Rotary Patents (Class 204/212)
  • Publication number: 20090057158
    Abstract: Embodiments of the invention relate to plating systems configured to strip plate a selected portion of a workpiece (e.g., a lead frame) and methods of plating. In one embodiment, a plating system is configured to plate a selected portion of a workpiece and at least partially compensate for wheel run out. As an alternative, or in addition, to the plating system being configured to at least partially compensate for wheel run out, in another embodiment, a plating system is configured to plate the selected portion of the workpiece and provide for controllably adjusting plating dimensions on the selected portion to be plated.
    Type: Application
    Filed: September 4, 2008
    Publication date: March 5, 2009
    Applicant: LEVITON MANUFACTURING CO., INC.
    Inventor: Darrell W. Zielke
  • Patent number: 7494576
    Abstract: Apparatus for electroplating a workpiece includes an unassembled electroplating anode assembly having weldable first and second structural anode members. The first structural anode member includes a positioning slot. The second structural anode member includes a positioning tab disposable in the positioning slot. A method for making an electroplating anode assembly includes obtaining an electroplating-anode-assembly first structural anode member having a positioning slot and obtaining an electroplating-anode-assembly second structural anode member having a positioning tab. The method also includes locating the positioning tab in the positioning slot and welding together the first and second structural anode members.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: February 24, 2009
    Assignee: General Electric Company
    Inventors: Mark Alan Rosenzweig, Robert George Zimmerman, Jr., John D. Evans, Sr.
  • Publication number: 20090038960
    Abstract: An apparatus and method designed to remove metals from a wafer surface using an electrolytic removal process. The apparatus includes a conductive pad having a plurality of alternating cathodes and anodes provided with a power source. The conductive pad is structured and configured to contact all metal islands on a surface of the wafer. Gaps are provided between pairs of the plurality of alternating cathodes and anodes.
    Type: Application
    Filed: August 7, 2007
    Publication date: February 12, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Laertis Economikos, Catherine Ivers, Xiaoyan Shao
  • Publication number: 20090032404
    Abstract: An apparatus that performs an electrolytic plating on a plating surface of a belt substrate is provided. The apparatus includes a plating tank, a conveyor device configured to carry a belt substrate through an interior of the plating tank, an immersed cathode power-supply section provided within the interior of the plating tank, an auxiliary cathode power-supply section provided within the interior of the plating tank, and short-circuit wiring configured to short-circuit the immersed cathode power-supply section to the auxiliary cathode power-supply section. A plating method for performing electrolytic plating on a plating surface of a belt substrate is provided.
    Type: Application
    Filed: July 30, 2008
    Publication date: February 5, 2009
    Applicant: IBIDEN CO., LTD.
    Inventors: Yasuaki Tachi, Shigeki Sawa, Toshiyuki Kasuga
  • Patent number: 7485258
    Abstract: A method and device for sterilizing containers in which a plasma treatment is executed through excitation of an electromagnetic oscillation so that the plasma is excited in a vacuum in the vicinity of the container regions to be sterilized. Between arrival and discharge, the container regions to be sterilized are moved closer to the oscillation-generating device in the chamber, with continuous movement of the container and/or of the oscillation-generating device for one or more predetermined time intervals in such a way that a plasma is excited in these regions inside and/or outside the container. The chamber is provided with a transport apparatus inside it, which produces an essentially rotating motion of the container during the transport from the arrival to the discharge in the chamber.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: February 3, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Kurt Burger, Guenter Schneider, Thomas Beck, Wolfgang Szczerba, Bernd Wilke, Johannes Rauschnabel, Sascha Henke, Bernd Goetzelmann, Heinrich Van De Loecht, Wolfgang Schmitt
  • Patent number: 7479208
    Abstract: An electrode (10) is provided for electrochemical reduction of a workpiece (20) that is to be treated. The electrode (10) has a predefined contour and contains an electrically conductive material. The electrically conductive material of the predefined contour forms an electrode core (12). The outside of the electrode core (12) is covered with an insulation layer (13). The insulation layer (13) is porous and is made of an electrically non-conductive material.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: January 20, 2009
    Assignee: MTU Aero Engines GmbH
    Inventors: Erwin Bayer, Martin Bussmann, Thomas Kraenzler, Albin Platz, Juergen Steinwandel
  • Patent number: 7462273
    Abstract: When forming metallic components, in particular three-dimensionally curved blades, which constitute a single piece with the blading of turbomachine rotor wheels, the linear oscillation of the electrode acting as a tool is superimposed by a circular oscillation, enabling the electrode to turn into the workpiece conformally with its shape. Further forming is performed by circular oscillation with circular feed in the one and/or the other direction. An embodiment of the corresponding apparatus comprises an electrode holder (9) with linear feed (Zvor) and linear oscillation (Zosz) and a workpiece holder (5) with circular oscillation (Cosz) and circular feed (Cvor).
