber 30, substrate holder 33 disposed at a position nearly perpendicular to the paired target 31 and apart from a space formed by the paired targets 31, a plasma source 37 for generating reaction plasma by after-glow plasma in the vicinity of the substrate holder 33, and a lead-in pipe 38 which connects the plasma source 37 to the vacuum chamber 30. Since reaction plasma of after-glow plasma can be produced in the vicinity of the substrate holder 33, it is possible to form a thin film of compound close to bulk characteristics at a low substrate temperature without the film being damaged by plasma.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: March 4, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Toshinari Noda
  • Patent number: 7282122
    Abstract: A method and system for determining a lifetime of a target for a physical vapor deposition tool (302), has, a mapping table (304a) of criteria for a minimum accumulating rate of ? wafers fabricated by ? target life for a target in the tool; and a database (304) recording ? wafers fabricated by ? target life for a target in the tool; and a computer (306) retrieving the criteria from the mapping table and entering the criteria in the database; and the tool (302) reporting ? wafers fabricated by ? target life for a target in the tool (302) for comparison with the criteria.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: October 16, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Hui Wen Chang, Chang Hui Chao, Hong Yi Wu
  • Patent number: 7261797
    Abstract: A method and system for controlling arcs in a DC sputtering system with a passive circuit is presented. The arc control system includes a sputtering chamber that houses an anode and a sputtering target formed from a target material and serving as a cathode. A DC power supply provides a DC voltage between the cathode and anode such that a cathode current flows from the anode to the cathode. A resonant network is coupled between the DC power supply and the chamber and has a sufficient Q so that in reaction to an arc, the cathode current resonates through zero, causing a positive voltage to be applied between the cathode and anode. A reverse voltage clamp is coupled across the resonant network to clamp the cathode voltage to a predetermined reverse voltage. The reverse cathode voltage inhibits subsequent arcing by positively charging insulated deposits on the sputtering target.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: August 28, 2007
    Assignee: MKS Instruments, Inc.
    Inventor: Jeff C. Sellers
  • Patent number: 7247221
    Abstract: A method and apparatus for sputter deposition in which both a pulsed DC power supply and an RF power supply apply power to the target in the sputter deposition equipment. The pulsed DC power supply provides an on cycle where power is applied to the target, and an off cycle, in which a reverse polarity is applied to the target. The application of the reverse polarity has the effect of removing any charge that may have built up on the surface of the target. This reduces the likelihood of arcing occurring on the surface of the target, which can degrade the quality of the film being deposited on the substrate. By applying RF power simultaneously with the pulsed DC power to the target, the ionization efficiency on the target surface is increased. This results in a greater amount of material being removed from the target surface more quickly.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: July 24, 2007
    Assignee: Applied Films Corporation
    Inventor: Michael W. Stowell, Jr.
  • Patent number: 7232506
    Abstract: A system and method for feedforward control in thin film coating processes. A standard PID feedback control system that continuously monitors two or more process variables in a reactive sputtering process is combined with a feedforward control system to improve system performance. The control system enables much faster stabilization of the reactive sputtering process during target start-up, and improves control of the process once a steady-state operating condition has been reached following target start-up.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: June 19, 2007
    Assignee: Deposition Sciences, Inc.
