Composition Patents (Class 204/291)
  • Patent number: 11784302
    Abstract: Lithium-metal batteries with improved dimensional stability are presented along with methods of manufacture. The lithium-metal batteries incorporate an anode cell that reduces dimensional changes during charging and discharging. The anode cell includes a container having a first portion and a second portion to form an enclosed cavity. The first portion is electrically-conductive and chemically-stable to lithium metal. The second portion is permeable to lithium ions and chemically-stable to lithium metal. The anode cell also includes an anode comprising lithium metal and disposed within the cavity. The anode is in contact with the first portion and the second portion. The cavity is configured such that volumetric expansion and contraction of the anode during charging and discharging is accommodated entirely therein.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: October 10, 2023
    Assignee: Apple Inc.
    Inventors: Bernd J. Neudecker, Shawn W. Snyder, Richard M. Mank
  • Patent number: 11688533
    Abstract: A chip resistor structure includes a substrate; a pair of first electrodes disposed opposite to each other on a first surface of the substrate at a first interval; a resistance layer disposed between the pair of first electrodes on the first surface; a spacer layer made of a material having a composition different from that of the resistance layer, disposed over the pair of first electrodes; a protective layer overlying the resistance layer; and a plating layer electroplated onto the pair of first electrodes and the spacer layer, and having ends extending beyond the pair of first electrodes terminate at least over the spacer layer. The plating layer may be joined with or spaced from or climb up to the protective layer on or above the spacer layer.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: June 27, 2023
    Assignee: CYNTEC CO., LTD.
    Inventors: Hsiu-Yu Chang, Chao-Ting Lin
  • Patent number: 11650191
    Abstract: An in-situ measurement apparatus automatically draws aqueous samples on an intermittent or ad-hoc basis and measures specific metal specie concentration. The apparatus can perform both raw measurement of specific metal specie, as well as processing to convert other species of the same metal to the specific metal specie or to destroy or remove unwanted masking agents (e.g. organics). In one application, “dirty” water from a scrubber is measured for Se(IV) presence (using a renewable voltametric system), both with and without the masking agents present; in addition, selective processing converts other selenium species to Se(IV), permitting assessment of total selenium and measurement of Se(VI) presence. Automated reactions can then be taken to remove detected toxic substances from waste water without excess reliance on treatment chemicals, and so as to ensure that only water complaint with regulatory standards is released into the environment.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: May 16, 2023
    Assignee: AMS Trace Metals, Inc.
    Inventors: Harmesh K. Saini, Vladimir Dozortsev
  • Patent number: 11643746
    Abstract: An electrode for electrolytic processes, in particular to an anode suitable for oxygen evolution having a valve metal substrate, a catalytic layer, a protection layer consisting of oxides of valve metals interposed between the substrate and the catalytic layer and an outer coating of oxides of valve metals. The electrode is particularly suitable for processes of cathodic electrodeposition of chromium from an aqueous solution containing Cr (III).
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: May 9, 2023
    Assignee: INDUSTRIE DE NORA S.P.A.
    Inventors: Alice Calderara, Luciano Iacopetti, Fabio Timpano
  • Patent number: 11613502
    Abstract: Disclosed herein is a ceramic particle comprising a core substrate chosen from yttria-stabilized zirconia, partially stabilized zirconia, zirconium oxide, aluminum nitride, silicon nitride, silicon carbide, and cerium oxide, and a conformal coating of a sintering aid film having a thickness of less than three nanometers and covering the core substrate, and methods for producing the ceramic particle.
    Type: Grant
    Filed: November 4, 2017
    Date of Patent: March 28, 2023
    Assignee: The Regents of the University of Colorado
    Inventors: Christopher Bartel, Alan W. Weimer, Rebecca Jean O'Toole, Maila Kodas
  • Patent number: 11563100
    Abstract: Embodiments of the present disclosure provide a thin film transistor, a method for manufacturing a thin film transistor, an array substrate, a display panel, and a display device. The thin film transistor includes: a base substrate; an active layer, an insulating layer, and a source-drain layer sequentially stacked on the base substrate, wherein the source-drain layer is electrically connected to the active layer through a via hole penetrating the insulating layer; and a transition layer arranged between the source-drain layer and the active layer at a position of the via hole, wherein the transition layer covers a bottom of the via hole and covers at least part of a sidewall of the via hole, and the transition layer comprises elements of the active layer and elements of a part of the source-drain layer, the part of the source-drain layer being in contact with the transition layer.
