Gas Patents (Class 204/270)
  • Publication number: 20120228127
    Abstract: Systems, methods and apparatus for reducing impurities in electrolysis cells are disclosed. In one approach, a method includes feeding a particulate fines feed stream to a tank, mixing particulate fines (PF) with liquid, the liquid having a first liquid and a second liquid, and separating at least some of the first liquid from at least some of the second liquid. The particulate fines (PF) may include inlet carbon fines (CFI) and inlet recyclable fines (RFI). The first liquid may include a recovered recyclable fines portion (RF1), and the second liquid may include a waste carbon fines portion (CF1). The mass ratio of the recovered recyclable fines portion (RF1) to the inlet recyclable fines (RNI) may be at least about 0.5. The mass ratio of the waste carbon fines portion (CF1) to the inlet carbon fines (CFI) may be at least about 0.1.
    Type: Application
    Filed: May 23, 2012
    Publication date: September 13, 2012
    Applicant: ALCOA INC.
    Inventors: Xiangwen Wang, Gary Tarcy
  • Patent number: 8163142
    Abstract: A hydrogen system for internal combustion engines, comprising a housing assembly having at least three internal chambers divided by at least two dividing plates. The two dividing plates include a lower dividing plate and an upper dividing plate. Each comprises a plurality of through holes to allow aqueous solution to flow and circulate through the three internal chambers. A hydrogen generator is mounted onto the housing assembly at a predetermined angle. The hydrogen generator comprises a first predetermined number of negative charged plates, a second predetermined number of neutral plates, and a third predetermined number of positive charged plates. The hydrogen generator generates oxygen and hydrogen gas for use in an internal combustion engine to improve combustion efficiency and to decrease emissions. The hydrogen generator serves as an electrolysis cell to generate the oxygen and hydrogen gas with electric current from a power source being passed through the aqueous solution.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: April 24, 2012
    Inventor: Giulio Stama
  • Publication number: 20120094204
    Abstract: A cell stack comprising a plurality of fuel cells or electrolysis cells has a combination of flow patterns between anode gas and cathode gas internally in each of the cells and between the cells relative to each other such that cathode and anode gas internally in a cell flows in either co-flow, counter-flow or cross-flow and further that anode and cathode gas flow in one cell has co-flow, counter-flow or cross-flow relative to the anode and cathode gas flow in adjacent cells.
    Type: Application
    Filed: July 1, 2010
    Publication date: April 19, 2012
    Inventors: Sune Danø, Mads Find Madsen, Jens Ulrik Nielsen, Harald Usterud
  • Patent number: 8152897
    Abstract: A gas liquid separator system for a hydrogen generating apparatus includes a collection area for collecting liquid from the generated gases. To empty the collection area occasionally so that liquid does not build up and become entrained again in the dried gas, a vent solenoid is provided in communication with the collection area and a pump is used to create a vacuum periodically on the electrolysis cells. Such arrangement is used to open the liquid gas filter and possibly just the sump to atmosphere occasionally and vacuum generated to draw the liquid from the sump back to the electrolysis cells.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: April 10, 2012
    Assignee: Blutip Power Technologies Ltd.
    Inventor: Andrew Harland Lindsay
  • Patent number: 8152990
    Abstract: Process and apparatus to remove colloids and nitrogen compounds from contaminated water by coagulating the colloids and separating them from the water. The solids are floated by sparging and then the floating solids are swept from the surface of the water into an exit port using a conveyor from which downwardly depending flaps skim or near the surface, thus sweeping the floating floc into the exit port.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: April 10, 2012
    Assignee: Potable Water Systems Ltd.
    Inventors: Jorge Miller, Luisa Kling Miller
  • Patent number: 8147661
    Abstract: The invention discloses a unit for the electrolysis of water. The unit includes a plurality of stacked conductive plates which are separated from each other by a non conductive sealing ring. At least one of the stacked conductive plates functions as an anode. A plurality of the conductive plates functions as a cathode, wherein the number of cathodes is double the number of anodes.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: April 3, 2012
    Assignee: Green on Demand GmbH
    Inventors: Joseph Michael Moon, Joseph E. Leiato, Timothy Iinug Mark Yataman Leiato
  • Publication number: 20120073982
    Abstract: A method for converting waste water into potable water using power from an electrical grid. The method comprises flowing the waste water through an electrolysis cell coupled to the grid, and, when power availability on the grid is above an upper threshold, biasing the electrolysis cell to form hydrogen. Hydrogen evolved in the electrolysis is then provided as fuel to one or more fuel cells. When the power availability on the grid is below a lower threshold, electric current and potable water are drawn from the one or more fuel cells.