    Inventors: Mark George, Evan Craves
  • Patent number: 7216544
    Abstract: An ultrasonic inspection reference standard for composite materials includes a prism that is manufactured from a polymer resin. The ultrasonic inspection reference standard may be a rectangular prism and may be a polymer resin step-wedge reference standard that has similar acoustic properties as prior art fiber-reinforced composite step-wedge reference standards at significantly lower manufacturing cost. A photo-polymer resin reference standard may be created using a stereo lithography process. The polymer resin reference standard may replace a currently used expensive fiber-reinforced composite reference standard. The ultrasonic inspection reference standard manufactured from a polymer resin may be used, for example, for ultrasonic inspection of fiber-reinforced composite parts. The polymer resin reference standard may be used, for example, in the aircraft airframe industry, both commercial and defense.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: May 15, 2007
    Assignee: The Boeing Company
    Inventors: Christopher M. Vaccaro, David A. Lilienthal
  • Patent number: 7204915
    Abstract: A process for fabricating a patterned medium including a dot-forming step for forming a dot array constituted by sample magnetic dots having a predetermined size such as a single domain particle size determined theoretically from the magnetic metal thin for a sample medium having a magnetic metal film formed with the initial conditions; a demagnetization step for AC-demagnetizing the dot array; a ratio measurement step for measuring the ratio of single magnetic domains by observing the magnetic pattern of each of the sample dots after the AC-demagnetization; and an adjustment step for determining conditions of the sputtering apparatus for forming a solid state magnetic metal thin film by adjusting the film-forming conditions such that the ratio of the single magnetic domains equals to or exceeds a predetermined value.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: April 17, 2007
    Assignee: Fujitsu Limited
    Inventors: Yasuhiro Kitade, Hitoshi Komoriya
  • Patent number: 7192505
    Abstract: There is provided by this invention a wafer probe for measuring plasma and surface characteristics in plasma processing environment that utilizes integrated sensors on a wafer substrate. A microprocessor mounted on the substrate receives input signals from the integrated sensors to process, store, and transmit the data. A wireless communication transceiver receives the data from the microprocessor and transmits information outside of the plasma processing system to a computer that collects the data during plasma processing. The integrated sensors may be dual floating Langmuir probes, temperature measuring devices, resonant beam gas sensors, or hall magnetic sensors. There is also provided a self-contained power source that utilizes the plasma for power that is comprised of a topographically dependent charging device or a charging structure that utilizes stacked capacitors.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: March 20, 2007
    Assignee: Advanced Plasma, Inc.
    Inventors: Gregory A. Roche, Leonard J. Mahoney, Daniel C. Carter, Steven J. Roberts
  • Patent number: 7186319
    Abstract: A multi-track magnetron having a convolute shape and asymmetric about the target center about which it rotates. A plasma track is formed as a closed loop between opposed inner and outer magnetic poles, preferably as two or three radially arranged and spirally shaped counter-propagating tracks with respect to the target center and preferably passing over the rotation axis. The pole shape may be optimized to produce a cumulative track length distribution conforming to the function L=arn. After several iterations of computerized optimization, the pole shape may be tested for sputtering uniformity with different distributions of magnets in the fabricated pole pieces. If the uniformity remains unsatisfactory, the design iteration is repeated with a different n value, different number of tracks, or different pole widths. The optimization reduces azimuthal sidewall asymmetry and improves radial deposition uniformity.
    Type: Grant
    Filed: January 5, 2005
    Date of Patent: March 6, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Hong S. Yang, Tza-Jing Gung, Jian-Xin Lei, Ted Guo
  • Patent number: 7179352
    Abstract: A process is disclosed for manufacturing coated substantially plane workpieces, in which the workpieces are guided to a vacuum treatment area guided by a control. The treatment atmosphere is modulated in the treatment area as a function of workpiece position with the defined profile. The system and process can be used to deposit defined layer thickness distribution profiles on substrates in a reactive coating.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: February 20, 2007
    Assignee: OC Oerlikon Balzers AG
    Inventor: Othmar Zueger
  • Patent number: 7172675
    Abstract: An observation window airtightly installed at a wall of a processing room of a plasma processing apparatus includes a body having a through hole with an opening facing the processing room, a transparent member installed at a side of the body opposite to the processing room and a magnetic pole pair having two different magnetic poles disposed opposite each other with the hole interposed therebetween. The magnetic pole pair is configured to have a sufficient magnetic field strength to prevent electrons which form a plasma in the processing room from reaching the transparent member through the hole.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: February 6, 2007
    Assignee: Tokyo Electron Limited
    Inventor: Masayuki Tomoyasu