    Type: Grant
    Filed: May 25, 2020
    Date of Patent: January 24, 2023
    Assignees: CHENGDU BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Zheng Bao, Gong Chen, Yanxia Xin, Hongwei Hu, Yihao Wu, Yiyang Zhang, Guangzhou Zhao
  • Patent number: 11512399
    Abstract: An electrode of a chemical cell includes a substrate having a surface, an array of conductive projections supported by the substrate and extending outward from the surface of the substrate, each conductive projection of the array of conductive projections having a semiconductor composition for reduction of carbon dioxide (CO2) in the chemical cell, and a catalyst arrangement disposed along each conductive projection of the array of conductive projections, the catalyst arrangement including a copper-based catalyst and an iron-based catalyst for the reduction of carbon dioxide (CO2) in the chemical cell.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: November 29, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Pengfei Ou, Jun Song, Baowen Zhou, Zetian Mi
  • Patent number: 11428659
    Abstract: The invention relates to a hydrogen sensor (8) and a method for its production, a measuring device (2), and a method for measuring a hydrogen concentration. The hydrogen sensor (8) for measuring a hydrogen concentration in an environment (4) includes a substrate (10) on which a hydrogen-absorbing sensor medium (14) is applied as a thin film in a sensor region (12) communicating with the environment. The sensor medium (14) changes its volume depending on a hydrogen concentration in the sensor medium (14), and said change of the volume causes a variation of a mechanical strain introduced by the sensor medium (14) in the substrate (10). In a preferred embodiment, the substrate (10) of the hydrogen sensor (8) is a piezoresistive semiconductor, at least within the sensor region (12).
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: August 30, 2022
    Assignee: Materion GmbH
    Inventor: Marion Wienecke
  • Patent number: 11362371
    Abstract: A method for manufacturing a battery component includes unrolling a polymer foil from a roll; forming windows into the unrolled polymer foil; and placing a battery cell component over each window. The battery cell component advantageously can be a solid-state electrolyte functioning as a separator, which is thereby well protected for handling and in later use.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: June 14, 2022
    Assignees: VOLKSWAGEN AG, AUDI AG, DR. ING. H.C. F. PORSCHE
    Inventors: Mirko Herrmann, Angela Speidel, Rouven Scheffler
  • Patent number: 10976294
    Abstract: An in-situ measurement apparatus automatically draws aqueous samples on an intermittent or ad-hoc basis and measures specific metal specie concentration. The apparatus can perform both raw measurement of specific metal specie, as well as processing to convert other species of the same metal to the specific metal specie or to destroy or remove unwanted masking agents (e.g. organics). In one application, “dirty” water from a scrubber is measured for Se(IV) presence (using a renewable voltametric system), both with and without the masking agents present; in addition, selective processing converts other selenium species to Se(IV), permitting assessment of total selenium and measurement of Se(VI) presence. Automated reactions can then be taken to remove detected toxic substances from waste water without excess reliance on treatment chemicals, and so as to ensure that only water complaint with regulatory standards is released into the environment.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: April 13, 2021
    Assignee: AMS Trace Metals, Inc.
    Inventors: Harmesh K. Saini, Vladimir Dozortsev
  • Patent number: 10862100
    Abstract: A method of forming an electrode in an electrochemical battery comprises: coating a reticulated substrate with a conductive material; curing the reticulated substrate coated with the conductive material; and electroplating the reticulated substrate coated with the conductive material with a desired metal material.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: December 8, 2020
    Inventors: Alvin Snaper, Jonathan Jan
  • Patent number: 10811166
    Abstract: Embodiments of the present disclosure pertain to methods of making conductive films by associating an inorganic composition with an insulating substrate, and forming a porous inorganic layer from the inorganic composition on the insulating substrate. The inorganic layer may include a nanoporous metal layer, such as nickel fluoride. The methods of the present disclosure may also include a step of incorporating the conductive films into an electronic device. The methods of the present disclosure may also include a step of associating the conductive films with a solid electrolyte prior to its incorporation into an electronic device. The methods of the present disclosure may also include a step of separating the inorganic layer from the conductive film to form a freestanding inorganic layer. Further embodiments of the present disclosure pertain to the conductive films and freestanding inorganic layers.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: October 20, 2020
