Carbon Containing Patents (Class 204/294)
  • Publication number: 20130277212
    Abstract: A cathode boss structure for an aluminum electrolytic cell is disclosed. The cathode boss is arranged on the top surface of the cathode carbon block or on the top of the gap between two cathode carbon blocks. The distance between cathode bosses is 400 mm-900 mm. The length of the throughout elongate cathode boss is 100-250 mm longer than that of cathode carbon block, and two ends thereof are directly embedded into the paste around lateral portion. The length of the embedded and butted cathode boss is in a range of 3000-3200 mm, two ends thereof are fixed by binding carbon blocks respectively, and the binding carbon blocks are embedded into the paste around lateral portion. The cross-section of the cathode boss structure is in the shape of rectangle or isosceles trapezoid. The cathode boss structure is applicable to all types of current electrolytic cells.
    Type: Application
    Filed: January 7, 2011
    Publication date: October 24, 2013
    Applicant: CHINA ALUMINUM INTERNATIONAL ENGINEERING CORPORATION LIMITED
    Inventors: Bin Cao, Tao Yang
  • Patent number: 8562797
    Abstract: An electrode for use in a electrochemical sensor comprises carbon modified with a chemically sensitive redox-active compound, excluding an electrode based on carbon having derivatised thereron two redox-active species wherein at least one of said species is selected from anthraquinone, phenanthrenequinone and N,N?-diphenyl-p-phenylenediamine (DPPD). The invention further provides a pH sensor comprising: a working electrode comprising carbon modified with a chemically sensitive redox active material; and a counter electrode, wherein the ratio of the surface area of the working electrode to the surface area of the counter electrode is from 1:10 to 10:1. Also provided is a pH sensor comprising: a working electrode comprising carbon modified with a chemically sensitive redox active material, and a counter electrode, wherein the area of the working electrode is from 500 ?m2 to 0.1 m2. The uses of these electrodes and sensors are also described.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: October 22, 2013
    Assignee: Isis Innovation Limited
    Inventors: Sean P. McCormack, Richard G. Compton, Gregory George Wildgoose, Nathan Scott Lawrence
  • Publication number: 20130273446
    Abstract: An electrode comprises an acid treated, cathodically cycled carbon-comprising film or body. The carbon consists of single walled nanotubes (SWNTs), pyrolytic graphite, microcrystalline graphitic, any carbon that consists of more than 99% sp2 hybridized carbons, or any combination thereof. The electrode can be used in an electrochemical device functioning as an electrolyser for evolution of hydrogen or as a fuel cell for oxidation of hydrogen. The electrochemical device can be coupled as a secondary energy generator into a system with a primary energy generator that naturally undergoes generation fluctuations. During periods of high energy output, the primary source can power the electrochemical device to store energy as hydrogen, which can be consumed to generate electricity as the secondary source during low energy output by the primary source. Solar cells, wind turbines and water turbines can act as the primary energy source.
    Type: Application
    Filed: December 16, 2011
    Publication date: October 17, 2013
    Applicant: University of Florida Research Foundation, Inc.
    Inventors: Andrew Gabriel Rinzler, Rajib Kumar Das, Wang Yan, Hai-Ping Cheng
  • Publication number: 20130256150
    Abstract: The present invention provides an electrically conductive diamond electrode comprising an electrically conductive substrate and an electrically conductive diamond layer coated on the surface of the electrically conductive substrate, featuring that: 1) the thickness of the electrically conductive diamond layer is 1˜25 ?m, 2) the potential window fulfills Equation (1) and 3) the ratio (A/B) of the diamond component A and the non-diamond component B by the Raman spectroscopic analysis fulfills Equation (2). 2.1V?potential window?3.5V??(1) 1.5<A/B?6.5??(2) A: Intensity at the wave number 1300 cm?1 by the Raman spectroscopic analysis B: Intensity at the wave number 1500 cm?1 by the Raman spectroscopic analysis.
    Type: Application
    Filed: November 21, 2011
    Publication date: October 3, 2013
    Applicant: CHLORINE ENGINEERS CORP., LTD.