  • Patent number: 7172681
    Abstract: Disclosed is a process for producing a rubber-based composite material, including the steps of forming, by sputtering, an adhesion film on a substrate to be mated with a rubber for constituting the composite material, laminating a rubber composition on the adhesion film, and vulcanizing the rubber composition, the sputtering is conducted by using a first target and a second target, composed of different metallic components and provided in a chamber, while moving the substrate in sputtering atmospheres formed by applying electric power simultaneously to the first and second targets.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: February 6, 2007
    Assignee: Bridgestone Corporation
    Inventors: Kenji Sato, Yoshinori Iwabuchi, Masato Yoshikawa
  • Patent number: 7160475
    Abstract: The present disclosure relates to a method for generating a three-dimensional microstructure in an object. In one embodiment, a method for fabricating a microscopic three-dimensional structure is provided. A work piece is provided that includes a target area at which the three-dimensional structure is to be fabricated. The target area has a plurality of virtual dwell points. A shaped beam is provided to project onto the work piece. The intersection of the shaped beam with the work piece defines a beam incidence region that has a desired shape. The beam incidence region is sufficiently large to encompass multiple ones of the virtual dwell points. The shaped beam is moved across the work piece such that different ones of the virtual dwell points come into it and leave it as the beam moves across the work piece thereby providing different doses to different ones of the virtual dwell points as the different dwell points remain in the beam incidence region for different lengths of time during the beam scan.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: January 9, 2007
    Assignee: FEI Company
    Inventor: Lawrence Scipioni
  • Patent number: 7153399
    Abstract: The invention provides a method and apparatus for producing uniform, isotropic stresses in a sputtered film. In the presently preferred embodiment, a new sputtering geometry and a new domain of transport speed are presented, which together allow the achievement of the maximum stress that the film material can hold while avoiding X-Y stress anisotropy and avoiding stress non-uniformity across the substrate.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: December 26, 2006
    Assignee: NanoNexus, Inc.
    Inventor: Donald Leonard Smith
  • Patent number: 7147759
    Abstract: Magnetically enhanced sputtering methods and apparatus are described. A magnetically enhanced sputtering source according to the present invention includes an anode and a cathode assembly having a target that is positioned adjacent to the anode. An ionization source generates a weakly-ionized plasma proximate to the anode and the cathode assembly. A magnet is positioned to generate a magnetic field proximate to the weakly-ionized plasma. The magnetic field substantially traps electrons in the weakly-ionized plasma proximate to the sputtering target. A power supply produces an electric field in a gap between the anode and the cathode assembly. The electric field generates excited atoms in the weakly ionized plasma and generates secondary electrons from the sputtering target. The secondary electrons ionize the excited atoms, thereby creating a strongly-ionized plasma having ions that impact a surface of the sputtering target to generate sputtering flux.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: December 12, 2006
    Assignee: Zond, Inc.
    Inventor: Roman Chistyakov
  • Patent number: 7105080
    Abstract: Method for manufacturing a workpiece by a vacuum treatment process includes providing a vacuum treatment system with first second parts in a vacuum chamber. Either a sensor or an adjusting element with first signal connection is mounted on the second part. An electronic unit in the chamber has a reference potential and a second electric signal connection. The first part is connected to a system reference potential. A workpiece goes into the chamber and the method includes operating the second part at a further electric potential different from the system reference potential by at least 12 V. The method includes connecting the first electric signal connection to the second electric signal connection and maintaining the reference connection during operation on the further electric potential by metallically connecting the reference connection to the second part.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: September 12, 2006
    Assignee: OC Oerlikon Balzers AG
    Inventor: Felix Mullis
  • Patent number: 7087142
    Abstract: The present invention relates to a method for determining a critical size for a diameter of an Al2O3 inclusion (38) in an Al or Al alloy sputter target (42) to prevent arcing during sputtering thereof. This method includes providing a sputtering apparatus having an argon plasma. The plasma has a plasma sheath of a known thickness during sputtering under a selected sputtering environment of an Al or Al alloy sputter target having an Al2O3 inclusion-free sputtering surface. When the thickness of the sheath is known for a selected sputtering environment, the critical size of an Al2O3 inclusion (38) can be determined based upon the thickness of the sheath. More specifically, the diameter of an Al2O3 inclusion (38) in an Al or Al alloy sputter target (42) must be less than the thickness of the plasma sheath during sputtering under the selected sputtering environment to inhibit arcing.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: August 8, 2006
    Assignee: Tosoh SMD, Inc.
