Perforated Or Foraminous Patents (Class 204/284)
  • Patent number: 7118665
    Abstract: The present invention discloses a surface treatment process for enhancing both the release rate of metal ions from a sacrificial electrode, and the working life of the electrode. A high density of micro pores are formed on the surface of the sacrificial electrode. Chlorine ions are then implanted into the pores. The chlorine ions prevent a passive film from forming on the sacrificial electrode during use, in which an electric current flows through the sacrificial electrode.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: October 10, 2006
    Assignee: Industrial Technology Research Institute
    Inventors: Kon-Tsu Kin, Hong-Shiang Tang, Shu-Fei Chan, Wen-Tsang Chen
  • Patent number: 7094492
    Abstract: A polymer electrolyte fuel cell has a catalytic layer comprising a material and a polymer electrolyte, and the catalytic layer contains a fibrous material such as carbon whiskers or hydrophilic fibers. The polymer electrolyte fuel cell in the present invention having a catalytic layer comprising a catalytic material, an ion conducting material, an electron conducting material, and a void forming agent, and voids having diameters of from 60 to 1000 nm in the catalytic layer has a void volume of from 0.15 to 0.25 cm3/g.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: August 22, 2006
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Takeshi Matsubara, Katsuhiko Kohyama, Hiroshi Shinkai
  • Patent number: 7077937
    Abstract: A large surface area electrode well-suited to electrochemical applications is produced by winding many turns of a metallic fiber tow on to a sheet metal rectangle. In the preferred embodiment, an anode that can be used to purify water by electrochemical production of hydroxyl free radical is made by winding titanium fiber tow on to a rectangular substrate made of titanium sheet, and applying a suitable multilayered electrocatalytic coating. Made of other metals, an electrode of this description can also serve as the cathode of an electrochemical cell, or as a battery plaque.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: July 18, 2006
    Inventors: Oleh Weres, Henry Edward O'Donnell
  • Patent number: 7077945
    Abstract: A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900° C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable Cu—Ni—Fe anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: July 18, 2006
    Assignee: Northwest Aluminum Technologies
    Inventors: S. Craig Bergsma, Craig W. Brown, Donald R Bradford, Robert J. Barnett, Michael B. Mezner
  • Patent number: 7070878
    Abstract: A layered oxygen electrode incorporating a peroxide decomposition catalyst. The design of the oxygen electrode promotes oxygen dissociation and absorption within the oxygen electrode. The oxygen electrode has differing layers of hydrophobicity which allow chemical impregnation of the active catalyst material into the oxygen electrode where the active catalyst material is needed most.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: July 4, 2006
    Assignee: Ovonic Fuel Cell Company LLC
    Inventors: Srinivasan Venkatesan, Hong Wang, Stanford R. Ovshinsky, Boyko Aladjov, Subhash Dhar
  • Patent number: 7052586
    Abstract: We make particulates, especially magnetic Fe—Co alloys having high magnetic permeability, of controlled dimensions, especially those having a narrow thickness size distribution centered around a median or target thickness in the range of about 0.1–1.0 ?m, using electrodeposition typically on a smooth (polished) titanium cathode. Our preferred continuous process uses a rotating drum cathode inside a fixed anode to grow flakes and to produce them automatically by inherent instability in the deposited film. The drum preferably rotates about a substantially vertical axis. The particulates shed (slough off) into the electrolyte (because of mismatch between the cathode surface and the plated metal or alloy at the molecular level) where they are separated in a magnetic separator or other suitable device. If the flakes are soft iron or iron-cobalt alloys, the drum generally is titanium or titanium alloy.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: May 30, 2006
    Assignee: The Boeing Company
    Inventors: Glen L. Rasmussen, Micheal E. Dickson, Robert J. Miller, Mary J. Nelson, Jonathan C. Hughes, Diane C. Rawlings
  • Patent number: 6960406
    Abstract: A fluorinated carbon based gas diffusion layer for use in hydrogen and oxygen electrodes. The fluorinated carbon based gas diffusion layer provides for uniform distribution of hydrogen or oxygen across the electrode while maintaining a high level of hydrophobicity within the gas diffusion layer.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: November 1, 2005
    Assignee: Texaco Ovonic Fuel Cell LLC
    Inventors: Stanford R. Ovshinsky, Srinivasan Venkatesan, Hong Wang, Boyko Aladjov, Subhash Dhar
  • Patent number: 6942767
    Abstract: A reactor comprising an inlet, an outlet, and a conically spiraling fluid flow channel coupled between the inlet and the outlet. The reactor may be an electrochemical reactor comprising a fluid flow channel that spirals about an axis, the fluid flow channel comprising an anode, a cathode across from the anode, and a membrane disposed between the anode and the cathode. The reactor may have a number of design parameters that are based upon one or more reaction species and that favor the occurrence of a reaction associated with the species. The reactor may be used for the electrolysis of water or for the production of other chemical products.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: September 13, 2005