    Assignee: WILLIAM MARSH RICE UNIVERSITY
    Inventors: James M. Tour, Yang Yang, Gedeng Ruan
  • Patent number: 10774434
    Abstract: The present invention relates to nonferrous metallurgy, in particular to the process equipment for electrolytic production of primary aluminum, namely to methods for lining cathode assemblies of reduction cells. The method for lining a cathode assembly of a reduction cell for production of aluminum comprises filling a cathode assembly shell with a thermal insulation layer, forming a fire-resistant layer followed by the compaction of layers, installing bottom and side blocks followed by sealing joints therebetween with a cold ramming paste. According to the first embodiment of the present invention, a resilient element made of a dense organic substance is placed between the thermal insulation layer and the fire-resistant layer. According to the second embodiment of the present invention, a flexible graphite foil is placed between the thermal insulation layer and the fire-resistant layer, and under the flexible graphite foil, a resilient element made of a dense organic substance is placed.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: September 15, 2020
    Assignee: United Company Rusal Engineering and Technology Centre LLC
    Inventors: Aleksandr Vladimirovich Proshkin, Vitalij Valer'evich Pingin, Samuil Yakovlevich Levenson, Andrej Gennad'evich Sbitnev, Aleksej Vasil'evich Morozov, Aleksej Sergeevich Zherdev
  • Patent number: 10758144
    Abstract: An electrode for cardiac signal sensing includes an intermediate layer, an iridium-containing layer, an iridium oxide layer, an insulating polymer layer, and a conductive layer formed on a flexible polymer substrate. The intermediate metal layer has a first portion and a second portion, and is formed on the conductive layer. The iridium-containing layer includes at least 50 wt. % iridium and has a first portion and a second portion, and is formed on the first portion of the intermediate metal layer. The iridium oxide layer is formed on the first portion of the iridium-containing layer. The insulating polymer layer is formed on the second portion of the intermediate metal layer and the second portion of the iridium-containing layer. The iridium-containing layer is not formed on the second portion of the intermediate metal layer; and the iridium oxide layer is not formed on the second portion of the iridium-containing layer.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: September 1, 2020
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Gregory Sallee, Kenneth L. Gunter, Danielle Frankson, Patrick A. Merriam, Edward J. Maierhofer, Matthew P. Jones
  • Patent number: 10615462
    Abstract: The present specification relates to a lithium-sulfur battery including an anode, a cathode, and an electrolyte provided between the anode and the cathode, and a battery module including the same.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: April 7, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Intae Park, Changhun Park, Seongeun Park, Yoonsoo Jung
  • Patent number: 10519556
    Abstract: The present invention provides a process for recycling waste carbide, wherein the waste carbide is directly used as anode and electrolyzed in the molten salt, comprising the following steps: 1) the vacuum dehydrating of the molten salt electrolyte; 2) electrolyzing the waste carbide, which is used as anode, and an inert electrode, which is used as cathode in the molten salt electrolyte with the electrolysis temperature of 350˜1000° C.; 3) separating and collecting the metal powder obtained by electrolysis from molten salt medium. According to the technical solutions of the present invention, tungsten and cobalt ions can be dissolved from the anode material-waste carbide directly into the molten salt medium and deposited on the cathode plate with being driven by the electrolysis voltage, to obtain the metal powder particles. The tungsten, cobalt and other products obtained by electrolysis can be used as carbide materials, high temperature structural materials, weapons materials, photocatalytic materials, etc.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: December 31, 2019
    Assignee: BEIJING UNIVERSITY OF TECHNOLOGY
    Inventors: Zuoren Nie, Xiaoli Xi
  • Patent number: 10312524
    Abstract: The present invention provides a means for improving the output performance of a battery. An electrical connection structure of the present invention includes a current collector which includes a conductive resin layer containing a polymer material and a conductive filler and a conductive member which is in electrical contact with the conductive filler.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: June 4, 2019
    Assignees: NISSAN MOTOR CO., LTD., SANYO CHEMICAL INDUSTRIES, LTD.