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: December 9, 2008
    Assignee: Rolls-Royce Deutschland Ltd & Co KG
    Inventor: Rainer Mielke
  • Publication number: 20080296151
    Abstract: Disclosed herein is a continuous electrolytic refining device for metal uranium, the device comprising a cathode section fixed to the lower side of the heat radiation plate, and having a plurality of graphite cathodes; an anode section encompassing the cathode section to face the cathode section, rotatably fixed to the lower side of the heat radiation plate, and receiving the used nuclear fuel; an electrolytic cell receiving the cathode section and the anode section and filled with electrolytes so as to sink the cathode section and the anode section; an uranium collecting section collecting metal uranium deposited on and detached from the graphite cathode in the lower side of the cathode section inside the electrolytic cell and withdrawing the collected metal uranium to the outside of the electrolytic cell; and a transition metal collecting section coupled with the lower side of the electrolytic cell to withdraw the transition metal particles released from the anode section and collected in the lower side of
    Type: Application
    Filed: August 14, 2007
    Publication date: December 4, 2008
    Inventors: Jong-Hyeon Lee, Young-Ho Kang, Sung-Chan Hwang, Han-Soo Lee, Eung-Ho Kim, Seong-Won Park
  • Patent number: 7438795
    Abstract: Provided is a polishing apparatus and polishing pad, intended for polishing a substrate, and designed for improved flow and distribution of a polishing composition to the area of interaction between the pad and substrate. In one aspect, a polishing pad is provided having first and second pluralities of unidirectional pores configured to communicate polishing composition between the top and bottom surfaces of the pad. A cyclic flow of composition is established to continuously renew composition to the area of interaction between the pad and the substrate. In another aspect, a polishing apparatus is provided having a polishing composition transfer region between a polishing pad and a platen. Pores disposed through the pad communicate composition from the transfer region to the top surface. To facilitate directing the composition into the pores, the apparatus includes a plurality of protrusions protruding into the transfer region that are aligned with the pores.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: October 21, 2008
    Assignee: Cabot Microelectronics Corp.
    Inventors: Ian W. Wylie, Sriram P. Anjur
  • Patent number: 7399390
    Abstract: A barrel plating device is disclosed, wherein hollow support shafts placed to be approximately level with each other are mounted in a piercing form to support members combined together to face each other at a prescribed interval, the opposite ends of a barrel having a hollow drum part whose opposite ends are closed with end plates are supported to the above support shafts in a rotatable condition, a lead wire having an electrode at a tip end and coated with an insulation layer is inserted in watertight and non-rotatable conditions into a hollow part of each support shaft in such a manner as to allow the above lead wire to pierce through the corresponding end plate of the barrel, and a collar formed with a low friction member is mounted to each lead wire portion that pierces through the above corresponding end plate of the barrel.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: July 15, 2008
    Inventor: Kazuyoshi Ueichi
  • Patent number: 7378004
    Abstract: An apparatus capable of assisting in controlling an electrolyte flow and an electric field distribution used for processing a substrate is provided. It includes a rigid member having a top surface of a predetermined shape and a bottom surface. The rigid member contains a plurality of channels, each forming a passage from the top surface to the bottom surface, and each allowing the electrolyte and electric field flow therethrough. A pad is attached to the rigid member via a fastener. The pad also allows for electrolyte and electric field flow therethrough to the substrate.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: May 27, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Cyprian Uzoh, Bulent Basol, Homayoun Talieh
  • Publication number: 20080078679
    Abstract: A method for production of metal by molten-salt electrolysis of the present invention is a method for production of metal by molten-salt electrolysis which is performed by filling a molten salt of calcium chloride in an electrolysis vessel having a anode and a cathode, one of the anode or cathode is arranged surrounding the other electrode, the cathode has at least one hole communicating the inner area surrounded by the cathode with the outer area, and the molten salt flows through the communicating holes from one area including the anode (the inner area or outer area) to the other area.
    Type: Application
    Filed: October 5, 2005
    Publication date: April 3, 2008
    Applicants: TOHO TITANIUM CO., LTD., SUMITOMO TITANIUM CORPORATION
    Inventors: Masanori Yamaguchi, Yuichi Ono, Susumu Kosemura, Eiji Nishimura, Tadashi Ogasawara, Makoto Yamaguchi, Masahiko Hori, Toru Uenishi
  • Patent number: 7341649
    Abstract: The present invention deposits a conductive material from an electrolyte solution to a predetermined area of a wafer. The steps that are used when making this application include applying the conductive material to the predetermined area of the wafer using an electrolyte solution disposed on a surface of the wafer, when the wafer is disposed between a cathode and an anode, and preventing accumulation of the conductive material to areas other than the predetermine area by mechanically polishing the other areas while the conductive material is being applied.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: March 11, 2008
    Assignee: Novellus Systems, Inc.