    Assignee: T-Graphic, LLC
    Inventors: David Fazzina, Jack Matthews, Steve Taracevicz
  • Patent number: 6881308
    Abstract: A method for electrochemical synthesis of ammonia gas comprising providing an electrolyte between an anode and a cathode, providing hydrogen gas to the anode, oxidizing negatively charged nitrogen-containing species present in the electrolyte at the anode to form an adsorbed nitrogen species, and reacting the hydrogen with the adsorbed nitrogen species to form ammonia. Preferably, the hydrogen gas is provided to the anode by passing the hydrogen gas through a porous anode substrate. It is also preferred to produce the negatively charged nitrogen-containing species in the electrolyte by reducing nitrogen gas at the cathode. However, the negatively charged nitrogen-containing species may also be provided by supplying a nitrogen-containing salt, such as lithium nitride, into the molten salt electrolyte mixture in a sufficient amount to provide some or all of the nitrogen consumed in the production of ammonia.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: April 19, 2005
    Assignee: Lynntech, Inc.
    Inventors: Adrian J. Denvir, Oliver J. Murphy, Alan J. Cisar, Priscilla Robertson, Kyle Uselton
  • Patent number: 6881511
    Abstract: Gas-diffusion electrodes containing modified carbon products are described wherein the modified carbon product is a carbon product having attached at least one organic group. The modified carbon product can be used for at least one component of the electrodes such as the active layer and/or the blocking layer. Methods to extend the service life of electrodes as well as methods to reduce the amount of fluorine containing compounds are also described.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: April 19, 2005
    Assignees: Cabot Corporation, Edison Termoelettrica, S.p.A.
    Inventors: Paolo Tosco, Laurent Kosbach, Yuan Yu, Claudio Orecchia
  • Patent number: 6866754
    Abstract: Acidity in water leaching from a mass of sulphide tailings is prevented by de-oxygenating the water prior to entering the mass. A cover comprising an electrolytic cell, either galvanic or impressed-current, gives rise to a cathode reaction in which the redox voltage of the water drops to 003 volts or less. The cover can be thinner, and much less expensive, than an equally-effective non-reactive cover. The electrolyte is water contained in water-retaining soil, or a depth of water, lying over the cathode. The cathode is steel mesh, or a layer of graphite, spread over the whole mass of tailings.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: March 15, 2005
    Assignee: Enpar Technologies Inc.
    Inventors: Gene Sidney Shelp, Rejean Joseph Henri Brousseau
  • Patent number: 6866828
    Abstract: A photocatalysis apparatus has at least one unit structure (2). The unit structure has a photocatalyst module (6) and a pair of discharge electrodes (5) sandwiching the photocatalyst module. The photocatalyst module includes a photocatalyst and a three-dimensional ceramic mesh base carrying the photocatalyst. At least one of the discharge electrodes is a three-dimensional discharge electrode having an electrode body (3) and a conductive frame (4). The electrode body consists of cells made of a conductive foil and has front, back, and side faces. The front and back faces are separated from each other by a predetermined distance and have a shape selected from a group including a honeycomb, a lattice, and a mesh. The side faces of the electrode body is covered with the conductive frame.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: March 15, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Noboru Segawa, Yutaka Uchida, Takeshi Imamura, Naohiko Shimura
  • Patent number: 6838408
    Abstract: A method for producing gas diffusion electrodes, in particular for use in electrolysis cells, as well as electrodes and their uses are described. A method of the present invention involves first, a sheet-like structure is produced by means of a pair of rolls by rolling a powder mixture containing at least one catalyst or a catalyst mixture and a binder, and then the sheet-like structure is connected to an electrically conductive catalyst support by rolling by means of a pair of rolls. In one embodiment the clamping force of the rolls is preferably kept constant in the range from 0.2 kN/cm to 15 kN/cm.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: January 4, 2005
    Assignee: Bayer MaterialScience AG
    Inventors: Andreas Bulan, Fritz Gestermann, Hans-Dieter Pinter, Peter Weuta, Walter Klesper
  • Publication number: 20040265677
    Abstract: A stack, to be used in a fuel cell or electrolyser, comprises a collector layer, at least one diffusion layer and at least one anchoring layer. The collector layer being a metal foil or metal plate or foamed metal sheet, the diffusion layer being a metal mesh or expanded metal sheet. An anchoring layer having a thickness of less than 0.5 mm and comprising metal fibers, is sintered between the collector layer and the diffusion layer.