    Type: Application
    Filed: September 23, 2010
    Publication date: March 29, 2012
    Inventor: John M. Lambie
  • Publication number: 20120028159
    Abstract: A fuel cell or electrolysis cell stack has force distribution members with one planar and one convex shape applied to at least its top and bottom face and in one embodiment further to two of its side faces. A compressed mat and further a rigid fixing collar surrounds the stack and force distribution members, whereby the stack is submitted to a compression force on at least the top and bottom face and potentially also to two side faces. The assembly is substantially gas tight in an axial direction of the primarily oval or circular shape and can be fitted with gas tight end plates to form robust gas inlet and outlet manifolds.
    Type: Application
    Filed: March 11, 2010
    Publication date: February 2, 2012
    Applicant: TOPSOE FUEL CELL A/S
    Inventors: Martin Refslund Nielsen, Niels H.B. Erikstrup
  • Patent number: 8101051
    Abstract: A large amount of a gas mixture of hydrogen and oxygen can be effectively generated over a long time. A positive electrode and a negative electrode are immersed in an electrolytic cell filled with an electrolytic solution, and a DC or AC voltage is applied across the two electrodes. A plurality of intermediate electrodes are arranged between the two electrodes. The electrolytic cell is sealed by a sealing cover. The gas mixture of hydrogen and oxygen generated by electrolysis is taken out through a discharge opening provided in the sealing cover.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: January 24, 2012
    Inventor: Binglin Yang
  • Publication number: 20120009499
    Abstract: A fuel cell stack or an electrolysis cell stack comprises a plurality of cells, which need to be compressed to ensure and maintain internal contact. To achieve an evenly distributed compression force throughout the electrochemically active area a frame with a central aperture is positioned on top of the cell stack between a resilient plate and a top plate. The enclosed aperture forms a compression chamber which is provided with pressurised gas from the cathode inlet, whereby an evenly distributed force is applied to the electrochemically area of the cell stack by the resilient plate.
    Type: Application
    Filed: December 17, 2009
    Publication date: January 12, 2012
    Inventors: Lars Kiilstofte Hansen, Jeppe Rass-Hansen, Jens Ulrik Nielsen, Claus Rasmussen, Ib Skyum
  • Publication number: 20120009497
    Abstract: A fuel cell stack made of a plurality of cell units stacked and operatively connected at one end thereof. Each of the units includes a holder having at least one cell, typically provided as an SOFC membrane, to produce an electric current when fuel and oxidant are present as the result of an electrochemical reaction.
    Type: Application
    Filed: June 10, 2011
    Publication date: January 12, 2012
    Inventors: Craig P. Jacobson, Chun Lu, Lutgard C. DeJonghe
  • Publication number: 20110266203
    Abstract: A water treatment system using electrocoagulation is provided. One of the stages of the water treatment is subjecting the water to electrocoagulation so that colloidal solids can be reduced, emulsions broken, and hydrocarbons and complex organics removed, without the application of substantial chemical substances to the contaminated water or even the use of any chemical substances. An electrocoaguloaty apparatus can comprise: a tank having a first end and a second end; a plurality of electrolytic cells provided in the tank, each electrolytic cell having at least one anode electrode and at least one cathode electrode defining an anode/cathode electrode pair; and a voltage supply connected to each electrolytic cell to supply a voltage across each anode/cathode pair.
    Type: Application
    Filed: April 1, 2011
    Publication date: November 3, 2011
    Inventor: Sean Frisky
  • Patent number: 8034220
    Abstract: Electrochemical cells modules made up of couples of catalytic multilayer porous electrodes forming the anodes and the cathodes and delimitating external gaseous areas and internal areas containing the electrolyte wherein the pressure modulators, generating two pressure cycles independently synchronized but of opposite phase, act at the inlet and at the outlet of the electrolyte and the multilayer porous electrodes are weeping on the gas side. According to a preferred embodiment the multilayer porous electrodes are hydrophobic and conductive on the gas side, the conductive and catalytic middle layers are hydrophobic and hydrophilic, the non-conductive and non-catalytic layer on the electrolyte side is hydrophilic.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: October 11, 2011
    Assignees: Annas S.R.L.