    Inventor: Homayoun Talieh
  • Patent number: 7329335
    Abstract: Substantially uniform deposition of conductive material on a surface of a substrate, which substrate includes a semiconductor wafer, from an electrolyte containing the conductive material can be provided by way of a particular device which includes first and second conductive elements. The first conductive element can have multiple electrical contacts, of identical or different configurations, or may be in the form of a conductive pad, and can contact or otherwise electrically interconnect with the substrate surface over substantially all of the substrate surface. Upon application of a potential between the first and second conductive elements while the electrolyte makes physical contact with the substrate surface and the second conductive element, the conductive material is deposited on the substrate surface. It is possible to reverse the polarity of the voltage applied between the anode and the cathode so that electro-etching of deposited conductive material can be performed.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: February 12, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Homayoun Talieh, Cyprian Uzoh, Bulent M. Basol
  • Patent number: 7288172
    Abstract: A method and apparatus for transmitting electrical signals and fluids to and/or from a microelectronic workpiece. An apparatus in accordance with one embodiment of the invention includes a shaft rotatable about a shaft axis and having a first end with a first electrical contact portion toward the first end, a second end opposite the first end, and an internal channel along the shaft axis between the first and second ends. The shaft can further have at least one first hole toward the first end with the first hole extending radially from the channel to an external surface of the shaft. The shaft can still further have at least one second hole toward the second end with the second hole extending from the channel to the external surface. A housing rotatably receives the shaft and has an aperture coupleable to a fluid source and/or fluid sink.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: October 30, 2007
    Assignee: Semitool, Inc.
    Inventors: John M. Pedersen, James J. Erickson
  • Publication number: 20070246349
    Abstract: A barrel plating device includes a cylindrical drum which is immersed in a plating solution in a horizontal state and configured for containing objects to be plated; a support member for rotatably supporting the drum; a drive mechanism for rotatably drive the drum; and a conductive member in a shape of bar which is disposed coaxially with the drum and integrally rotate with the drum.
    Type: Application
    Filed: April 11, 2007
    Publication date: October 25, 2007
    Inventors: Wataru Yamamoto, Tokiko Katsumoto, Yoshiaki Hoshino
  • Publication number: 20070221495
    Abstract: Methods and apparatus are provided for processing a substrate in an electrochemical mechanical planarizing system. An apparatus is provided for processing a substrate including a planarizing module, at least one electrochemical mechanical polishing station disposed on the planarizing module, at least one polishing head disposed above the planarizing module and the at least one polishing head adapted to selectively lower a substrate retained in the polishing head to the electrochemical mechanical polishing station, a factory interface disposed adjacent both the planarizing module, a loading robot disposed between the factory interface and the planarizing module, and an electrochemical polishing station disposed on or adjacent the planarizing module, the factory interface, or a combination thereof.
    Type: Application
    Filed: March 23, 2007
    Publication date: September 27, 2007
    Inventor: ANTOINE P. MANENS
  • Patent number: 7267749
    Abstract: A processing container (610) for providing a flow of a processing fluid during immersion processing of at least one surface of a microelectronic workpiece is set forth. The processing container comprises a principal fluid flow chamber (505) providing a flow of processing fluid to at least one surface of the workpiece and a plurality of nozzles (535) disposed to provide a flow of processing fluid to the principal fluid flow chamber. The plurality of nozzles are arranged and directed to provide vertical and radial fluid flow components that combine to generate a substantially uniform normal flow component radially across the surface of the workpiece. An exemplary apparatus using such a processing container is also set forth that is particularly adapted to carry out an electroplating process.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: September 11, 2007
    Assignee: Semitool, Inc.