    Type: Application
    Filed: July 13, 2004
    Publication date: December 30, 2004
    Inventors: Ronny Losfeld, Lieven Anaf
  • Patent number: 6835489
    Abstract: A double layered oxygen electrode impregnated with an active catalyst material and method of making. The design of the oxygen electrode promotes oxygen dissociation and absorption within the oxygen electrode. The oxygen electrode has differing layers of hydrophobicity which allow chemical impregnation of the active catalyst material into the oxygen electrode where the active catalyst material is needed most.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: December 28, 2004
    Assignee: Texaco Ovonic Fuel Cell LLC
    Inventors: Srinivasan Venkatesan, Hong Wang, Boyko Aladjov, Subhash Dhar, Stanford R. Ovshinsky
  • Publication number: 20040256223
    Abstract: In a gas diffusion electrode assembly, and in an electrolyzer using the same, a bonding piece having on at least one surface a perfluorosulfonic acid layer, a perfluorosulfonyl fluoride layer or an alky ester of perfluorocarboxylic acid layer is positioned at its perfluoro compound layer surface with respect to the gas diffusion electrode assembly. Adjacent gas diffusion electrodes are heat fusion bonded together, or heat fusion bonding is carried out using the bonding piece in a frame form. Adjacent gas diffusion electrodes are sealed up by heat fusion bonding, using a material that is similar to the material that forms the gas diffusion electrodes.
    Type: Application
    Filed: March 30, 2004
    Publication date: December 23, 2004
    Inventors: Shinji Katayama, Kiyohito Asaumi, Hiroaki Aikawa, Tsugiyoshi Osakabe, Mitsuharu Hamamori, Tatsuhito Kimura, Koji Saiki, Kenji Nonomura, Naoya Okada, Osamu Ichinose
  • Patent number: 6818107
    Abstract: The invention relates to a chemical reactor having an electrochemical cell containing a three-layer structure for the decomposition and removal of a substance treated by a chemical reaction.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: November 16, 2004
    Assignees: National Institute of Advanced Industrial Science and Technology, Fine Ceramics Research Association
    Inventors: Masanobu Awano, Yoshinobu Fujishiro, Hae Jin Hwang, Sergei Bredikhin, Kazuyuki Matsuda, Kunihiro Maeda, Takao Kanai, Motoyuki Miyata
  • Patent number: 6802946
    Abstract: An apparatus which can control thickness uniformity during deposition of conductive material from an electrolyte onto a surface of a semiconductor substrate is provided. The apparatus has an anode which can be contacted by the electrolyte during deposition of the conductive material, a cathode assembly including a carrier adapted to carry the substrate for movement during deposition, and a conductive element permitting electrolyte flow therethrough. A mask lies over the conductive element and has openings permitting electrolyte flow. The openings define active regions of the conductive element by which a rate of conductive material deposition onto the surface can be varied. A power source can provide a potential between the anode and the cathode assembly so as to produce the deposition. A deposition process is also disclosed, and uniform electroetching of conductive material on the semiconductor substrate surface can additionally be performed.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: October 12, 2004
    Assignee: NuTool Inc.
    Inventors: Bulent M. Basol, Paul Lindquist
  • Patent number: 6800828
    Abstract: Complex features and fine details in a Carbon—Carbon work piece, for example, are formed by electrical discharge machining (EDM). An electrode used in the EDM is made of a material that is mechanically and chemically compatible with Carbon—Carbon composite material.
    Type: Grant
    Filed: March 31, 2001
    Date of Patent: October 5, 2004
    Assignee: Honeywell International Inc.
    Inventor: Ilan Golecki
  • Publication number: 20040188245
    Abstract: A metal coil or an elastic cushion formed by winding the metal coil around a corrosion-resistant frame is sandwiched between an electrode and an electrode collector or a cell wall or is used as an electrode. The elasticity of the metal coil or the elastic cushion enables the easy handling and the uniform contact between the electrode and another electrolysis element. The metal coil or the elastic cushion can be also used as an elastic cathode. The elasticity of the elastic cathode also enables the easy handling of the electrode itself and the uniform contact between the ion exchange membrane and the current collector.