    Inventors: Yasuhiko Ohsawa, Hajime Satou, Hiroshi Akama, Hideaki Horie, Yusuke Mizuno, Hiroshi Fukumoto, Masatoshi Okura, Yasuhiro Shindo, Yasuhiro Tsudo
  • Patent number: 10079382
    Abstract: A method of forming an electrode in an electrochemical battery comprises: coating a reticulated substrate with a conductive material; curing the reticulated substrate coated with the conductive material; and electroplating the reticulated substrate coated with the conductive material with a desired metal material.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: September 18, 2018
    Inventors: Alvin Snaper, Jonathan Jan
  • Patent number: 10056643
    Abstract: The invention relates to a battery comprising at least a cathode current collector, a cathode, a separator, an electrolyte, an anode and an anode current collector, the cathode being disposed between the cathode current collector and the separator, and the anode being disposed between the separator and the anode current collector, the battery further comprising a sealing gasket disposed on the periphery of the cathode, of the anode and of the separator and connecting the inner peripheral edge of the cathode current collector to the inner peripheral edge of the anode current collector. Said sealing gasket is at least partly made of a viscoelastic elastomeric material.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: August 21, 2018
    Assignee: The Swatch Group Research and Development Ltd
    Inventors: Michael Stalder, Olga Reinauer, Fredy Zullig
  • Patent number: 9951413
    Abstract: A target of a nominal thickness includes molybdenum. The target has a lamellar microstructure and an oxygen content of less than 1000 ppm, preferably less than 600 ppm, and even more preferably less than 450 ppm. An electrical resistivity of the target is less than five times, preferably three times and more preferably twice the theoretical electrical resistivity of the compound.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: April 24, 2018
    Assignee: SAINT-GOBAIN COATING SOLUTIONS
    Inventor: Dominique Billieres
  • Patent number: 9850392
    Abstract: Non-aqueous ink composition for liquid ink jet printing including: a vehicle comprising one or more organic solvent(s) liquid at ambient temperature, or one or more organic compound(s) solid at ambient temperature and liquid at the projection temperature; one or more dye(s) and/or pigment(s); a binder, comprising at least one binding resin consisting of a copolymer of vinylidene chloride and of at least one other monomer, in solution at ambient temperature in the organic solvent(s) or in solution at the projection temperature in the organic compound(s). A method for marking substrates, supports or objects includes projection onto the substrates, supports or objects of the ink composition by a liquid ink jet printing technique. A substrate, support or object, particularly flexible substrate, is provided with a marking obtained by drying and/or absorption of the composition.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: December 26, 2017
    Assignee: MARKEM-IMAJE HOLDING
    Inventor: Pierre De Saint-Romain
  • Patent number: 9802153
    Abstract: Disclosed herein is a system and method for sulphur-assisted carbon capture and utilization. The system includes a sulphur depolarized electrolyser (SDE) for receiving electricity, H2O and SO2 and for electrolysing the H2O and SO2 to produce hydrogen and sulphuric acid (H2SO4), a decomposition reactor for receiving and decomposing the H2SO4 into SO3 and H2O, wherein the H2O is recycled to the SDE, a sulphur submerged combustor for converting the SO3 to SO2 and producing Sn vapor, a sulphur power plant for combusting Sn vapor to produce SO2, electricity and heat and for supplying the SO2 and the electricity to the SDE and for supplying the heat to the decomposition reactor. The hydrogen is delivered to a carbon capture and utilization facility. An optional Flue Gas Desulphurisation (FGD) regenerable system removes SO2 from flue gas, a CO2 converter generates COS, and a separator separates the COS from the flue gas.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: October 31, 2017
    Inventor: Bogdan Wojak
  • Patent number: 9520240
    Abstract: A lithium titanium oxide (LTO)/carbon composite, a preparation method for the LTO/carbon composite, a negative electrode material using the LTO/carbon composite, and a hybrid super capacitor using the negative electrode material are disclosed. The lithium titanium oxide (LTO)/carbon composite is formed to insert a carbon-based additive into a plurality of voids formed on the LTO granules, thereby improving the electrical conductivity.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: December 13, 2016
    Assignee: SAMHWA CAPACITOR CO., LTD.
    Inventors: Young Joo Oh, Jung Rag Yoon, Kyung Min Lee, Byung Gwan Lee
  • Patent number: 9178218
    Abstract: A hyper-branched polymer, which is a product obtained by performing condensation polymerization reaction of a hyper-branched polymer composition including a diisocyanate-based compound and a dihydroxyamine-based compound, a cross-linked hyper-branched polymer, an electrode and electrolyte membrane for a fuel cell including the hyper-branched polymer or the cross-linked hyper-branched polymer, and a fuel cell including the electrode and the electrolyte membrane.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: November 3, 2015
    Assignees: SAMSUNG ELECTRONICS CO., LTD., SNU R&DB FOUNDATION
    Inventors: Seong-woo Choi, Cheol-hee Ahn, Jung-ock Park, So-young Park
  • Patent number: 9090982
    Abstract: The invention relates to a cathode for electrolytic processes provided with a catalytic coating based on ruthenium crystallites with highly controlled size falling in a range of 1-10 nm. The coating can be produced by physical vapor deposition of a ruthenium or ruthenium oxide layer.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: July 28, 2015
    Assignee: INDUSTRIE DE NORA S.P.A.