    Inventors: Gregory J. Wilson, Paul R. McHugh, Kyle M. Hanson
  • Patent number: 7255778
    Abstract: An electrochemical machining apparatus comprises a machining chamber for holding ultrapure water, a cathode/anode immersed in the ultrapure water held in the machining chamber, and a workpiece holding portion for holding a workpiece at a predetermined distance from the cathode/anode so that a surface, to be machined, of the workpiece is brought into contact with the ultrapure water. The electrochemical machining apparatus further comprises an anode/cathode contact brought into contact with the workpiece held by the workpiece holding portion so that the workpiece serves as an anode/cathode, a catalyst having a strongly basic anion exchange function or a strongly acidic cation exchange function, a power source for applying a voltage between the cathode/anode and the workpiece, and a moving mechanism for relatively moving the workpiece and the catalyst. The catalyst is disposed between the cathode/anode and the workpiece held by the workpiece holding portion.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: August 14, 2007
    Assignees: Ebara Corporation
    Inventors: Yuzo Mori, Mitsuhiko Shirakashi, Yasushi Toma, Itsuki Kobata, Takayuki Saito
  • Patent number: 7252746
    Abstract: An electropolishing apparatus and method are provided for polishing stents and other medical implants. The apparatus includes a motor that rotates a roller. The roller continuously rotates the medical implant to be electropolished. One of the advantages of the apparatus and method is that marks generated around the electrical contact between the anode and the medical implant are minimized. In addition, the medical implant is polished more evenly than conventional electropolishing systems.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: August 7, 2007
    Assignee: Cook Incorporated
    Inventor: Darin G. Schaeffer
  • Patent number: 7211174
    Abstract: Systems and methods to provide electrical contacts to a workpiece to facilitate electrotreating processes, including electroplating and electroetching processes are presented.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: May 1, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Bulent M Basol, Homayoun Talieh, Boguslaw A. Nagorski, Cyprian E. Uzoh, Jeffrey A. Bogart
  • Patent number: 7189313
    Abstract: An apparatus and method for supporting a substrate is provided. In one embodiment, an apparatus for supporting a substrate includes a body having a band extending therefrom. The band is adapted to retain a fluid on the body thereby forming a shallow processing bath for processing the substrate. The band is adapted to deflect under centrifugal force to release the fluid from the substrate as the body is rotated above a predetermined rate.
    Type: Grant
    Filed: May 9, 2002
    Date of Patent: March 13, 2007
    Assignee: Applied Materials, Inc.
    Inventor: Dmitry Lubomirsky
  • Patent number: 7166204
    Abstract: A plating apparatus and method which smoothly perform contact of a plating liquid with a surface of the substrate and which can prevent air bubbles from remaining on the surface to be plated. The plating apparatus includes a plating bath containing a plating liquid in which an anode is immersed, a head portion for holding a substrate detachably and bringing a lower surface, to be plated, of the substrate into contact with an overflow surface of the plating liquid held in the plating bath, a drive mechanism for rotating the head portion, and a tilt mechanism for tilting the head portion so that the substrate held by the head portion is inclined relative to a horizontal plane.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: January 23, 2007
    Assignee: Ebara Corporation
    Inventors: Satoshi Sendai, Kenya Tomioka, Katsumi Tsuda, Masayuki Kumekawa, Koji Mishima
  • Patent number: 7160421
    Abstract: A facility for selecting and refining electrical parameters for processing a microelectronic workpiece in a processing chamber is described. The facility initially configures the electrical parameters in accordance with either a mathematical model of the processing chamber or experimental data derived from operating the actual processing chamber. After a workpiece is processed with the initial parameter configuration, the results are measured and a sensitivity matrix based upon the mathematical model of the processing chamber is used to select new parameters that correct for any deficiencies measured in the processing of the first workpiece. These parameters are then used in processing a second workpiece, which may be similarly measured, and the results used to further refine the parameters.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: January 9, 2007
    Assignee: Semitool, Inc.