    Inventors: Charles E. Wickersham, Jr., John E. Poole, Alexander Leybovich, Lin Zhu
  • Patent number: 7063773
    Abstract: A preferred sputter target assembly (10, 10?) comprises a target (12, 12?), a backing plate (14, 14?) bonded to the target (12, 12?) along an interface (22, 22?) and dielectric particles (20, 20?) between the target (12, 12?) and the backing plate (14, 14?). A preferred method for manufacturing the sputter target assembly (10, 10?) comprises the steps of providing the target (12, 12?) and the backing plate (14, 14?); distributing the dielectric particles (20, 20?) between mating surfaces (24, 26) of the target (12, 12?) and the backing plate (14, 14?), most preferably along a sputtering track pattern on one of the mating surfaces; and bonding the target (12, 12?) to the backing plate (14, 14?) along the mating surfaces (24, 26).
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: June 20, 2006
    Assignee: Tosoh SMD, Inc.
    Inventors: Eugene Y. Ivanov, David B. Smathers, Charles E. Wickersham, Jr., John E. Poole
  • Patent number: 7048837
    Abstract: Plasma etching or resputtering of a layer of sputtered materials including opaque metal conductor materials may be controlled in a sputter reactor system. In one embodiment, resputtering of a sputter deposited layer is performed after material has been sputtered deposited and while additional material is being sputter deposited onto a substrate. A path positioned within a chamber of the system directs light or other radiation emitted by the plasma to a chamber window or other optical view-port which is protected by a shield against deposition by the conductor material. In one embodiment, the radiation path is folded to reflect plasma light around the chamber shield and through the window to a detector positioned outside the chamber window.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: May 23, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Sasson R. Somekh, Marc O. Schweitzer, John C. Forster, Zheng Xu, Roderick C. Mosely, Barry L. Chin, Howard E. Grunes
  • Patent number: 7041200
    Abstract: In a magnetron sputtering chamber, a substrate is placed in the chamber and a deposition shield is maintained about the substrate to shield internal surfaces in the chamber. The deposition shield has a textured surface that may be formed by a hot pressing process or by a coating process, and that allows the accumulated sputtered residues to stick thereto without flaking off. An electrical power is applied to a high density sputtering target facing the substrate to form a plasma in the chamber while a rotating magnetic field of at least about 300 Gauss is applied about the target to sputter the target. Advantageously, the sputtering process cycle can be repeated for at least about 8,000 substrates without cleaning the internal surfaces in the chamber, and even while still generating an average particle count on each processed substrate of less than 1 particle per 10 cm2 of substrate surface area.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: May 9, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Hien-Minh Huu Le, Keith A. Miller, Hoa T. Kieu, Kenny King-Tai Ngan
  • Patent number: 7037595
    Abstract: A thin layer of hafnium oxide or stacking of thin layers comprising hafnium oxide layers for producing surface treatments of optical components, or optical components, in which at least one layer of hafnium oxide is in amorphous form and has a density less than 8 gm/cm3. The layer is formed by depositing on a substrate without energy input to the substrate.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: May 2, 2006
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Bernard Andre, Jean Dijon, Brigitte Rafin
  • Patent number: 7033461
    Abstract: The present invention provides an efficient thin film forming apparatus which is capable of correcting a film thickness so as to take care of a variation in distribution in the film thickness and to take care of the circumferential distribution of the film thickness, as well as a method for forming a thin film using this film forming apparatus.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: April 25, 2006
    Assignee: ULVAC, Inc.