    Inventors: Christian Urgeghe, Stefania Mora, Antonio Lorenzo Antozzi
  • Publication number: 20150111130
    Abstract: A method for formulating a ceramic power for producing a proton-conducting electrolytic membrane for an electrochemical cell, includes forming a suspension of a previously synthesized, unprocessed ceramic powder in a solvent having a hydrogen potential greater than 7 so as to produce a slip, the unprocessed ceramic powder including agglomerates consisting of a plurality of ceramic grains, crushing the agglomerates contained in the slip so as to reduce the agglomerates, and drying the slip so as to mechanically separate the agglomerates from the solvent and recover the dried agglomerates.
    Type: Application
    Filed: December 26, 2012
    Publication date: April 23, 2015
    Inventors: Béatrice Sala, Frédéric Grasset, Dominique Goeuriot, Baroudi Bendjeriou
  • Publication number: 20150105244
    Abstract: An electrode material for a direct fuel cell or an electrochemical hydrogenation electrolytic tank, includes component A, or component B, or the mixture of component A and component B. The component A is any one of or a mixture of two or more than two of HnNb2O5, HnV2O5, HnMoO3, HnTa2O5 or HnWO3 at any ratio, where 0<n?4. The component B is any one of or a mixture of two or more than two of Nb2O5, V2O5, MoO3, Ta2O5, WO3 at any ratio.
    Type: Application
    Filed: December 19, 2014
    Publication date: April 16, 2015
    Inventors: Hansong Cheng, Chaoqun Han, Ming Yang, Gang Ni, Liang Huang, Libin Pei
  • Publication number: 20150075975
    Abstract: Compositions for making wettable cathodes to be used in aluminum electrolysis cells are disclosed. The compositions generally include titanium diboride (TiB2) and metal additives, The amount of selected metal additives may result in production of electrodes having a tailored density and/or porosity, The electrodes may be durable and used in aluminum electrolysis cells.
    Type: Application
    Filed: November 21, 2014
    Publication date: March 19, 2015
    Inventors: Douglas A. Weirauch, JR., Lance M. Sworts, Brian J. Tielsch, Robert A. DiMilia
  • Patent number: 8956525
    Abstract: Disclosed are electrolysis catalysts formed from cobalt, oxygen and buffering electrolytes (e.g. fluoride). They can be formed as a coating on an anode by conducting an electrolysis reaction using an electrolyte containing cobalt and an anionic buffering electrolyte. The catalysts will facilitate the conversion of water to oxygen and hydrogen gas at a range of mildly acidic conditions. Alternatively, these anodes can be used with cathodes that facilitate other desirable reactions such as converting carbon dioxide to methanol.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: February 17, 2015
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: James B. Gerken, Shannon S. Stahl
  • Publication number: 20140302421
    Abstract: The invention relates to an electrode for an electrochemical cell which exhibits good electron conductivity and good chemical conductivity, as well as good cohesion with the solid electrolyte of the electrochemical cell. To do this, this electrode is made from a ceramic, which is a perovskite doped with a lanthanide having one or more degrees of oxidation and with a complementary doping element taken from the following group: niobium, tantalum, vanadium, phosphorus, arsenic, antimony, bismuth.
    Type: Application
    Filed: October 10, 2012
    Publication date: October 9, 2014
    Applicant: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (C.N.R.S.)
    Inventors: Béatrice Sala, Frédéric Grasset, Elodie Tetard, Kamal Rahmouni, Abdelkader Sirat, Dominique Goeuriot, Baroudi Bendjeriou, Hisasi Takenouti
  • Patent number: 8696877
    Abstract: The invention relates to a cathode for hydrogen evolution in electrolysis cells, for instance chlor-alkali cells or cells for producing chlorate or hypochlorite, obtained starting from a substrate of nickel or other conductive material galvanically coated with nickel co-deposited with an amorphous molybdenum oxide.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: April 15, 2014
    Assignee: Industrie de Nora S.p.A.