    Inventor: Mario Melosi
  • Publication number: 20110243820
    Abstract: Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Gas separation assemblies are provided.
    Type: Application
    Filed: April 1, 2011
    Publication date: October 6, 2011
    Inventors: B. Peter McGrail, Praveen K. Thallapally, Wu Xu
  • Patent number: 8021526
    Abstract: A household appliance incorporating an electrolyzer for electrolysis of water to H2 and O2 and an electrolyzer therefor. The appliance may include a burner for the hydrogen produced and an electric conductive member to provide household current to the electrolyzer. The electrolyzer comprises an outer housing defining a chamber which houses at least one cathode and at least one anode. The electrolyzer may comprise a plurality of field electrodes and the field electrodes may comprise first and second field electrodes which are electrically connected together and spaced apart to define an intra cell gap. Field electrodes may then be spaced apart to define an inter cell gap between electrodes of adjacent field electrodes. At least one of the anode and cathode may be connected to an electrically conductive member that is molded in situ in the housing and at least some of the electrodes may be configured to dimensionally stabilize the electrodes during operation of the electrolyzer.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: September 20, 2011
    Assignee: G.B.D. Corp
    Inventor: Wayne Ernest Conrad
  • Patent number: 7955481
    Abstract: Method and apparatus for controlling two phase flow in electrolytic cells. The present invention is directed to any electrolytic cell, including but not limited to upflow electrolytic cells that comprise parallel electrodes in a vertical orientation. Fluid control strips are preferably added between the anode and cathode electrodes to control flow of fluid and gas bubbles generated between the electrodes in order to avoid the detrimental effects of gas bubbles on the conductivity of the fluid solution, and thereby increase production and operational efficiency of the electrolytic cell.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: June 7, 2011
    Assignee: MIOX Corporation
    Inventors: Justin Sanchez, Rodney E. Herrington
  • Patent number: 7938939
    Abstract: A hydrogen generating apparatus and a fuel cell power generation system having the hydrogen generating apparatus are disclosed. The hydrogen generating apparatus can include an electrolyte bath configured to contain an electrolyte solution, an anode placed inside the electrolyte bath and configured to generate electrons, a cathode placed inside the electrolyte bath and configured to receive the electrons from the anode to generate hydrogen, a condensation plate disposed on a transfer path of the hydrogen such that moisture carried in the hydrogen is condensed and the hydrogen is separated, and a heat exchanger configured to cool down the condensation plate heated by the moisture carried in the hydrogen. The hydrogen generating apparatus of the present invention can increase the efficiency of hydrogen generation by removing the moisture carried in the hydrogen while generating the hydrogen and reusing the moisture circulated through the electrolyte solution.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: May 10, 2011
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Eon Soo Lee, Jae-Hyoung Gil, Craig Miesse, Jae-Hyuk Jang, Kyoung-Soo Chae
  • Publication number: 20110100805
    Abstract: The present invention provides a solid oxide cell stack, comprising: —at least two cells which each comprise a first electrode layer (1), an electrolyte layer (2), a second electrode layer (3), —gas passage ways, and —sealing components (4), wherein the sealing components (4) comprise a glass component (4a) and a component comprising a metal oxide or metal oxide precursor (4b), and wherein the component comprising the metal oxide or metal oxide precursor (4b) is located at least in between the glass component (4a) and a gas passage way.
    Type: Application
    Filed: March 20, 2009
    Publication date: May 5, 2011
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Nadja Lönnroth, Anne Hauch, Mogens Mogensen, Ming Chen
  • Publication number: 20110100328
    Abstract: A cell for use in an electrolysis unit includes a back wall, a side wall extending upwardly from and around a periphery of the back wall to define an inner region of the cell, an electrode disposed on the back wall within the inner region to divide at least a portion of the inner region into first and second regions is disclosed.
    Type: Application
    Filed: October 21, 2010
    Publication date: May 5, 2011
    Inventor: Buddy Ray Paul
  • Publication number: 20110100803
    Abstract: The Product Gas Generator works in conjunction with a Combustion Management System to supply a product gas, comprising a dynamic mixture of nascent hydrogen (H) and oxygen (O), to the internal combustion engine to propagate the formation of hydroxide radicals (OH) and thereby to improve the level of completion of the hydrocarbon combustion reaction. The Combustion Management System provides product gas volumetric requirement information; and takes into account the engine style, primary torque requests, and hydrocarbon fuel consumption information to develop an operating system specific application that produces consistent measurable results.