    Inventors: Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
  • Patent number: 7153410
    Abstract: Methods and apparatuses for electrochemical-mechanical processing of microelectronic workpieces. One embodiment of an electrochemical processing apparatus in accordance with the invention comprises a workpiece holder configured to receive a microelectronic workpiece, a workpiece electrode, a first remote electrode, and a second remote electrode. The workpiece electrode is configured to contact a processing side of the workpiece when the workpiece is received in the workpiece holder. The first and second remote electrodes are spaced apart from the workpiece holder. The apparatus can also include an AC power supply, a DC power supply, and a switching assembly. The switching assembly is coupled to the workpiece electrode, the first remote electrode, the second remote electrode, the AC power supply, and the DC power supply.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: December 26, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Scott E. Moore, Whonchee Lee, Scott G. Meikle, Trung T. Doan
  • Patent number: 7108776
    Abstract: In the invention, there is provided a plating treatment technique which permits uniform plating treatment and easy replacement of articles to be plated without the effect of bubbles in a plating solution by improving wet plating apparatuses of the contact type to thereby solve problems such as the removal of bubbles in a plating solution and the removal of an adhering plating solution. Provided is a plating apparatus having a plating tank, which comprises: an opening which has a solution seal to prevent a plating solution from leaking when an article to be plated is placed on the opening; a solution-supply portion which supplies the plating solution; a solution-discharge portion which discharges the plating solution; and an anode which is opposed to the article to be plated that is placed, wherein the plating tank has rotational means for rotating the plating tank itself.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: September 19, 2006
    Assignee: Electroplating Engineers of Japan Limited
    Inventor: Yasuhiko Sakaki
  • Patent number: 7090750
    Abstract: An apparatus and method for treating a substrate to deposit, clean or etch material on a substrate using a first horizontal chuck to which a plurality of substrates is attached and electrically charged. Spaced closely to the first horizontal chuck is a coextensive horizontal second chuck which receives and showers reaction solution over all portions of each substrate. During the reaction process, both chucks are substantially submerged in reaction solution within a tank. At least one of the chucks is attached and controllable from a control arm. At least one of the chucks is rotated about a vertical axis at a slow speed during the reaction process. The axes of rotation of the two chucks may be coincident, or the axes may be offset from each other, and/or one or both axes may be offset from the chuck centerpoint(s). One of the chucks may also be periodically moved in a vertical direction relative to the other chuck.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: August 15, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, David R. Hembree
  • Patent number: 7070686
    Abstract: In an electrochemical reactor used for electrochemical treatment of a substrate, for example, for electroplating or electropolishing the substrate, one or more of the surface area of a field-shaping shield, the shield's distance between the anode and cathode, and the shield's angular orientation is varied during electrochemical treatment to screen the applied field and to compensate for potential drop along the radius of a wafer. The shield establishes an inverse potential drop in the electrolytic fluid to overcome the resistance of a thin film of conductive metal on the wafer.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: July 4, 2006
    Assignee: Novellus Systems, Inc.
    Inventors: Robert J. Contolini, Andrew J. McCutcheon, Steven T. Mayer
  • Patent number: 7052586
    Abstract: We make particulates, especially magnetic Fe—Co alloys having high magnetic permeability, of controlled dimensions, especially those having a narrow thickness size distribution centered around a median or target thickness in the range of about 0.1–1.0 ?m, using electrodeposition typically on a smooth (polished) titanium cathode. Our preferred continuous process uses a rotating drum cathode inside a fixed anode to grow flakes and to produce them automatically by inherent instability in the deposited film. The drum preferably rotates about a substantially vertical axis. The particulates shed (slough off) into the electrolyte (because of mismatch between the cathode surface and the plated metal or alloy at the molecular level) where they are separated in a magnetic separator or other suitable device. If the flakes are soft iron or iron-cobalt alloys, the drum generally is titanium or titanium alloy.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: May 30, 2006
    Assignee: The Boeing Company
    Inventors: Glen L. Rasmussen, Micheal E. Dickson, Robert J. Miller, Mary J. Nelson, Jonathan C. Hughes, Diane C. Rawlings
  • Patent number: 7045040
    Abstract: A method and system for preventing gas bubble formation on a selected region of a wafer surface as the surface is brought in contact with a process solution for an electrochemical process is provided. The present invention employs the process solution to prevent or remove gas bubbles from the wafer surface during or before the electrochemical processing of the wafer surface. Accordingly, during the process, the wafer surface is initially brought in proximity of the surface of the process solution. Next, a process solution flow is directed towards the selected region of the wafer surface for a predetermined time. In the following step, the selected region of the wafer surface is contacted with the process solution flow for the predetermined time to prevent bubble formation, and the wafer surface is immersed into the process solution for electrochemical processing.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: May 16, 2006
    Assignee: ASM Nutool, Inc.
    Inventor: Bulent M. Basol
  • Patent number: 7033468
    Abstract: For manufacturing printed circuit boards and films 7 with little variations in the layer thickness of the circuit structures without damaging the surfaces of the boards and films, a rotatory element 9, 10, more specifically a contact roll, is used for placing the printed circuit boards and films in electric contact, an elastic, electrically conductive material 2, 5, 6 being at least partially applied on the running tread unreeling on the printed circuit boards and films.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: April 25, 2006
    Assignee: Atotech Deutschland GmbH
    Inventor: Egon Hubel
  • Patent number: 7033465
    Abstract: Certain mechanisms of a plating apparatus address problems associated with interaction between plating solutions or other processing solutions and the components of the plating apparatus (such as the electrical contacts). For example, a circumferential spray skirt around the interface of a “cup” and “cone” in the plating apparatus protects these features during plating. A shield mechanism contacts the cup and/or cone at the periphery of their interface to provide a fluid resistant seal. In some cases, the cone includes an outer circumferential lip that engages a complementary surface of the cup for this purpose. Further, a mechanism is provided for raising and lowering the work piece with the cone in order to allow in situ rinsing of the work piece and/or regions of the cup.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: April 25, 2006
    Assignee: Novellus Systems, Inc.