    Inventors: Masaaki Kato, Hiroki Domon, Junko Kosaka
  • Publication number: 20130233704
    Abstract: The present invention discloses replaceable cathode choking devices of an aluminum reduction cell which comprises cathode carbon blocks and cathode choking devices placed at the bottom of the aluminum reduction cell. The cathode choking devices are placed on surfaces of the cathode carbon blocks. The cathode choking devices are made of mullite, spinel or zirconite which is high temperature resistant, corrosion resistant and of high specific gravity. The cathode choking devices have a cross-section of semicircular, arc or streamline shape. The cathode choking devices have a height of 50-150 mm and a width of 100-300 mm. The cathode choking devices are elongated block-shaped. The cathode choking devices are placed in a direction along a long side of a cathode of the reduction cell, wherein one or more cathode choking devices are placed as a group.
    Type: Application
    Filed: January 6, 2011
    Publication date: September 12, 2013
    Applicant: China Aluminum International Engineering Corporation Limited
    Inventors: Yi Yang, Pu Zheng, Canming Xi
  • Patent number: 8512533
    Abstract: A biosensor includes a plurality of electrodes and a receptor. The plurality of electrodes comprises a plurality of carbon nanotubes. The receptor are located between the plurality of electrodes and electrically connected to the plurality of carbon nanotubes of the plurality of electrodes. In addition, the receptor reacts to a measured object to lead current variation which is transmitted by the plurality of electrodes.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: August 20, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Xue-Shen Wang, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 8492303
    Abstract: The invention describes an electrode and an electrode coating which are based on a catalyst containing finely divided carbon modifications and noble metal (oxide)s.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: July 23, 2013
    Assignee: Bayer MaterialScience AG
    Inventors: Andreas Bulan, Norbert Schmitz
  • Patent number: 8491765
    Abstract: A microlectrode comprising a diamond layer formed from electrically non-conducting diamond and containing one or more pins or projections of electrically conducting diamond extending at least partially through the layer of non-conducting diamond presenting areas of electrically conducting diamond.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: July 23, 2013
    Assignee: Element Six Limited
    Inventors: Charles Simon James Pickles, Clive Edward Hall, Li Jiang, Neil Perkins, Richard Antonius Kleijhorst
  • Patent number: 8486240
    Abstract: A corrosion-resistant ceramic electrode material includes ceramic particles and, present between them, a three-dimensional network electroconducting path composed of a reductively fired product of a carbon-containing polymeric compound. This material is manufactured by a method in which a polymerization reaction of a polymerizable monomer previously contained in a ceramic slurry is performed to gel the ceramic slurry to thereby give a green body; and after drying and degreasing, the green body is fired in a reducing atmosphere.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: July 16, 2013
    Assignee: National University Corporation Nagoya Institute of Technology
    Inventors: Masayoshi Fuji, Minoru Takahashi, Jingjun Liu, Hideo Watanabe, Takashi Shirai
  • Patent number: 8465633
    Abstract: The present invention relates to a process for activating a diamond-based electrode, which includes a step consisting in subjecting, in the presence of an aqueous solution containing an ionic electrolyte, said electrode to an alternately cathodic and anodic polarization potential, of increasing amplitude so as to obtain an anodic and cathodic current density of between 10 ?A/cm2 and 1 mA/cm2. The present invention also relates to a diamond-based electrode activated by said process and to the uses thereof.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: June 18, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Jacques De Sanoit, Emilie Vanhove
  • Patent number: 8404090
    Abstract: A multi-layer cathode block (30) for an electrolytic cell (10) has at least a surface layer (32) with a surface expansion index and a second layer (34) with a second expansion index. The surface layer (32) includes a surface wetting agent in a first total amount. The second layer (34) includes a wetting agent in a second total amount. The surface layer (32) is directly superposed to the second layer (34). The second wetting agent in the second layer (34) includes metal boride precursors that react together to generate a metal boride component in situ when the cathode block (30) is exposed to start-up and operation conditions of the electrolytic cell (10). The second total amount is lower than the first total amount and is selected so as to minimize the difference between the expansion indexes of the surface layer (32) and the second layer (34).
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: March 26, 2013
    Assignee: Rio Tinto Alcan International Limited
    Inventors: Jean Camire, Jules Bergeron, Pierre-Yves Brisson, Simon Leclerc
  • Patent number: 8366892
    Abstract: The present invention relates to an electrode composed of carbon having at least two different zones, wherein an outer zone (A) forms the base of the electrode and carries one or more inner zones, wherein the innermost zone (B) projects from the zone (A) at the top and has a lower specific thermal conductivity than zone (A).