    Type: Application
    Filed: March 30, 2004
    Publication date: September 30, 2004
    Applicant: CHLORINE ENGINEERS CORP., LTD.
    Inventors: Shinji Katayama, Kiyohito Asaumi
  • Patent number: 6797148
    Abstract: A drained-cathode cell for the electrowinning of aluminium comprises one or more anodes (14) suspended over one or more cathodes (16). The or each anode (14) and cathode (16) respectively have a sloped V-shaped active anode surface (22) and parallel sloped inverted V-shaped drained cathode surfaces (18) facing one another and spaced apart by two sloped inter-electrode gaps (20), arranged so the electrolyte circulates upwardly in the sloped inter-electrode gaps (20) assisted by anodically produced gas and then returns from a top part (22′) to a bottom part (22″) of each inter-electrode gap (20) along an electrolyte path (26,27,36,37).
    Type: Grant
    Filed: April 27, 2002
    Date of Patent: September 28, 2004
    Assignee: Moltech Invent S.A.
    Inventor: Vittorio De Nora
  • Patent number: 6797136
    Abstract: The present invention relates to a retrofitted electrolytic cell and a method for retrofitting an electrolytic cell comprising an anode and a cathode compartment, a separator partitioning the compartments, said cathode compartment comprising a hydrogen evolving cathode. The method comprises making at least one substantially horizontal slit in the hydrogen evolving cathode resulting in plural cathode members, bending the edge of at least one cathode member at the slit away from the separator, arranging a gas diffusion electrode to the cathode members on the side facing the separator, and arranging an electrolyte layer to the gas diffusion electrode. The invention also relates to the use of a retrofitted electrolytic cell.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: September 28, 2004
    Assignee: Akzo Nobel N.V.
    Inventor: Takayuki Shimamune
  • Publication number: 20040182695
    Abstract: A method for producing gas diffusion electrodes, in particular for use in electrolysis cells, as well as electrodes and their uses are described. A method of the present invention involves first, a sheet-like structure is produced by means of a pair of rolls by rolling a powder mixture containing at least one catalyst or a catalyst mixture and a binder, and then the sheet-like structure is connected to an electrically conductive catalyst support by rolling by means of a pair of rolls. In one embodiment the clamping force of the rolls is preferably kept constant in the range from 0.2 kN/cm to 15 kN/cm.
    Type: Application
    Filed: April 2, 2004
    Publication date: September 23, 2004
    Inventors: Andreas Bulan, Fritz Gestermann, Hans-Dieter Pinter, Peter Weuta, Walter Klesper
  • Publication number: 20040168922
    Abstract: A system for producing metal particles using a discrete particle electrolyzer cathode, a discrete particle electrolyzer cathode, and methods for manufacturing the cathode. The cathode has a plurality of active zones on a surface thereof at least partially immersed in a reaction solution. The active zones are spaced from one another by between about 0.1 mm and about 10 mm, and each has a surface area no less than about 0.02 square mm. The cathode is spaced from an anode also at least partially immersed in the reaction solution. A voltage potential is applied between the anode and cathode. Metal particles form on the active zones of the cathode. The particles may be dislodged from the cathode after they have achieved a desired size. The geometry and composition of the active zones are specified to promote the growth of high quality particles suitable for use in metal/air fuel cells. Cathodes may be formed from bundled wire, machined metal, chemical etching, or chemical vapor deposition techniques.
    Type: Application
    Filed: April 24, 2003
    Publication date: September 2, 2004
    Inventors: Stuart I. Smedley, Martin De Tezanos Pinto, Stephen R. des Jardins, Donald James Novkov, Ronald Gulino
  • Patent number: 6761809
    Abstract: An electrically regeneratable battery of electrochemical cells for capacitive deionization (including electrochemical purification) and regeneration of electrodes is operated at alternate polarities during consecutive cycles. In other words, after each regeneration step operated at a given polarity in a deionization-regeneration cycle, the polarity of the deionization step in the next cycle is maintained. In one embodiment, two end electrodes are arranged one at each end of the battery, adjacent to end plates. An insulator layer is interposed between each end plate and the adjacent end electrode. Each end electrode includes a single sheet of conductive material having a high specific surface area and sorption capacity, preferably a sheet formed of carbon aerogel composite. The battery further includes a plurality of generally identical double-sided intermediate electrodes that are equidistally separated from each other, between the two end electrodes.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: July 13, 2004
    Assignee: The Regents of the University of California
    Inventors: Tri D. Tran, David J. Lenz
  • Patent number: 6733913
    Abstract: This invention is an improved fuel cell design for use at low pressure. The invention has a reduced number of component parts to reduce fabrication costs, as well as a simpler design that permits the size of the system to be reduced at the same time as performance is being improved. In the present design, an adjacent anode and cathode pair are fabricated using a common conductive element, with that conductive element serving to conduct the current from one cell to the adjacent one. This produces a small and simple system suitable for operating with gas fuels or alternatively directly with liquid fuels, such as methanol, dimethoxymethane, or trimethoxymethane. The use of these liquid fuels permits the storage of more energy in less volume while at the same time eliminating the need for handling compressed gases which further simplifies the fuel cell system.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: May 11, 2004
    Assignee: Lynntech, Inc.