    Type: Application
    Filed: September 7, 2010
    Publication date: May 5, 2011
    Applicant: GEO Firewall Sarl
    Inventors: John Dee, Steve Fulton, Dan Kujawski, Jason D. Tuzinkewich
  • Patent number: 7935267
    Abstract: The invention provides an electrolyte solution for hydrogen generating apparatus including water; at least one ionizing compound; and at least one cation exchange resin, as well as a hydrogen generating apparatus that includes the electrolyte solution. The electrolyte solution for hydrogen generating apparatus according to the invention can increase the time and amount of hydrogen generation by reducing an amount of metal hydroxide generation.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: May 3, 2011
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Bosung Ku, Jae-Hyuk Jang, Kyoung-Soo Chae, Chang-Ryul Jung
  • Patent number: 7922878
    Abstract: A system for hydrogen gas generation is provided according to the present invention which includes a hydrogen gas electrode assembly including a first anode in electrical communication with a first cathode; a microbial fuel cell electrode assembly including a second anode in electrical communication with a second cathode, the microbial fuel cell electrode assembly in electrical communication with the hydrogen gas electrode assembly for enhancing an electrical potential between the first anode and the first cathode. A single chamber housing contains the hydrogen gas electrode assembly at least partially in the interior space of the housing.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: April 12, 2011
    Assignee: The Penn State Research Foundation
    Inventor: Bruce Logan
  • Publication number: 20110073469
    Abstract: A electrochemical deposition system which has a 3-D stacked architecture comprises a factory interface for receiving semiconductor wafers, a mainframe comprising a mainframe transfer robot and a plurality of wafer holder assemblies which disposed on the top thereof, a plurality of electroplating cells disposed within the mainframe, a plurality of cleaning cells disposed within the mainframe and located below the electroplating cells, a plurality of thermal treatment chambers disposed in between the mainframe and the factory interface, and a fluid distribution system fluidly connected to the electroplating cells and the cleaning cells, wherein the mainframe transfer robot transfers the semiconductor wafer from the factory interface and within the electroplating cells, the cleaning cells, and the thermal treatment chambers. As a result, the system of the present invention is expandable to accommodate newly-added processing units without overmuch increased footprint.
    Type: Application
    Filed: March 19, 2008
    Publication date: March 31, 2011
    Inventors: Yue Ma, Chuan He, Zhenxu Pang, Guangtao Shi, Jiexu Xia, Voha Nuch, Hui Wang
  • Publication number: 20100276278
    Abstract: Disclosed is a modular apparatus for the electrical decomposition of water. It includes a number of modular electrolysis cells contained in a main housing unit that may further contain a refill mechanism and safety devices.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 4, 2010
    Inventor: DOUG BENDER
  • Patent number: 7744733
    Abstract: A system to vent a moist gas stream is disclosed. The system includes an enclosure and an electrochemical cell disposed within the enclosure, the electrochemical cell productive of the moist gas stream. A first vent is in fluid communication with the electrochemical cell for venting the moist gas stream to an exterior of the enclosure, and a second vent is in fluid communication with an interior of the enclosure and in thermal communication with the first vent for discharging heated air to the exterior of the enclosure. At least a portion of the discharging heated air is for preventing freezing of the moist gas stream within the first vent.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: June 29, 2010
    Assignee: Proton Energy Systems, Inc.
    Inventors: Amjad Khan, Ken Wayne Dreier, Lawrence Clinton Moulthrop, Erik James White
  • Publication number: 20100140102
    Abstract: An electrolyzer for high temperature electrolysis capable of operating in an allothermal mode including an enclosure, at least one electrolysis plate (8) including an anode and a cathode in combination and means for heating an active fluid intended to undergo a high temperature electrolysis, characterized in that the enclosure is capable of maintaining an electrolyte bath under high or very high pressure of several tens of bars, in that said heating means (10) are positioned in the enclosure and use a heat transfer fluid.
    Type: Application
    Filed: July 31, 2008
    Publication date: June 10, 2010
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE
    Inventor: Patrick Aujollet
  • Patent number: 7709113
    Abstract: Systems and processes for producing hydrogen using bacteria are described. One detailed process for producing hydrogen uses a system for producing hydrogen as described herein, the system including a reactor. Anodophilic bacteria are disposed within the interior of the reactor and an organic material oxidizable by an oxidizing activity of the anodophilic bacteria is introduced and incubated under oxidizing reactions conditions such that electrons are produced and transferred to the anode. A power source is activated to increase a potential between the anode and the cathode, such that electrons and protons combine to produce hydrogen gas. In one system for producing hydrogen is provided which includes a reaction chamber having a wall defining an interior of the reactor and an exterior of the reaction chamber.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: May 4, 2010
    Assignees: The Penn State Research Foundation, Ion Power, Inc.