    Inventors: Evan E. Patton, Jonathan D. Reid, Jeffrey A. Hawkins, Dinesh S. Kalakkad
  • Patent number: 7033463
    Abstract: A method and apparatus plate a substrate to form wiring by efficiently filling a fine recess formed in a semiconductor substrate with plating metal without a void or contamination. The plating of the substrate to fill a wiring recess formed in the semiconductor substrate with plating metal includes performing an electroless plating process of forming an initial layer on the substrate, and performing an electrolytic plating process of filling the wiring recess with the plating metal, while the initial layer serves as a feeding layer.
    Type: Grant
    Filed: August 11, 1999
    Date of Patent: April 25, 2006
    Assignee: Ebara Corporation
    Inventors: Akihisa Hongo, Naoaki Ogure, Hiroaki Inoue, Satoshi Sendai, Tetsuma Ikegami, Koji Mishima, Shuichi Okuyama, Mizuki Nagai, Ryoichi Kimizuka, Megumi Maruyama
  • Patent number: 7029558
    Abstract: The purpose is to provide a cathode electrode for manufacturing an electrodeposited copper foil which is possible to be continuously and stably usable for a long duration of 3000 hours or longer to subsequently lessen the frequency of maintenance work execution as low as possible and to contribute to lower the running cost of the electrodeposited copper foil manufacture. As the means for achieving the purpose, a cathode electrode made of a titanium material is employed for obtaining an electrodeposited copper foil using an electrolytic copper solution and the titanium material having 7.0 or higher crystal grain size number and 35 ppm or lower initial hydrogen content is used for manufacturing the cathode electrode for manufacturing an electrodeposited copper foil. Further, also provided is a manufacturing method of the titanium material to be employed for the cathode electrode made of a titanium material.
    Type: Grant
    Filed: December 26, 2001
    Date of Patent: April 18, 2006
    Assignees: Mitsui Mining & Smelting Co., LTD, Nippon Stainless Steel Kozai Co., LTD, Sumitomo Metal Industries, LTD
    Inventors: Sakiko Tomonaga, Satoru Fujita, Hiroshi Tanaka, Yutaka Kiminami, Isamu Kanekatsu, Atsuhiko Kuroda
  • Patent number: 7025860
    Abstract: An apparatus for performing an electrochemical process on a metallic surface of a workpiece, comprised of a substantially incompressible workpiece support plate. A platen for supporting the workpiece support plate, has at least one opening coupled to a source of electrolyte for receiving an electrolyte solution therethrough and placing the electrolyte solution in contact with the support plate and workpiece. A first conductive element is coupled to, a first potential and positioned proximate the metallic surface, and the carrier is configured to position the workpiece proximate the support plate.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: April 11, 2006
    Assignee: Novellus Systems, Inc.
    Inventor: Saket Chadda
  • Patent number: 6991526
    Abstract: Aspects of the invention generally provide a method and apparatus for polishing a substrate using electrochemical deposition techniques. In one aspect, an apparatus for polishing a substrate comprises a counter-electrode and a pad positioned between a substrate and the counter-electrode and a pad positioned between a substrate and the counter-electrode. A dielectric insert is positioned between the counter-electrode and the substrate. The dielectric insert has a plurality of zones, each zone permitting a separate current density between the counter-electrode and the substrate. In another embodiment, an apparatus for polishing a substrate that include a conductive layer comprises a counter-electrode to the material layer. The counter-electrode comprises a plurality of electrically isolated conductive elements. An electrical connector is separately coupled to each of the conductive elements.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: January 31, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Lizhong Sun, Liang-Yuh Chen, Siew Neo, Feng Q. Liu, Alain Duboust, Stan D. Tsai, Rashid Mavliev
  • Patent number: 6991710
    Abstract: A method and apparatus for manually and automatically processing microelectronic workpieces. The apparatus can include a tool having a plurality of processing stations, all of which are manually accessible to a user, and an input/output station configured to support at least one microelectronic workpiece for automatic transfer to and from the processing stations. A transfer device is positioned proximate to the input/output station and the processing stations and is configured to automatically transfer microelectronic workpieces between the input/output station and the processing stations. The apparatus can be used for both manual and automatic processing of microelectronic workpieces, either sequentially or simultaneously.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: January 31, 2006
    Assignee: Semitool, Inc.