    Inventors: Alan J. Cisar, Dacong Weng, Oliver J. Murphy
  • Publication number: 20040084303
    Abstract: An electrochemical device (18) for generating a desired gas of the type includes an ionically conductive electrolyte layer (20), a porous electrode layer (22), and a current collector layer (16) that has a high electrical conductivity and is porous to a desired gas (24) generated by the electrochemical device (18). The current collector layer (16) is substantially formed as a film comprised of a layer of spherical refractory material objects (26) having a conductive coating (12) of a precious metal. The coated spherical objects (26) have a desired diameter (28) making them suitable for forming into the film.
    Type: Application
    Filed: December 2, 2002
    Publication date: May 6, 2004
    Applicant: Litton Systems, Inc.
    Inventors: Scott R. Sehlin, Courtney J. Monzyk
  • Publication number: 20040069621
    Abstract: The present invention relates to an electrochemical cell suitable for a membrane electrolysis process, comprising (i) at least one anode compartment having a metal electrode, (ii) a cathode compartment having a gas diffusion electrode (iii) and an ion exchange membrane arranged between the anode compartment and the cathode compartment. The metal electrode that functions as an anode is capable of being dipped into an electrolyte during use and is provided with one or more orifices for the passage of gas formed during operation. The metal electrode can optionally be angled and/or curved, and the orifices preferably have guide structures that conduct the gas formed to a side of the metal electrode that faces away from the cathode. The present invention also relates to electrodes per se as well as methods for use of electrodes and electrochemical cells.
    Type: Application
    Filed: July 9, 2003
    Publication date: April 15, 2004
    Applicant: Bayer Aktiengesellschaft
    Inventors: Fritz Gestermann, Andreas Bulan, Richard Malchow, Hans-Dieter Pinter, Walter Klesper
  • Patent number: 6716551
    Abstract: In a method of manufacturing a fluid diffusion layer for a solid polymer electrolyte fuel cell, a surface of the fluid diffusion layer is abraded so that the topography of the fluid diffusion layer surface is rendered more uniform. The fluid diffusion layer comprises a porous substrate, and may also comprise a carbon-containing sublayer, as well as hydrophobic material. The particles formed by the abrading operation may be deposited into at least some of the pores of the substrate to form a support structure for the direct depositing of a catalyst onto the abraded surface.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: April 6, 2004
    Assignee: Ballard Power Systems Inc.
    Inventors: Volker Peinecke, Jorg von der Osten-Fabeck, John Robert Gordon, Herwig Robert Haas
  • Publication number: 20040045833
    Abstract: This specification discloses a thin-film gas diffusion electrode (GDE) and the method for making the same. The thin-film GDE is formed in a unitary way. A dual-nature porous thin film is used as the substrate. A surface processing is performed to make one surface of the thing film hydrophlic while the other surface hydrophobic. The hydrophlic area serves as the active layer for electrochemical reactions after chemical processing. The hydrophobic area is kept dry to form a smooth gas channel, functioning as a gas diffusion layer. In this method, the thin-film GDE is free from the use of binders and high-temperature high-pressure manufacturing processes.
    Type: Application
    Filed: April 21, 2003
    Publication date: March 11, 2004
    Inventors: Wen-Chin Li, Shu-Chin Chou, Shinn-Horng Yeh, Kuan-Liang Chen, Kun-Lung Hsien, Min-Lun Chen
  • Patent number: 6656870
    Abstract: A tungsten-containing fuel cell catalyst having high electrochemical activity and its method of making are described. The tungsten-containing catalyst may be formed in situ in a fuel cell after the fuel cell is assembled.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: December 2, 2003
    Assignee: Osram Sylvania Inc.