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: February 5, 2013
    Assignee: Wacker Chemie AG
    Inventors: Heinz Kraus, Mikhail Sofin
  • Patent number: 8361289
    Abstract: An electrode comprising an electrically conducting diamond plate wherein the diamond plate comprises at least one elongate aperture and having an aperture edge length per unit working area of the diamond plate of greater than about 4 mm/mm2, electrolysis cells comprising such electrodes, methods of treating water using such electrolysis cells and a method of production of ozone are disclosed.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: January 29, 2013
    Inventors: Andrew John Whitehead, Christopher John Wort, Geoffrey Alan Scarsbrook, William Joseph Yost
  • Publication number: 20130020193
    Abstract: An apparatus is disclosed for electroplating an inside wall of a transfer mold, the transfer mold being suitable for use in semiconductor device encapsulation. Specifically, the apparatus comprises a fixture, as well as a through-hole in the fixture for receiving an electrode to electroplate the inside wall of the transfer mold. In particular, the through-hole is configured to receive the electrode in a slide-fit to form a mutual interference fit for securing the electrode to the fixture. Upon fitting the electrode into the through-hole, the apparatus can then be used to electroplate the inside wall of the transfer mold by introducing the electrode into the space adjacent to the inside wall of the transfer mold. A device for use as an electrode in the apparatus is also disclosed.
    Type: Application
    Filed: July 18, 2011
    Publication date: January 24, 2013
    Inventors: Shu Chuen HO, Kai Fat YIP, Eng Cheng CHNG, Yew Lan NGO, Saravana Ranganathan DAMODARAN
  • Patent number: 8349164
    Abstract: The present invention provides a conductive diamond electrode structure for use in electrolytic synthesis of a fluorine-containing material with a fluoride ion-containing molten salt electrolytic bath, which comprises: a conductive electrode feeder; and a conductive diamond catalyst carrier comprising a conductive substrate and a conductive diamond film carried on a surface thereof, wherein the conductive diamond catalyst carrier is detachably attached to the conductive electrode feeder at a portion to be immersed in the electrolytic bath. Also disclosed is an electrolytic synthesis of a fluorine-containing material using the conductive diamond electrode structure.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: January 8, 2013
    Assignee: Permelec Electrode Ltd.
    Inventors: Tsuneto Furuta, Setsuro Ogata, Masaharu Uno
  • Patent number: 8349154
    Abstract: The invention relates to modified electrodes for ER fluids prepared by adding a rough, wear-resisting, and low conductive modified layer on the surface of metallic electrodes. The material for the modified layer can be at least one from diamond, alumina, titanium dioxide, carborundum, titanium nitride, nylon, polytetrafluoroethylene, adhesive, and adhesive film. Through the addition of the modified layer, the adhesion of the ER fluid to electrodes is increased so that the shear stress measured near the plates is close to the intrinsic value, which makes the ER fluid applicable, while reducing the leakage current and increasing the breakdown voltage of the ER fluid equipment.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: January 8, 2013
    Assignee: Institute of Physics, Chinese Academy of Sciences
    Inventors: Kunquan Lu, Rong Shen, Xuezhao Wang
  • Patent number: 8338323
    Abstract: The present invention provides a process for producing an electrode for electrochemical reaction, wherein a conductive diamond layer is formed on an electrode substrate in the electrode; and the electrode substrate on which the conductive diamond layer is formed is kept at a temperature of 400° C. or more and 1,000° C. or less in a water vapor, thereby forming a micropore in the conductive diamond layer. Also, the present invention provides an electrode for electrochemical reaction obtained by the foregoing production process.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: December 25, 2012
    Assignees: Permelec Electrode Ltd., Shinshu University
    Inventors: Yoshio Takasu, Wataru Sugimoto, Tatsuya Ohashi, Junfeng Zhang
  • Publication number: 20120312682
    Abstract: The present invention provides a solid diamond electrode, a reactor, in particular a reactor comprising an anode, a cathode and at least one bipolar electrode having first and second major working surfaces positioned therebetween wherein the at least one bipolar electrode consists essentially of diamond, and methods in which the reactors are used.