    Inventors: Randy Harris, Daniel J. Woodruff
  • Patent number: 6974525
    Abstract: An electrochemical planarization apparatus for planarizing a metallized surface on a workpiece includes a polishing pad and a platen. The platen is formed of conductive material, is disposed proximate to the polishing pad and is configured to have a negative charge during at least a portion of a planarization process. At least one electrical conductor is positioned within the platen. The electrical conductor has a first end connected to a power source. A workpiece carrier is configured to carry a workpiece and press the workpiece against the polishing pad. The power source applies a positive charge to the workpiece via the electrical conductor so that an electric potential difference between the metallized surface of the workpiece and the platen is created to remove at least a portion of the metallized surface from the workpiece.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: December 13, 2005
    Assignee: SpeedFam-IPEC Corporation
    Inventors: Ismail Emesh, Saket Chadda, Nikolay N. Korovin, Brian L. Mueller
  • Patent number: 6964792
    Abstract: The present invention provides apparatus and methods for controlling flow dynamics of a plating fluid during a plating process. The invention achieves this fluid control through use of a diffuser membrane. Plating fluid is pumped through the membrane; the design and characteristics of the membrane provide a uniform flow pattern to the plating fluid exiting the membrane. Thus a work piece, upon which a metal or other conductive material is to be deposited, is exposed to a uniform flow of plating fluid.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: November 15, 2005
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, R. Marshall Stowell, Evan E. Patton, Seshasayee Varadarajan
  • Patent number: 6949177
    Abstract: A system and method for processing semiconductor wafers using different wafer processes utilizes multiple processing assemblies to efficiently perform these wafer processes. The wafer processes performed by the processing assemblies may vary with respect to operating parameters or the types of wafer processes, which allows customization of the wafer processes. Each of the processing assemblies is configured to sequentially process two or more semiconductor wafers at different processing positions by sequentially transferring the semiconductor wafers to the different processing positions using a wafer transfer carousel. As the semiconductor wafers are processes at one of the processing assemblies, the processed semiconductor wafers are sequentially transferred to the next processing assembly in an efficient manner. The sequential processing of the semiconductor wafers at each of the processing assemblies and the sequential transferring of the wafers contribute to an increased throughput.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: September 27, 2005
    Assignee: Oriol Inc.
    Inventor: In Kwon Jeong
  • Patent number: 6942765
    Abstract: An apparatus and method for coating or treating powdered material, particularly ultra-fine powders in the nanometer or submicron range of mean diameters, by electrolytic processes. A platen is mounted for rotation upon a fixed shaft, and a rotary flow-through electrolytic cell is mounted upon a platen for rotation thereon, the cell's axis of rotation being offset from the platen's axis of rotation. The cells axis of rotation revolves around the platen's axis as the platen rotates. The electrolytic cell accordingly undergoes a planetary rotation, as the cell revolves around the platen's axis of rotation. The planetary rotation of the cell allows the powdered material to be collected by centrifugal force and constantly agitated to promote uniform electroplating.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: September 13, 2005
    Assignee: Surfect Technologies, Inc.
    Inventors: Thomas P. Griego, John W. Eichman, III
  • Patent number: 6929723
    Abstract: An apparatus for electroplating a rotogravure cylinder out of a plating solution is disclosed. The apparatus includes a plating tank adapted to support the cylinder and to contain a plating solution so that the cylinder is at least partially disposed into the plating solution. The apparatus also includes a non-dissolvable anode at least partially disposed within the plating solution. A current source is electrically connected to the non-dissolvable anode and to the cylinder. An ultrasonic system may be provided to introduce wave energy into the plating solution includes at least one transducer element mountable within the tank and a power generator adapted to provide electrical energy to the transducer element. A holding tank having a circulation pump, a mixing system and heating and cooling elements for the plating solution may be provided.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: August 16, 2005
    Inventor: Hubert F. Metzger
  • Patent number: 6926812
    Abstract: To avoid the formation of undesirable plating on electric supply rollers, there is provided a continuous plating apparatus in which a planar article to be plated is vertically clamped on both sides by electric supply rollers and the article to be plated is moved horizontally in a plating bath by the rotation of the electric supply rollers to plate both surfaces of the article to be plated. The apparatus is characterized in that the electric supply rollers are divided into conductive segments and non-conductive segments in the circumferential direction, with only the conductive segment which is in contact with the article to be plated being negatively charged, and other conductive segments which are at a distance from the article being positively charged.