    Inventors: Joel B. Christian, Robert G. Mendenhall
  • Patent number: 6649300
    Abstract: An electrode catalyst for fuel cells which comprises a conductive carbon, platinum supported on the conductive carbon in an amount of from 20% by mass to 70% by mass based on the mass of the catalyst, and oxygen bonded chemically to the conductive carbon and present in the range of from 0.7 to 3 in atomic ratio to the platinum. The present electrode catalyst can attain a high activity because the platinum crystallite diameter has been kept small even when the platinum is supported in a large quantity in the amount more than 20% by mass. The catalyst is useful in fuel cells, e.g., solid polymer electrolyte fuel cells.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: November 18, 2003
    Assignee: N.E. Chemcat Corporation
    Inventors: Takashi Ito, Masahai Endou
  • Patent number: 6630059
    Abstract: The present invention relates to methods and apparatus for plating a conductive material on a semiconductor substrate by rotating pad or blade type objects in close proximity to the substrate, thereby eliminating/reducing dishing and voids. This is achieved by providing pad or blade type objects mounted on cylindrical anodes or rollers and applying the conductive material to the substrate using the electrolyte solution disposed on or through the pads, or on the blades. In one embodiment of the invention, the pad or blade type objects are mounted on the cylindrical anodes and rotated about a first axis while the workpiece may be stationary or rotate about a second axis, and metal from the electrolyte solution is deposited on the workpiece when a potential difference is applied between the workpiece and the anode. In another embodiment of the present invention, the plating apparatus includes an anode plate spaced apart from the cathode workpiece.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: October 7, 2003
    Assignee: Nutool, Inc.
    Inventors: Cyprian Emeka Uzoh, Homayoun Talieh, Bulent Basol, Douglas W. Young
  • Patent number: 6630268
    Abstract: Gas-diffusion electrodes containing modified carbon products are described wherein the modified carbon product is a carbon product having attached at least one organic group. The modified carbon product can be used for at least one component of the electrodes such as the active layer and/or the blocking layer. Methods to extend the service life of electrodes as well as methods to reduce the amount of fluorine containing compounds are also described.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: October 7, 2003
    Assignees: Cabot Corporation, Edison Termoelettrica S.p.A.
    Inventors: Paolo Tosco, Laurent Kosbach, Yuan Yu, Claudio Orecchia
  • Publication number: 20030127321
    Abstract: The invention concerns a microporous diaphragm obtainable by filtering through a porous support, an aqueous dispersion free of asbestos fibres and titanate fibres, comprising organic fibres, at least a binding agent selected among halogenated polymers, at least a pore-forming agent and mineral particles with non-fibrous structure. The invention also concerns a combination comprising said diaphragm and a fibrous mat obtainable by filtration deposit through a porous support of a dispersion comprising fibres whereof part is electrically conductive, at least a binding agent selected among halogenated polymers, at least an electrolytic agent, at least a pore-forming agent. The invention further concerns the preparation of the diaphragm and the combination, and the use thereof to obtain an alkali metal hydroxide solution by electrolysis of aqueous alkali metal halide solutions.
    Type: Application
    Filed: September 13, 2002
    Publication date: July 10, 2003
    Inventors: Jean-Guy Le Helloco, Jean-Maurice Perineau
  • Patent number: 6589404
    Abstract: The electrolytic cell has a trough-like container with a bottom, with side walls and with at least one inlet and at least one outlet for the electrolyte. Numerous plate-like electrodes are disposed in the container and are partly immersed in an electrolyte bath. The bottom of the container which is in contact with the electrolyte bath has numerous openings for the passage of electrolyte, and below the bottom there is disposed at least one distribution chamber for recirculated electrolyte. At least one of the side walls of the container is equipped with at least one recirculation chamber for recirculating electrolyte from the electrolyte bath into the distribution chamber, the upper portion of the recirculation chamber being connected with the electrolyte bath and the lower portion of the recirculation chamber communicating with the distribution chamber.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: July 8, 2003
    Assignee: MG Technologies AG
    Inventors: Nikola Anastasijevic, Stefan Laibach, Reinhard Dobner, Helmut Schatton
  • Patent number: 6589406
    Abstract: The invention is relative to an electrode for gas evolution in electrolytic and electrometallurgical industrial applications, made of a metal substrate having a surface morphology characterized by a combination of micro-roughness and macro-roughness which favors high adherence of a superficial catalytic layer in order to prevent detachment of the same and passivation of the substrate even under critical operating conditions.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: July 8, 2003
    Assignee: De Nora Elettrodi S.p.A.