    Inventors: Noriaki Tani, Toshihiro Suzuki, Satoshi Ikeda, Hiroaki Kawamura, Satoru Ishibashi, Kouichi Hanzawa, Takafumi Matsumoto
  • Patent number: 7025895
    Abstract: A plasma processing apparatus and method are capable of performing etching with high precision without damaging the semiconductor wafer. The plasma processing apparatus has a plasma generation power supply for generating a plasma within a processing chamber; a high-frequency power supply for applying a high frequency wave to a sample stage installed within the processing chamber; and control means for controlling the plasma generation power supply or the high-frequency power supply based on parameter settings for an output intensity and an output mode for each process step. In this regard, when the process steps are switched, the control means compares parameters for a current process step with those for a next process step and then switches either the output intensities or the output modes before switching the output modes or the output intensities, respectively.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: April 11, 2006
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Youji Takahashi, Makoto Kashibe
  • Patent number: 7018553
    Abstract: A method of adjusting plasma processing of a substrate in a plasma reactor having an electrode assembly. The method includes the steps of positioning the substrate in the plasma reactor, creating a plasma in the plasma reactor, monitoring optical emissions emanating from a plurality of different regions of the plasma in a direction substantially parallel to the surface of the substrate during plasma processing of the substrate, and determining an integrated power spectrum for each of the different plasma regions and comparing each of the integrated power spectra to a predetermined value. One aspect of the method includes utilizing an electrode assembly having a plurality of electrode segments and adjusting RF power delivered to the one or more electrode segments based on differences in the integrated power spectra from the predetermined value.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: March 28, 2006
    Assignee: Tokyo Electron Limited
    Inventors: Lianjun Liu, Wayne L. Johnson
  • Patent number: 7008518
    Abstract: The present invention is directed at least in part to methods and apparatus for optically monitoring selected optical characteristics of coatings formed on substrates during the deposition process and controlling the deposition process responsive thereto. In one aspect, the system includes a retroreflector for reflecting an electromagnetic beam transmitted by the coating and substrate back through the substrate and coating before selected properties of the retroreflected beam are measured. The system and method improve the signal to noise properties of the measured beam. The present invention may be used in systems for coating one or an array of substrates, and is particularly suitable for deposition processes where the substrates are translated past the sources of material to be deposited, and wherein the angle of incidence of a monitor beam on the substrate changes as the substrate translates past the beam source.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: March 7, 2006
    Assignee: Deposition Sciences, Inc.
    Inventors: James Sternbergh, Eric M. Krisl, Norm L. Boling
  • Patent number: 6974524
    Abstract: Apparatus and methods for measuring characteristics of a metallic target as well as other interior surfaces of a sputtering chamber. The apparatus includes a sensor configured to emit an energy beam toward a surface of interest and to detect an energy beam therefrom, the detected energy beam being indicative of parameters of a characteristic of interest of the surface of interest. Quantitative and qualitative characteristics of interest may be determined. A sputtering system including the apparatus and operable according to the methods of the invention is also disclosed.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: December 13, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Mark A. Jaso, Terry L. Gilton
  • Patent number: 6911124
    Abstract: We have discovered a method of providing a thin approximately from about 20 ? to about 100 ? thick TaN seed layer, which can be used to induce the formation of alpha tantalum when tantalum is deposited over the TaN seed layer. Further, the TaN seed layer exhibits low resistivity, in the range of 30 ?? m and can be used as a low resistivity barrier layer in the absence of an alpha tantalum layer. In one embodiment of the method, a TaN film is altered on its surface form the TaN seed layer. In another embodiment of the method, a Ta film is altered on its surface to form the TaN seed layer.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: June 28, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Xianmin Tang, Praburam Gopalraja, Suraj Rengarajan, John C. Forster, Jianming Fu, Peijun Ding
  • Patent number: 6905578
    Abstract: An apparatus and method for depositing plural layers of materials on a substrate within a single vacuum chamber allows high-throughput deposition of structures such as these for GMR and MRAM application. An indexing mechanism aligns a substrate with each of plural targets according to the sequence of the layers in the structure. Each target deposits material using a static physical-vapor deposition technique. A shutter can be interposed between a target and a substrate to block the deposition process for improved deposition control. The shutter can also preclean a target or the substrate and can also be used for mechanical chopping of the deposition process. In alternative embodiments, plural substrates may be aligned sequentially with plural targets to allow simultaneous deposition of plural structures within the single vacuum chamber.