    Inventors: Bruce Logan, Stephen Grot, Thomas E. Mallouk, Hong Liu
  • Patent number: 7704390
    Abstract: A wastewater treatment system for removing contaminants from wastewater on a vessel using electricity. The wastewater treatment system may inject wastewater with one or more disinfectants or ionized gases, or both, to remove at least a portion of contaminants from the wastewater. The water treatment system may produce disinfectants from saltwater using one or more disinfectant generators and return the byproducts to a water body. The wastewater treatment system may also pass wastewater through an electrical coagulation unit in which an electrical current may be emitted into the wastewater, whereby flocculants are formed and cause suspended solids and other materials to settle out of the wastewater. The wastewater treatment system may include a secondary treatment system for further reducing concentrations of contaminants. In addition, the wastewater treatment system may include a solid waste treatment system for incinerating solids produced by the wastewater treatment system.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: April 27, 2010
    Assignee: Ionz Bluewater Solutions, Inc.
    Inventors: Charles E. Leffler, William Paul
  • Patent number: 7674358
    Abstract: A method for configuring a solar hydrogen generation system and the system optimization are disclosed. The system utilizes photovoltaic modules and an electrolyte solution to efficiently split water into hydrogen and oxygen. The efficiency of solar powered electrolysis of water is optimized by matching the most efficient voltage generated by photovoltaic cells to the most efficient input voltage required by the electrolysis cell(s). Optimizing PV-electrolysis systems makes solar powered hydrogen generation cheaper and more practical for use as an environmentally clean alternative fuel.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: March 9, 2010
    Inventors: Thomas L. Gibson, Nelson A. Kelly
  • Publication number: 20100038236
    Abstract: A simple electrolyzer system, that can be easily installed in most motor vehicles, including boats, generates a gaseous mixture including hydrogen as auxiliary motive fuel to provide increased performance and mileage. The electrolyzer system is powered electrically from the vehicle battery and consumes only water. In a preferred embodiment, a pair of similar electrolyzer cells, mounted in the engine compartment of the vehicle, generate a gaseous mixture of hydrogen and oxygen that is delivered independently to corresponding input ports at two strategically selected domains in the vehicle's air intake system: one at the intake manifold and the other at the main air intake duct leading to the intake manifold. A check-valve disconnect coupling in each gas delivery hose serves as a flash-back arrester for safety, and facilitates maintenance.
    Type: Application
    Filed: August 18, 2008
    Publication date: February 18, 2010
    Inventor: Alex Rivera
  • Publication number: 20090277774
    Abstract: A method and apparatus for treating a fluid using a wave energy uses a gas-sparged pipe configured to create a flow of the fluid in a thin film along a vortex path from a first end to a second end of the gas-sparged pipe, a first electrode and a second electrode that are at least partially disposed within the gas-sparged pipe, spaced apart from one another, and axially aligned with one another along a central axis of the gas-sparged pipe from the first end to the second end. The electrodes are used to create an open electrical arc to provide the wave energy directly exposing the fluid as the fluid flows along the vortex path in close proximity to and surrounding the electrical arc such that only a gas separates the fluid from the open electrical arc.
    Type: Application
    Filed: July 20, 2009
    Publication date: November 12, 2009
    Applicant: Foret Plasma Labs, LLC
    Inventor: Todd Foret
  • Publication number: 20090272588
    Abstract: The present invention relates to a hydrogen generation apparatus using chemical hydride. The present invention features an electrolyte including chemical hydride and a catalyst that is inserted between metal electrodes, wherein the hydrogen is generated in a unit cell by hydrolysis of the hydride.