    Inventors: Rubén Ornelas Jacobo, Giuseppe Faita, Lawrence Gestaut, Corrado Mojana
  • Patent number: 6585868
    Abstract: This invention relates to a reduced water producing apparatus, which can mass-produce reduced water, wherein oxidation-reduction potential maintains for a long period successively, from not only industrial water, natural water but pure water speedily and inexpensively, and that suited for industrial mass production of reduced water. The apparatus have a water tank, at least one electrode plate unit, and a voltage impressing means for impressing high-frequency alternating voltage, wherein the electrode plate unit includes two alternating electrode plates in which alternating voltages impressed by the voltage impressing means are varied to be modulated waves of mutually opposite phases and a ground electrode plate arranged to oppose the two alternating electrode plates, and wherein surfaces of these electrode plates are formed of titanium or platinum.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: July 1, 2003
    Assignee: Japan Matex Kabushiki Kaisha
    Inventor: Yasutaka Chihara
  • Patent number: 6576110
    Abstract: An anode is configured to be used within a metal film plating apparatus. The anode has a substantially planar electric field generating portion and an electrolyte solution chemical reaction portion. The planar electric field generating portion is coated with an inert material that is impervious to the electrolyte solution. In one embodiment, the anode is formed as a perforated anode. In one aspect, the electric field generating portion is formed contiguous with the electrolyte solution chemical reaction portion. In another aspects, the planar electric field generating portion is formed as a distinct member from the electrolyte solution chemical reaction portion.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: June 10, 2003
    Assignee: Applied Materials, Inc.
    Inventor: Dan Maydan
  • Patent number: 6569296
    Abstract: A grid anode for cathodic protection of steel reinforced concrete structures formed of multiple valve metal strips including multiple electric current-carrying valve metal strips. Valve metal strip grid anodes without an electrocatalytic metal surface can be used in a cathodic protection system operated at an anode current density up to about 20 milliamps per square foot. Composite anodes having an electrocatalytic metal coating are useful at higher anode current densities.
    Type: Grant
    Filed: January 30, 1996
    Date of Patent: May 27, 2003
    Inventors: John William Burgher, Dennis F. Dong, Richard Eric Loftfield
  • Patent number: 6562229
    Abstract: A metal anode useful in a galvanic or impressed current cathodic protection system for a steel reinforced concrete article is a unitary, multi-plane, porous, metal anode strip or ribbon having a plurality of louvers defining a plane or planes at the lateral extremities of said louvers. In one embodiment, louvers extending in their long dimension longitudinally on the anode strip are spaced apart from adjacent louver units by an intermediate plane. Louvered anode strips consisting of a valve metal or alloy or mixture thereof are useful at an anode current density of up to about 20 milliamps per square foot. Louvered metal anodes comprising an electrocatalytically active coating on a valve metal substrate are useful at higher anode current densities. Sacrificial metal anodes such as zinc anodes are useful in galvanic cathodic protection systems.
    Type: Grant
    Filed: May 12, 1997
    Date of Patent: May 13, 2003
    Inventors: John W. Burgher, Dennis F. Dong, Richard E. Loftfield
  • Patent number: 6558525
    Abstract: A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900° C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: May 6, 2003
    Assignee: Northwest Aluminum Technologies
    Inventors: Donald R. Bradford, Robert J. Barnett, Michael B. Mezner
  • Patent number: 6544391
    Abstract: A reactor assembly for electrochemically processing a microelectronic workpiece is set forth. The reactor assembly includes a processing bowl having one or more fluid inlets through which a flow of processing fluid is received. An electrode assembly is located within the process bowl in a fluid flow path of the fluid provided through the one or more fluid inlets. The electrode assembly includes a mesh electrode and a diffuser disposed in the fluid flow path prior to the mesh electrode to tailor the flow of processing fluid received from the one or more fluid inlets through the mesh electrode in a predetermined manner.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: April 8, 2003
    Assignee: Semitool, Inc.
    Inventor: Steven L. Peace
  • Publication number: 20030062259
    Abstract: A plurality of polarizable electrodes, a laminate of a collector layer, a polarizable electrode layer of a porous sheet, and a carbon-based conductive material interposed therebetween, are disposed in a row arrangement, interposing separators between the polarizable electrodes, and an electrolyte is packed between said polarizable electrodes and said separators; the carbon-based conductive material penetrating into the voids in the polarizable electrode layers. A process is provided whereby the polarizable electrode is manufactured by applying a conductive material solution to the collector and/or polarizable electrode sheet surface, superposing the two, and then evaporating out the dispersion medium of the conductive material solution.