    Type: Application
    Filed: August 14, 2012
    Publication date: December 13, 2012
    Inventors: Jonathan James Wilman, Patrick Simon Bray, Timothy Peter Mollart
  • Patent number: 8329008
    Abstract: A gas generating device of present invention is generated a first gas at a first carbon electrode by applying a voltage between said first carbon electrode and a second electrode to electrolyzing an electrolytic solution. The first carbon electrode is an anode or a cathode. The first carbon electrode is provided with a plurality of fine gas flow channels which selectively pass said first gas generated on one surface of said first carbon electrode to the other surface without allowing said electrolytic solution to permeate therethrough.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: December 11, 2012
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Hiroshi Maekawa, Mitsuru Sadamoto, Souta Itou, Takahiro Maeda, Kentaro Suzuki, Tetsuya Watanabe
  • Publication number: 20120255858
    Abstract: Activated carbon used for an electrochemical element in which when W1 and W2 satisfy 1.0 nm?W1<W2?2.0 nm, a total pore volume of the activated carbon in which a slit width obtained by an MP method is W1 or more and W2 or less is 15% or more of a total pore volume of the activated carbon in which the slit width obtained by the MP method is 2.0 nm or less. Furthermore, an electrode layer of the electrochemical element includes activated carbon having a large pore volume in which the slit width is W1 or more and W2 or less.
    Type: Application
    Filed: December 14, 2010
    Publication date: October 11, 2012
    Applicant: PANASONIC CORPORATION
    Inventors: Hiroyuki Maeshima, Chiho Yamada, Motohiro Sakata, Hideki Shimamoto
  • Patent number: 8282796
    Abstract: A carbonaceous substrate of the present invention is such that an X-ray diffraction pattern thereof is a complex profile and includes at least two (002) diffraction lines; and the substrates contains crystallites with different interlayer spacings. Further, in the X-ray diffraction pattern, (002) diffraction lines between 2?=10° and 2?=30° have an asymmetric shape; and the X-ray diffraction pattern includes at least two pattern components which are a diffraction line whose center is at 2?=26° and a diffraction line whose center is at a lower angle than 2?=26°. Further, the carbonaceous substrate contains crystals wherein the periodic distance d002 is 0.34 nm or more and the crystallite size Lc002 is 20 nm or less based on the X-ray diffraction lines. An electrodes for fluorine electrolysis of the present invention includes the carbonaceous substrate on which a conductive diamond thin film is formed.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: October 9, 2012
    Assignee: Toyo Tanso Co., Ltd.
    Inventors: Rie Tao, Takanori Kawano, Yoshio Shodai
  • Patent number: 8277623
    Abstract: The present invention relates to a conductive diamond electrode, comprising a substrate having a plurality of convex and concave part disposed over the entire surface of the conductive diamond electrode, and a diamond film coated on the surface of said substrate, wherein the width of each convex part of said convex and concave part is in a range from 0.2 mm to 1 mm. The present invention can provide a conductive diamond electrode, applying a thin film of conductive diamond and a thick substrate, being less expensive than a self-supported type conductive diamond electrode and also having mechanical strength enough to be used in the zero-gap electrolysis, functioning stably for a long time with smooth water supply or gas liberation, and an ozone generator using the conductive diamond electrode.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: October 2, 2012
    Assignee: Chlorine Engineers Corp., Ltd.
    Inventors: Masaaki Kato, Rie Kawaguchi
  • Patent number: 8273225
    Abstract: The present invention provides a solid diamond electrode, a reactor, in particular a reactor comprising an anode, a cathode and at least one bipolar electrode having first and second major working surfaces positioned therebetween wherein the at least one bipolar electrode consists essentially of diamond, and methods in which the reactors are used.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: September 25, 2012
    Assignee: Element Six Limited
    Inventors: Jonathan James Wilman, Patrick Simon Bray, Timothy Peter Mollart
  • Publication number: 20120222970
    Abstract: Nanoscale probes for forming stable, non-destructive seals with cell membranes. The probes, systems including these probes, and methods of fabricating and using the probes described herein may be used to sense from, stimulate, modify, or otherwise effect individual cells or groups of cells. In particular, described herein are nanoscale cellular probes that may be used to span the lipid membrane of a cell to provide stable and long lasting access to the internal cellular structures. Thus, the probes described herein may be used as part of a system, method or device that would benefit from stable, non-destructive access across a cell membrane. In some variations the nanoscale probe devices or systems described herein may be used as part of a drug screening procedure.