    Type: Application
    Filed: September 26, 2008
    Publication date: November 5, 2009
    Applicants: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Hee Yeon Ryu, Gyu Jin Jang
  • Patent number: 7585583
    Abstract: A stack, to be used in a fuel cell or electrolyzer, includes a collector layer, at least one diffusion layer and at least one anchoring layer. The collector layer being a metal foil or metal plate or foamed metal sheet, the diffusion layer can be a metal mesh or expanded metal sheet. An anchoring layer having a thickness of less than 0.5 mm can include metal fibers and be sintered between the collector layer and the diffusion layer.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: September 8, 2009
    Assignee: NV Bekaert SA
    Inventors: Ronny Losfeld, Lieven Anaf
  • Patent number: 7575636
    Abstract: The present invention relates to a substrate processing apparatus useful for plating a substrate or processing a substrate by dipping a substrate in a processing liquid. A substrate processing apparatus of the present invention includes: a loading/unloading area for carrying in and out a substrate; a cleaning area for cleaning the substrate; and a plating area for plating the substrate. The loading/unloading area is provided with a substrate transfer robot having a plurality of hands of dry-use design, a loading port mounted with a cassette for housing substrates, and a reversing machine of dry-use design for reversing the substrate from face up to face down.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: August 18, 2009
    Assignee: Ebara Corporation
    Inventors: Seiji Katsuoka, Masahiko Sekimoto, Toshio Yokoyama, Teruyuki Watanabe, Takahiro Ogawa, Kenichi Kobayashi, Mitsuru Miyazaki, Yasuyuki Motoshima, Akira Owatari, Naoki Dai
  • Publication number: 20090173623
    Abstract: An exhaust gas treatment device includes an electrode assembly. The electrode assembly has an ion-conducting layer, anode and cathode electrodes, and a filter. The anode and cathode electrodes are provided spaced apart from each other on the ion-conducting layer having proton conductivity. The filter is provided between the anode and cathode electrodes and the thickness of the filter is greater than that of the anode and cathode electrodes for capturing particulate matter in exhaust gas. One part of the electrode assembly is overlapped with different part thereof in such a way that the filter of the one part thereof supports the different part thereof so that a space is formed between the two parts thereof. The anode and cathode electrodes and the filter are arranged such that exhaust gas supplied to the electrode assembly contacts with the anode electrode, and flows through the filter and contacts with the cathode electrode.
    Type: Application
    Filed: December 17, 2008
    Publication date: July 9, 2009
    Inventor: Yoshifumi Kato
  • Publication number: 20090145771
    Abstract: Devices, systems and methods for improved electrical appliances which allow for efficient and safe production of hydrogen and oxygen gas for a flame are disclosed. An appliance for providing gas for combustion may comprise a water inlet, a power source, and an electrolyzer with at least one electrolysis transistor generating hydrogen and oxygen. The appliance may also comprise a gas handling unit for collecting the output of the electrolyzer and transporting it to a burner, and an output interface.
    Type: Application
    Filed: August 28, 2008
    Publication date: June 11, 2009
    Inventors: Umesh Mishra, Rakesh Lal, Lee McCarthy, Primit Parikh
  • Patent number: 7510640
    Abstract: A method for configuring a solar hydrogen generation system and the system optimization are disclosed. The system utilizes photovoltaic modules and an electrolyte solution to efficiently split water into hydrogen and oxygen. The efficiency of solar powered electrolysis of water is optimized by matching the most efficient voltage generated by photovoltaic cells to the most efficient input voltage required by the electrolysis cell(s). Optimizing PV-electrolysis systems makes solar powered hydrogen generation cheaper and more practical for use as an environmentally clean alternative fuel.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: March 31, 2009
    Assignee: General Motors Corporation
    Inventors: Thomas L Gibson, Nelson A Kelly
  • Patent number: 7491453
    Abstract: Systems and processes for producing hydrogen using bacteria are described. One detailed process for producing hydrogen uses a system for producing hydrogen as described herein, the system including a reactor. Anodophilic bacteria are disposed within the interior of the reactor and an organic material oxidizable by an oxidizing activity of the anodophilic bacteria is introduced and incubated under oxidizing reactions conditions such that electrons are produced and transferred to the anode. A power source is activated to increase a potential between the anode and the cathode, such that electrons and protons combine to produce hydrogen gas. One system for producing hydrogen includes a reaction chamber having a wall defining an interior of the reactor and an exterior of the reaction chamber. An anode is provided which is at least partially contained within the interior of the reaction chamber and a cathode is also provided which is at least partially contained within the interior of the reaction chamber.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: February 17, 2009
    Assignees: The Penn State Research Foundation, Ion Power, Inc.