    Type: Application
    Filed: April 1, 2002
    Publication date: April 3, 2003
    Inventors: Naofumi Mushiake, Koshi Inoue, Robert L. Sassa
  • Patent number: 6527923
    Abstract: An electrode of use in electrolytic cells, particularly water electrolyser cells for the production of hydrogen, and comprising an electrically conductive first metal sheet having an electrochemically active gas-evolving planar surface; an electrically conductive second metal electrochemically active gas-evolving screen intimately adjacent and parallel to the planar surface to define an electrolyte and gas-evolving chamber between the sheet and the screen having a narrow width. The electrode provides improvements in voltage and efficiency, longer-term electrode stability and opportunity for periodic depolarization.
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: March 4, 2003
    Inventors: Donald W. Kirk, John W Graydon
  • Publication number: 20030019758
    Abstract: Improved methods and devices for the synthesis of hydrogen peroxide employing redox catalysts in a gas diffusion electrode or membrane electrode assembly in a semi-chemical/electrochemical system for the production of high purity, stable, usually acidic, aqueous solutions of peroxide at high conversion efficiencies without requiring organic solvents.
    Type: Application
    Filed: July 19, 2002
    Publication date: January 30, 2003
    Applicant: The Electrosynthesis Company, Inc.
    Inventor: Ramanathan Gopal
  • Patent number: 6511768
    Abstract: This invention relates to electrode substrates for electrochemical cells, particularly low-temperature fuel cells, and processes for their production. Graphitized fiber web structures are used that have a preferred non-planar fiber alignment resulting in high through-plane conductivity. These structures are further impregnated and processed to adjust the final product properties.
    Type: Grant
    Filed: March 1, 2001
    Date of Patent: January 28, 2003
    Assignee: SGL Carbon AG
    Inventors: Victor Trapp, Peter Wilde, Heiko Leinfelder
  • Publication number: 20030010649
    Abstract: An anode structure suitable for an electrochemical process is disclosed. The anode comprises a primary anode structure, also referred to as an anode frame, and a secondary metal substrate attached to the anode frame. The anode frame is a structural support and suitable electrical conductor. The metal substrate has an electrocatalytic coating and provides the anode with an anodic surface. The metal substrate is easily removable from the anode frame. Also disclosed is a method for refurbishing anodes according to the present invention. An anode comprising an anode frame and a metal substrate is refurbished by removing a depleted metal substrate from the frame and attaching a separate precoated metal substrate to the frame. The method of refurbishing optionally includes refurbishing the depleted metal substrate and using the refurbished substrate to refurbish the anode structure. A method for providing replacement anodes is also disclosed.
    Type: Application
    Filed: July 16, 2001
    Publication date: January 16, 2003
    Inventors: Michael D. Waite, E. Michael Horonzy
  • Patent number: 6503377
    Abstract: An electrolysis apparatus for producing halogen gases from aqueous alkali halide solution, having a number of plate-like electrolysis cells which are arranged beside one another in a stack and are in electrical contact and which each have a housing comprising two half-shells of electrically conductive material with external contact strips on at least one housing rear wall, and in each case having two essentially flat electrodes (anode and cathode) and the anode and cathode being provided with apertures like venetian blinds for the electrolysis starting materials and the electrolysis products to flow through, being separated from one another by a dividing wall and arranged parallel to one another and being electrically conductively connected to the respective associated rear wall of the housing by means of metal reinforcements, is intended to provide a solution with which, even at current densities above 4 kA/m2 and correspondingly increased production of gas in the boundary layer, it is possible to operate wh
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: January 7, 2003
    Assignee: Krupp UHDE GmbH
    Inventors: Thomas Borucinski, Jürgen Gegner, Karl-Heinz Dulle, Martin Wollny
  • Patent number: 6503655
    Abstract: A thin, flat, and porous carbon gas diffusion electrode having a side in contact with a supply of gas and a side in contact with an electrolyte, comprises a pyrolysis product of a composite of an organic aerogel or xerogel and a reinforcing skeleton consisting at least in part of organic material. The porosity of the carbon gas diffusion electrode according to the invention can be regulated at will while the surface of the electrode is smooth.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: January 7, 2003
    Assignee: Siemens Aktiengesellschaft
    Inventors: Raino Petricevic, Jochen Fricke, Rainer Leuschner, Matthias Lipinski