    Inventors: Nedeljko Krstajic, Vladimir Jovic, Antonio Lorenzo Antozzi
  • Publication number: 20140000697
    Abstract: Nanonet-based hematite hetero-nanostructures (100) for solar energy conversions and methods of fabricating same are disclosed. In an embodiment, a hetero-nanostructure (100) includes a plurality of connected and spaced-apart nanobeams (110) linked together at an about 90° angle, the plurality of nanobeams (110) including a conductive silicide core having an n-type photo-active hematite shell. In an embodiment, a device (1100) for splitting water to generate hydrogen and oxygen includes a first compartment (1120) having a two-dimensional hetero-nanostructure (1125), the hetero-nanostructure having a plurality of connected and spaced-apart nanobeams, each nanobeam substantially perpendicular to another nanobeam, the plurality of nanobeams including an n-type photoactive hematite shell having a conductive core; and a second compartment (1110) having a p-type material (1115), wherein the first compartment (1120) and the second compartment (1110) are separated by a semi-permeable membrane.
    Type: Application
    Filed: January 13, 2012
    Publication date: January 2, 2014
    Applicant: The Trustees of Boston College
    Inventors: Dunwei Wang, Yongjing Lin, Sa Zhou
  • Patent number: 8613848
    Abstract: A device for the concurrent oxygen generation and control of carbon dioxide for life support system involves two stages, where a first stage removes CO2 from an exhalent side of a ventilation loop and a second stage employs Ceramic Oxygen Generators (COGs) to convert CO2 into carbon and O2. The first stage includes a plurality of chambers and means to switch the ventilation loop through at least one of the chambers, where CO2 removal is carried out before discharge of the CO2 depleted gas to an inhalant side of the ventilation loop, and to exclude the ventilation loop from the remaining chambers of the first stage, where these chambers are placed in communication with the second stage. The second stage has two portions separated by the COGs such that CO2 and the formed carbon remain on an intake portion from the O2 rich atmosphere on the exhaust side, which is plumbed via a metering valve to introduce the O2 rich atmosphere to the inhalant side of the ventilation loop.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: December 24, 2013
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Eric D. Wachsman, Keith L. Duncan, Helena Hagelin-Weaver
  • Patent number: 8595921
    Abstract: An electrode is formed using a sanding mechanism to condition the surface of the electrode for electrochemical purposes. Hazardous particles emitted during sanding are captured using jetted liquid, and may be recycled for later use. The sanded surface provides increased electrode lifespan and lead oxide adherence.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: December 3, 2013
    Assignee: RSR Technologies, Inc.
    Inventors: Timothy W. Ellis, Matthew Burr
  • Patent number: 8580091
    Abstract: A composition and method of manufacture of electrodes having controlled electrochemical activity to allow the electrodes to be designed for a variety of electro-oxidation processes. The electrodes are comprised of a compact coating deposited onto a conductive substrate, the coating being formed as multiple layers of a mixture of one or more platinum group metal oxides and one or more valve metal oxides. The formation of multiple layers allows the concentrations of platinum group metal and valve metal to be varied for each layer as desired for an application. For example, an electrode structure can be manufactured for use as an anode in electroplating processes, such that the oxidation of the organic additives in the electrolyte is markedly inhibited. Another electrode can be manufactured to operate at high anodic potentials in aqueous electrolytes to generate strong oxidants, e.g., hydrogen peroxide or ozone.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: November 12, 2013
    Assignee: Water Star, Inc.
    Inventors: Marilyn J. Niksa, Andrew J. Niksa
  • Publication number: 20130277209
    Abstract: The present invention provides: an oxidation reaction electrode that generates oxygen by oxidizing water; and a reduction reaction electrode that synthesizes a carbon compound by reducing carbon dioxide. The two electrodes are electrically connected. Also, the reduction reaction electrode (1) synthesizes a carbon compound by reducing carbon dioxide in a water-containing liquid using radiated light energy.
    Type: Application
    Filed: December 27, 2011
    Publication date: October 24, 2013
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Shunsuke Sato, Takeo Arai, Takeshi Morikawa, Keiko Uemura, Tsutomu Kajino, Tomiko Mori
  • Publication number: 20130180848
    Abstract: A water splitting oxygen evolving catalyst including: a metal oxide particle including a metal oxide represented by Formula 1: Co1?xMxOY ??Formula I wherein M is at least one selected from Al, In, Ga, Si, and Sn, x and y respectively satisfy the inequalities 0?x<0.5 and 1<y<2, and the metal oxide particle is in the form of a flake.
    Type: Application
    Filed: July 30, 2012
    Publication date: July 18, 2013
    Applicant: SAMSUNG ELECTRONICS CO. LTD.