    Inventors: Bruce Logan, Stephen Grot, Thomas E. Mallouk, Hong Liu
  • Publication number: 20090038937
    Abstract: A household appliance incorporating an electrolyzer for electrolysis of water to H2 and O2 and an electrolyzer therefor. The appliance may include a burner for the hydrogen produced and an electric conductive member to provide household current to the electrolyzer. The electrolyzer comprises an outer housing defining a chamber which houses at least one cathode and at least one anode. The electrolyzer may comprise a plurality of field electrodes and the field electrodes may comprise first and second field electrodes which are electrically connected together and spaced apart to define an intra cell gap. Field electrodes may then be spaced apart to define an inter cell gap between electrodes of adjacent field electrodes. At least one of the anode and cathode may be connected to an electrically conductive member that is molded in situ in the housing and at least some of the electrodes may be configured to dimensionally stabilize the electrodes during operation of the electrolyzer.
    Type: Application
    Filed: April 4, 2006
    Publication date: February 12, 2009
    Applicant: CROPLEY HOLDINGS LTD.
    Inventor: Wayne Ernest Conrad
  • Patent number: 7470356
    Abstract: A system, device, and method include a cell-powered first electronic device for monitoring two or more electrolytic cells is powered using electrical potential imposed across the electrolytic cells. The potential is voltage-boosted to accomplish this task. If the electrical potential imposed across the cells is insufficient, the device can also be battery-powered. In any event, this device is in communication with one or more sensors in the electrolytic cells, as well as a second electronic device, and the first and second electronic devices wirelessly communicate. More specifically, the first electronic device wireless transmits data signals to the second electronic device, which receives the same. The first and second electronic devices are physically remote from one another, and they communicate over a private or public network, preferably using spread spectrum technology.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: December 30, 2008
    Assignee: Kennecott Utah Copper Corporation
    Inventors: Eugene Yanjun You, Daniel Kang Kim
  • Publication number: 20080277287
    Abstract: A device and system useful for highly efficient chemical and electrochemical reactions is described. The device comprises a preferably porous electrode and a plurality of suspended nanoparticles diffused within the void volume of the electrode when used within an electrolyte. The device is suitable within a system having a first and second chamber preferably positioned vertically or in other special arrangements with respect to each other, and each chamber containing an electrode and electrolyte with suspended nanoparticles therein. When reactive metal particles are diffused into the electrode structure and suspended in electrolyte by gasses, a fluidized bed is established. The reaction efficiency is increased and products can be produced at a higher rate. When an electrolysis device can be operated such that incoming reactants and outgoing products enter and exit from opposite faces of an electrode, reaction rate and efficiency are improved.
    Type: Application
    Filed: March 10, 2008
    Publication date: November 13, 2008
    Inventor: Robert Brian Dopp
  • Patent number: 7427339
    Abstract: The current invention relates to a means for improving heat removal from the inside of an electrochemical device to the outer surface so as to reduce thermal stresses in the device, thereby allowing for increased oxygen production. A means for conducting heat toward the outer edge is provided. The means for conducting heat comprises at least one of silver, gold, platinum, rhodium, and palladium.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: September 23, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: David Douglas Brengel, Donald Laurence Meixner, Brett Tamatea Henderson
  • Patent number: 7393440
    Abstract: The present invention provides a system for generating hydrogen gas in an aqueous solution based electrolytic or galvanic cell wherein the cathode is made from aluminum or an aluminum alloy. In a preferred arrangement the cell is a galvanic cell and cathode is made from aluminum or aluminum alloy and the anode is made from magnesium or magnesium alloy.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: July 1, 2008
    Assignee: National Research Council of Canada
    Inventors: Debabrata Ghosh, Asoke Chandra Das Chaklader, Zhaolin Tang, Zhong Xie
  • Publication number: 20080131749
    Abstract: An interconnect structure is disclosed for use in solid oxide electrolytic devices that use chrome-containing components, such as solid oxide fuel cells and solid oxide oxygen-generators. The invention provides a reliable and durable interconnect for both structural and electrical components of such devices. In general, the interconnect structure relies on a dual-layer, high-temperature seal which provides an effective diffusion barrier for both chrome and oxygen. As a result of the described interconnect, corrosion or loss in electrical conductivity in such solid oxide electrolytic devices is avoided. Also, a novel structure for such solid oxide electrolytic devices is disclosed, which provides an economical and high-integrity structure that utilizes the disclosed interconnect structure. A result of the present invention is that thin film solid oxide fuel cells and solid oxide oxygen generators may be fabricated using only metal alloys as bulk components.