    Type: Application
    Filed: March 5, 2012
    Publication date: September 6, 2012
    Inventors: Nicholas Alexander Melosh, Piyush Verma, Benjamin David Almquist
  • Patent number: 8252459
    Abstract: A new invention in cathode composition, arrangement, and design for primary and secondary batteries that offers high power, high capacity, and high specific energy is proposed herein. The claimed technology described herein incorporates materials into the cathode that results in a cathode which may accept two electrons per active site. Other advantages of the technology included herein include: 1) lower cost, 2) environmental friendliness, 3) safety, 4) a wide operational temperature range, 5) backwards compatibility with present electrochemical cells, and 6) versatility. The technology is cross-cutting, and has high impact applications, such as for electric vehicles, which require both high power and high specific energy.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: August 28, 2012
    Inventors: Cheryl D. Stevenson, John Perrin Davis
  • Patent number: 8226806
    Abstract: The embodiments of the invention relate to an electrode for electrolysis comprising an electrode substrate and a coating of the electrode substrate with a polycrystalline diamond material, that the electrode substrate consists of a base body of carbon material and at least one contact layer of the electrode substrate carrying the coating consists of a non-metallic, electrically conductive material.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: July 24, 2012
    Assignee: Hoffmann & Co., Elektrokohle AG
    Inventors: Klaus Reiser, Conrad Reynvaan, Stefan Schneweis
  • Publication number: 20120145557
    Abstract: Devices and methods for electrochemical phase transfer utilize at least one electrode formed from either glassy carbon or a carbon and polymer composite. The device includes a device housing defining an inlet port (42), an outlet port (44) and an elongate fluid passageway (36) extending therebetween. A capture electrode (12) and a counter electrode are positioned within said housing such that the fluid passageway extends between the capture and counter electrodes.
    Type: Application
    Filed: July 12, 2010
    Publication date: June 14, 2012
    Inventors: Marko Baller, Victor Samper, Christian Rensch, Christoph Boeld
  • Publication number: 20120138478
    Abstract: An electrolytic cell includes at least one free-standing diamond electrode and a second electrode, which may also be a free-standing diamond, separated by a membrane. The electrolytic cell is capable of conducting sustained current flows at current densities of at least about 1 ampere per square centimeter. A method of operating an electrolytic cell having two diamond electrodes includes alternately reversing the polarity of the voltage across the electrodes.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 7, 2012
    Applicant: ELECTROLYTIC OZONE INC.
    Inventors: William J. Yost, III, Carl David Lutz, Jeffrey D. Booth, Donald J. Boudreau, Nicholas R. Lauder
  • Patent number: 8192595
    Abstract: A transition metal/carbon nanotube composite includes a carbon nanotube and a transition metal oxide coating layer disposed on the carbon nanotube. The transition metal oxide coating layer includes a nickel-cobalt oxide.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: June 5, 2012
    Assignees: Samsung Electronics Co., Ltd., Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Ho-jung Yang, Hyo-rang Kang, Kwang-bum Kim, Jin-go Kim
  • Publication number: 20120125784
    Abstract: The subject of the invention is an anode block (13, 13a-13e) made of carbon for a pre-baked anode (4) for use in a metal electrolysis cell (1) comprising a higher face (24), a lower face (23), designed to be laid out opposite a higher face of a cathode (9), and four side faces (21,22,34), and including at least one first groove (31a-31e) leading onto at least one of the side faces, in which the first groove has a maximum length Lmax in a plane parallel to the lower face, and characterized in that the first groove does not lead onto said lower or higher faces, or leads onto said lower or higher faces over a length L0 less than half the maximum length Lmax.
    Type: Application
    Filed: July 21, 2010
    Publication date: May 24, 2012
    Applicant: RIO TINTO ALCAN INTERNATIONAL LIMITED
    Inventors: Geoffrey Berlin, Jean Camire, Daran Emmett, Yvan Foster, Guillaume Servant, Christian Jonville, Malcolm Manwaring
  • Patent number: 8177949
    Abstract: A microelectrode comprising a diamond layer formed from electrically non-conducting diamond and containing one or more pins or projections of electrically conducting diamond extending at least partially through the layer of non-conducting diamond and presenting areas of electrically conducting diamond.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: May 15, 2012
    Assignee: Element Six Limited
    Inventors: Charles Simon James Pickles, Clive Edward Hall, Li Jiang, Neil Perkins, Richard Antonius Kleijhorst
  • Patent number: 8137515
    Abstract: A method for producing a diamond electrode comprising synthetically produced and electrically conductive (doped) diamond particles, which are embedded into a support layer of electrically non-conductive material. The doped diamond particles are introduced as a single layer between two films that form the support layer, the films then being permanently connected to each other and the diamond particles being exposed on both sides of the support layer.