    Inventors: Jeong-hee LEE, Tae-gon KIM, Tae-hyung KIM, Seoung-jae IM
  • Patent number: 8486240
    Abstract: A corrosion-resistant ceramic electrode material includes ceramic particles and, present between them, a three-dimensional network electroconducting path composed of a reductively fired product of a carbon-containing polymeric compound. This material is manufactured by a method in which a polymerization reaction of a polymerizable monomer previously contained in a ceramic slurry is performed to gel the ceramic slurry to thereby give a green body; and after drying and degreasing, the green body is fired in a reducing atmosphere.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: July 16, 2013
    Assignee: National University Corporation Nagoya Institute of Technology
    Inventors: Masayoshi Fuji, Minoru Takahashi, Jingjun Liu, Hideo Watanabe, Takashi Shirai
  • Patent number: 8486238
    Abstract: Disclosed herein is a surface renewable iridium oxide-glass or ceramic composite hydrogen ion electrode and, more particularly, a surface renewable iridium oxide-glass or ceramic composite hydrogen ion electrode, which has a long life due to its excellent physical strength, pH dependency approximate to a theoretical value (59 mV/pH unit), and high surface renewability, and a method of manufacturing the same. The iridium oxide composite hydrogen ion electrode according to the present invention is effective in that, when the electrode is contaminated or inactivated, the surface of the electrode can be regenerated through a simple grinding process because the electrode has high surface renewability, unlike conventional electrodes.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: July 16, 2013
    Assignee: Konkuk University Industrial Cooperation Corp.
    Inventors: Jong Man Park, Ji Young Kim
  • Patent number: 8465633
    Abstract: The present invention relates to a process for activating a diamond-based electrode, which includes a step consisting in subjecting, in the presence of an aqueous solution containing an ionic electrolyte, said electrode to an alternately cathodic and anodic polarization potential, of increasing amplitude so as to obtain an anodic and cathodic current density of between 10 ?A/cm2 and 1 mA/cm2. The present invention also relates to a diamond-based electrode activated by said process and to the uses thereof.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: June 18, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Jacques De Sanoit, Emilie Vanhove
  • Publication number: 20130112548
    Abstract: The invention relates to an electrode for an electrochemical cell, which is either a piece of a monocrystal grown from doped titanium dioxide or which contains a multiplicity of monocrystals grown from doped titanium dioxide.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 9, 2013
    Applicant: PRO AQUA DIAMANTELEKTRODEN PRODUKTION GMBH & CO KG
    Inventor: PRO AQUA DIAMANTELEKTRODEN PRODUKTI
  • Patent number: 8430997
    Abstract: The present invention relates to an electrode that includes an electrically conducting substrate based on a valve metal having a main proportion of titanium, tantalum or niobium, and an electrocatalytically active coating comprising up to 50 mol % of a noble metal oxide or noble metal oxide mixture and at least 50 mol % of titanium oxide. The coating includes a minimum proportion of oxides of anatase structure determined by a ratio of the signal height of the most intensive anatase reflection in an x-ray diffractogram (CuK? radiation) after subtraction of a linear background to the signal height of the most intensive rutile reflection in the same diffractogram, wherein the ratio is at least 0.6.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: April 30, 2013
    Assignee: Bayer MaterialScience AG
    Inventors: Ruiyong Chen, Vinh Trieu, Harald Natter, Rolf Hempelmann, Andreas Bulan, Jürgen Kintrup, Rainer Weber
  • Patent number: 8425740
    Abstract: The present invention provides an excellent durable cathode for hydrogen generation, which has a low hydrogen overvoltage and reduced dropping-off of a catalyst layer against the reverse current generated when an electrolyzer is stopped, and a method for producing the same. The present invention provides a cathode for hydrogen generation having a conductive base material and a catalyst layer formed on the conductive base material, wherein the catalyst layer includes crystalline iridium oxide, platinum and iridium-platinum alloy.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: April 23, 2013
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Takeaki Sasaki, Akiyasu Funakawa, Tadashi Matsushita, Toshinori Hachiya
  • Patent number: 8366890
    Abstract: The invention relates to an electrode formulation comprising a catalytic layer containing tin, ruthenium, iridium, palladium and niobium oxides applied to a titanium or other valve metal substrate. A protective layer based on titanium oxide modified with oxides of other elements such as tantalum, niobium or bismuth may be interposed between the substrate and the catalytic layer. The thus obtained electrode is suitable for use as an anode in electrolysis cells for chlorine production.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: February 5, 2013
    Assignee: Industrie de Nora S.p.A.