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: August 9, 2005
    Inventor: Kazuo Ohba
  • Patent number: 6926817
    Abstract: A plating apparatus includes a plating solution tank which stores a plating solution, a holder including an inner space to house a wafer and an opening for the wafer to be in contact with the plating solution, and a nitrogen supplying mechanism to supply nitrogen to the inner space of the holder.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: August 9, 2005
    Assignee: Tokyo Electron Limited
    Inventors: Yoshinori Marumo, Koichiro Kimura
  • Patent number: 6921468
    Abstract: A system for electroplating a semiconductor wafer is set forth. The system comprises a first electrode in electrical contact with the semiconductor wafer and a second electrode. The first electrode and the semiconductor wafer form a cathode during electroplating of the semiconductor wafer. The second electrode forms an anode during electroplating of the semiconductor wafer. A reaction container defining a reaction chamber is also employed. The reaction chamber comprises an electrically conductive plating solution. At least a portion of each of the first electrode, the second electrode, and the semiconductor wafer contact the plating solution during electroplating of the semiconductor wafer. An auxiliary electrode is disposed exterior to the reaction chamber and positioned for contact with plating solution exiting the reaction chamber during cleaning of the first electrode to thereby provide an electrically conductive path between the auxiliary electrode and the first electrode.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: July 26, 2005
    Assignee: Semitool, Inc.
    Inventors: Lyndon W. Graham, Kyle Hanson, Thomas L. Ritzdorf, Jeffrey I. Turner
  • Patent number: 6921467
    Abstract: Processing tools, components of tools, and methods of making and using such devices for electrochemical processing of microelectronic workpieces. One aspect of the invention is directed toward reaction vessels for electrochemical processing of microelectronic workpieces, processing stations including such reaction vessels, and methods for using these devices. For example, one embodiment of a reaction vessel includes an outer container having an outer wall, a first outlet configured to introduce a primary fluid flow into the outer container, and at least one second outlet configured to introduce a secondary fluid flow into the outer container separate from the primary fluid flow. The reaction vessel can also include at least one electrode, and it can also have a field shaping unit.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: July 26, 2005
    Assignee: Semitool, Inc.
    Inventors: Kyle M. Hanson, Steve L. Eudy, Thomas L. Ritzdorf, Gregory J. Wilson, Daniel J. Woodruff, Randy Harris, Curtis A. Weber, Tim McGlenn, Timothy A. Anderson, Daniel P. Bexten
  • Patent number: 6913683
    Abstract: A method for the production of pipe segments from a pipe (10) in which the pipe (10) is rotated about its longitudinal axis, while an electrode (20) is positioned in the vicinity of the outer surface (11) of the pipe (10) and electrolyte (30) is fed to the space between the pipe (10) and the electrode (20). The electrode (20) and the pipe (10) are connected to a voltage source (40), with the result that an electric current is brought about via the electrolyte (30). Thus, the pipe (10) is divided into pipe segments in an electrochemical way.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: July 5, 2005
    Assignee: Van Doorne's Transmissie B.V.
    Inventors: Cornelus Hendricus Maria Van Oirschot, Roland Theo Anton Kals, Hendrikus Van Den Boomen
  • Patent number: 6899797
    Abstract: An electrochemical reaction assembly of inducing electrochemical reactions, such as for deposition of materials on semiconductor substrates. The assembly achieves a highly uniform thickness and composition of deposition material or uniform etching or polishing on the semiconductor substrates by retaining the semiconductor substrates on a moving cathode immersed in an appropriate reaction solution wherein a wire mesh anode rotates about the moving cathode during electrochemical reaction.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: May 31, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, David R. Hembree
  • Patent number: 6890412
    Abstract: A method and apparatus for microencapsulating or electrodeposited coating of ferromagnetic and soft-magnetic sub-micron or nano sized powderized material comprising use of a rotary flow-through device assisted by an electromagnet within the electrode ring to alternately position the powder at the face of the cathode ring and electroplate the powder and reorient it prior to another repositioning. The invention is also of a process and apparatus for forming a strip, mesh, or film from magnetic powderized material in an organized bipolar arrangement, which is particularly useful for electroforming foils with the magnetic particles positioned in a monolayer within a multilayer metallic foil.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: May 10, 2005
    Assignee: Surfect Technologies, Inc.
    Inventors: Thomas P. Griego, John W. Eichman, III, Geronimo Velasquez
  • Patent number: 6855239
    Abstract: A plating method and apparatus using contactless electrode is described. In one embodiment an inductive element is placed proximally to a substrate and a moving electromagnetic field generates an emf in the substrate to plate the surface. In another embodiment, a conductive plate is used, so that the conductive plate and the wafer, separated by a dielectric material, operate as two plates of a capacitor when voltage is applied to the conductive plate. The resulting electrostatic field impresses a charge potential on the substrate to plate the surface of the substrate.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: February 15, 2005
    Inventor: Rahul Jairath