    Type: Grant
    Filed: April 27, 1998
    Date of Patent: June 14, 2005
    Assignee: CVC Products, Inc.
    Inventors: Mehrdad M. Moslehi, Cecil J. Davis, Christopher J. Mann, Dwain R. Jakubik, Ajit P. Paranjpe
  • Patent number: 6899979
    Abstract: In obtaining a photomask blank 1 by disposing a sputtering target in a vacuum chamber and forming thin films 3, 4, and 5 with a three-layer construction of CrN/CrC/CrON over a transparent substrate 2 by reactive sputtering, the thin films are formed in a mixed gas atmosphere containing helium, and the helium gas flux in the mixed gas is controlled such that the crystal grain diameter of the CrC thin film, which is the thickest film, will be 3 to 7 nm. This yields a photomask blank having thin films with low film stress, having good film quality, and which can be produced at a high yield in mass production.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: May 31, 2005
    Assignee: Hoyo Corporation
    Inventors: Masaru Mitsui, Haruhiko Yamagata, Masao Ushida
  • Patent number: 6896773
    Abstract: Methods and apparatus for high-deposition sputtering are described. A sputtering source includes an anode and a cathode assembly that is positioned adjacent to the anode. The cathode assembly includes a sputtering target. An ionization source generates a weakly-ionized plasma proximate to the anode and the cathode assembly. A power supply produces an electric field between the anode and the cathode assembly that creates a strongly-ionized plasma from the weakly-ionized plasma. The strongly-ionized plasma includes a first plurality of ions that impact the sputtering target to generate sufficient thermal energy in the sputtering target to cause a sputtering yield of the sputtering target to be non-linearly related to a temperature of the sputtering target.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: May 24, 2005
    Assignee: Zond, Inc.
    Inventor: Roman Chistyakov
  • Patent number: 6872284
    Abstract: A method of constructing increased life sputter targets and targets made by the method are disclosed. The method comprises starting with a precursor target design or profile and making magnetic field strength measurements along the radial surface of same and at a plurality of vertical dimensions above the surface. An optimal magnetic field strength ratio is provided between the erosion tracks of the target. The vertical dimension of the material to be added to one of the erosion tracks is determined and then the height of the other erosion track is calculated by utilizing this optimal magnetic field strength ratio.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: March 29, 2005
    Assignee: Tosoh SMD, Inc.
    Inventors: Eugene Y. Ivanov, David B. Smathers, Charles E. Wickersham, Jr., Lin Zhu
  • Patent number: 6863785
    Abstract: A sputtering apparatus and a sputter film deposition method, which includes a conventional magnetron and an AC magnetron for deposition of a low refractive index film, and a conventional magnetron and an AC magnetron for deposition of a high refractive index film, performs film deposition by each of the AC magnetrons until having achieved 90% of a designed film thickness, and then performs the film deposition only by each of the conventional magnetrons, and which can control the film thickness with high precision and have excellent productivity.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: March 8, 2005
    Assignee: Asahi Glass Company, Limited
    Inventors: Eiji Shidoji, Eiichi Ando, Tomohiro Yamada, Takahiro Mashimo
  • Patent number: 6860973
    Abstract: The invention relates to a device for the regulation of a plasma impedance in a vacuum chamber, wherein at least one electrode is connected to an AC generator. This AC generator is a free-running [oscillator], whose frequency adjusts to the resonance frequency of the load upon which it acts. This load comprises fixed circuit elements and a variable plasma impedance. If the plasma impedance is changed, with it the resonance frequency is also changed. The plasma impedance can thus be varied by acquisition of the resonance frequency and by presetting of a reference frequency value, for example thereby that the voltage, the current, the power or the gas inflow is varied as a function of the difference between resonance frequency and reference frequency value.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: March 1, 2005
    Assignee: Applied Films GmbH & Co. KG.
    Inventors: Thomas Willms, Jürgen Bruch