    Inventors: Christian Urgeghe, Alexander Morozov, Alice Calderara, Dino Floriano Di Franco, Antonio Lorenzo Antozzi
  • Patent number: 8366891
    Abstract: A metallic oxygen evolving anode for electrowinning aluminum by decomposition of alumina dissolved in a cryolite-based molten electrolyte, and operable at anode current densities of 1.1 to 1.3 A/cm2, comprises an alloy of nickel, iron, manganese, optionally copper, and silicon. Preferably, the alloy is composed of 64-66 w % Ni; Iron; 25-27 w % Fe; 7-9 w % Mn; 0-0.7 w % Cu; and 0.4-0.6 w % Si. The weight ratio Ni/Fe is in the range 2.1 to 2.89, preferably 2.3 to 2.6, the weight ratio Ni/(Ni+Cu) is greater than 0.98, the weight ratio Cu/Ni is less than 0.01, and the weight ratio Mn/Ni is from 0.09 to 0.15. The alloy surface can comprise nickel ferrite produced by pre-oxidation of the alloy. The alloy, optionally with a pre-oxidized surface, can be coated with an external coating comprising cobalt oxide CoO.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: February 5, 2013
    Assignee: Rio Tinto Alcan International Limited
    Inventor: Thinh Trong Nguyen
  • Patent number: 8361288
    Abstract: Compositions, electrodes, systems, and/or methods for water electrolysis and other electrochemical techniques are provided. In some cases, the compositions, electrodes, systems, and/or methods are for electrolysis which can be used for energy storage, particularly in the area of energy conversion, and/or production of oxygen, hydrogen, and/or oxygen and/or hydrogen containing species. In some embodiments, the water for electrolysis comprises at least one impurity and/or at least one additive which has little or no substantially affect on the performance of the electrode.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: January 29, 2013
    Assignee: Sun Catalytix Corporation
    Inventors: Steven Y. Reece, Arthur J. Esswein, Kimberly Sung, Zachary I. Green, Daniel G. Nocera
  • Patent number: 8357271
    Abstract: The present invention aims to provide a zinc electrowinning anode capable of inhibiting manganese compound deposition on the anode and a cobalt electrowinning anode capable of inhibiting cobalt oxyhydroxide deposition on the anode. The zinc electrowinning anode according to the present invention is a zinc electrowinning anode having an amorphous iridium oxide-containing catalytic layer formed on a conductive substrate, and the zinc electrowinning method according to the present invention is an electrowinning method using that electrowinning anode. Also, the cobalt electrowinning anode according to the present invention is an electrowinning anode having an amorphous iridium oxide or ruthenium oxide-containing catalytic layer formed on a conductive substrate, and the cobalt electrowinning method according to the present invention is an electrowinning method using that electrowinning anode.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: January 22, 2013
    Assignee: The Doshisha
    Inventor: Masatsugu Morimitsu
  • Patent number: 8349154
    Abstract: The invention relates to modified electrodes for ER fluids prepared by adding a rough, wear-resisting, and low conductive modified layer on the surface of metallic electrodes. The material for the modified layer can be at least one from diamond, alumina, titanium dioxide, carborundum, titanium nitride, nylon, polytetrafluoroethylene, adhesive, and adhesive film. Through the addition of the modified layer, the adhesion of the ER fluid to electrodes is increased so that the shear stress measured near the plates is close to the intrinsic value, which makes the ER fluid applicable, while reducing the leakage current and increasing the breakdown voltage of the ER fluid equipment.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: January 8, 2013
    Assignee: Institute of Physics, Chinese Academy of Sciences
    Inventors: Kunquan Lu, Rong Shen, Xuezhao Wang
  • Publication number: 20120305408
    Abstract: Disclosed are electrolysis catalysts formed from cobalt, oxygen and buffering electrolytes (e.g. fluoride). They can be formed as a coating on an anode by conducting an electrolysis reaction using an electrolyte containing cobalt and an anionic buffering electrolyte. The catalysts will facilitate the conversion of water to oxygen and hydrogen gas at a range of mildly acidic conditions. Alternatively, these anodes can be used with cathodes that facilitate other desirable reactions such as converting carbon dioxide to methanol.
    Type: Application
    Filed: November 29, 2010
    Publication date: December 6, 2012
    Inventors: James B. Gerken, Shannon S. Stahl
  • Patent number: 8313624
    Abstract: An inert anode material for use in electrolytic processes comprises calcium ruthenate. [Note that the nominal formula for this compound is CaRuO3, although different stoichiometries may apply in practice].
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: November 20, 2012
    Assignee: Green Metals Limited
    Inventors: Derek John Fray, Gregory Russlan Doughty