    Type: Application
    Filed: October 29, 2007
    Publication date: June 5, 2008
    Inventor: Donald Bennett Hilliard
  • Publication number: 20080029389
    Abstract: A system for providing hydrogen gas is provided. The system includes a hydrogen generator that produces gas from water. One or more heat generation devices are arranged to provide heating of the enclosure during different modes of operation to prevent freezing of components. A plurality of temperature sensors are arranged and coupled to a controller to selectively activate a heat source if the temperature of the component is less than a predetermined temperature.
    Type: Application
    Filed: August 1, 2006
    Publication date: February 7, 2008
    Applicant: PROTON ENERGY SYSTEMS, INC.
    Inventors: Ken Wayne Dreier, Michael Thomas Kowalski, Stephen Charles Porter, Oscar Ken Chow, Nicholas Paul Borland, Stephen Arthur Goyette
  • Patent number: 7258779
    Abstract: A method and means for producing a combustible mixture of hydrogen and oxygen by electrolysis of water using a pulsed application of water onto electrodes while applying an electrical potential between electrodes and where the electrodes are not immersed in the water which flows between the electrodes while undergoing electrolysis.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: August 21, 2007
    Inventors: Alan Patrick Casey, Stewart Smith
  • Patent number: 7045042
    Abstract: A tank-type water electrolysis apparatus with unipolar electrodes arrangement and wherein imposed magnetic fields enhance electrolyte solution circulation, further enhanced in apparatus operation by use of immersed electrets providing partitioning structure between seperated hydrogen bubbles-producing and oxygen bubbles-producing regions in the solution. The included immersed electrets, which may be of polytetrafluoroethylene or other suitable material, perform the functions of attracting bubbles away from points of origination at the electrodes, and of promoting coelescence of smaller bubbles into larger ones of greater buoyancy.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: May 16, 2006
    Inventor: Robert N O'Brien
  • Patent number: 6994776
    Abstract: A method for filling recessed microstructures at a surface of a microelectronic workpiece, such as a semiconductor wafer, with metallization is set forth. In accordance with the method, a metal layer is deposited into the microstructures with a process, such as an electroplating process, that generates metal grains that are sufficiently small so as to substantially fill the recessed microstructures. The deposited metal is subsequently subjected to an annealing process at a temperature below about 100 degrees Celsius, and may even take place at ambient room temperature to allow grain growth which provides optimal electrical properties. Various novel apparatus for executing unique annealing processes are also set forth.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: February 7, 2006
    Assignee: Semitool Inc.
    Inventors: Thomas L. Ritzdorf, E. Henry Stevens, LinLin Chen, Lyndon W. Graham, Curt Dundas
  • Patent number: 6977120
    Abstract: A mixed hydrogen-oxygen fuel generator system uses an electrolytic solution to generate gaseous hydrogen-oxygen fuel through the electrolysis of water. This generator system includes: at least one electrolytic cell with multiple metallic plates used as an internal isolation system in which two of the plates separately connect to both the positive and negative terminal of a DC circuit. These plates are used for the electrolysis of the electrolytic solution in the cell(s) to produce, under pressure, mixed hydrogen-oxygen fuel. The apparatus also includes a cooling system containing a water cooling tank in which there are two zones: one is the electrolytic solution circulation coil and the another is a water circulation zone.
    Type: Grant
    Filed: April 5, 2004
    Date of Patent: December 20, 2005
    Inventors: Nai Sung Chou, Choi Shiu Sum, Chou Te-Hung, Hui Lin
  • Patent number: 6936143
    Abstract: A tandem cell or photoelectrochemical system for the cleavage of water to hydrogen and oxygen by visible light has two superimposed photocells, both cells being connected electrically. The photoactive material in the top cell is a semiconducting oxide placed in contact with an aqueous solution. This semiconducting oxide absorbs the blue and green part of the solar emission spectrum of a light source or light sources and generates with the energy collected oxygen and protons from water. The not absorbed yellow and red light transmits the top cell and enters a second photocell, the bottom cell, which is mounted, in the direction of the light behind, preferably directly behind the top cell. The bottom cell includes a dye-sensitized mesoporous photovoltaic film. The bottom cell converts the yellow, red and near infrared portion of the sunlight to drive the reduction of the protons, which are produced in the top cell during the photo catalytic water oxidation process, to hydrogen.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: August 30, 2005
    Assignee: Ecole Polytechnique Federale de Lausanne
    Inventors: Michael Graetzel, Jan Augustynski