    Type: Grant
    Filed: April 4, 2007
    Date of Patent: March 20, 2012
    Assignee: Pro Aqua Diamantelektroden Produktion GmbH & Co. KG
    Inventors: Wolfgang Wesner, Robert Hermann, Michael Schelch, Wolfgang Staber
  • Patent number: 8137516
    Abstract: The hydrogen-oxygen generating electrode plate using a carbon nano tube includes a carbon nano tube (CNT); a carbon (C); NiO; NaTaO3; and a catalyst. The method for manufacturing a hydrogen and oxygen generating electrode plate using a carbon nano tube, includes a step S1 for grinding into high-density powders; a step S2 for uniformly mixing carbon nano tube powder, carbon powder, NiO powder, NaTaO3 powder and catalyst and forming a mixture having a high distribution degree; a step S3 for inputting the mixture into a mold and pressing the same and forming a pressing forming object; and a step S4 for plasticity-forming the pressing forming object in a vacuum plasticity furnace.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: March 20, 2012
    Inventor: Boo-Sung Hwang
  • Patent number: 8133306
    Abstract: A gas diffusion substrate includes a non-woven network of carbon fibres, the carbon fibres are graphitised but the non-woven network has not been subjected to a graphitisation process. A mixture of graphitic particles and hydrophobic polymer is disposed within the network. The longest dimension of at least 90% of the graphitic particles is less than 100 ?m. A process for manufacturing gas diffusion substrates includes depositing a slurry of graphitised carbon fibres onto a porous bed forming a wet fibre network, preparing a suspension of graphitic particles and hydrophobic polymer, applying onto, and pulling the suspension into, the network, and drying and firing the network. Another process includes mixing a first slurry of graphitic particles and hydrophobic polymer with a second slurry of graphitised carbon fibres and liquid forming a third slurry, depositing the third slurry onto a porous bed forming a fibre-containing layer, and drying and firing the layer.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: March 13, 2012
    Assignees: Johnson Matthey Public Limited Company, Technical Fibre Products Limited
    Inventors: George Thomas Quayle, Julia Margaret Rowe, Jonathan David Brereton Sharman, Julian Andrew Siodlak, Nigel Julian Walker, Andrew James Fletcher
  • Publication number: 20120048745
    Abstract: In embodiments there are disclosed a substantially flat, flow through electrode, electrochemical cells comprising substantially flat flow through cathodes, and methods for electrochemically recovering a metal substantially liquid at room temperature.
    Type: Application
    Filed: July 20, 2011
    Publication date: March 1, 2012
    Inventor: Graham C. Dickson
  • Publication number: 20120031852
    Abstract: An electrode is described completely made of graphenes or containing high amounts of these compounds in mixture with nanostructured or non-nanostructured carbon-based materials. An electrooxidation process for the removal of contaminants from liquids, and a reactor for performing the process, based on the use of said electrodes, are also described.
    Type: Application
    Filed: April 6, 2010
    Publication date: February 9, 2012
    Applicant: SA ENVITECH S.R.L.
    Inventor: Ivano Aglietto
  • Patent number: 8105469
    Abstract: Microelectrode comprising a body formed from electrically non-conducting material and including at least one region of electrically conducting material and at least one passage extending through the body of non-conducting material and the region of conducting material, the electrically conducting region presenting an area of electrically conducting material to a fluid flowing through the passage in use. An electrochemical cell which includes such a microelectrode is also disclosed.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: January 31, 2012
    Inventors: Andrew John Whitehead, Geoffrey Alan Scarsbrook, Julie Victoria MacPherson, Mark Newton, Patrick Robert Unwin, William Joseph Yost, III
  • Publication number: 20120012472
    Abstract: The invention relates to novel compositions of disubstituted bipyridyl osmium complexes useful for the synthesis of labeled proteins, nucleic acids, and for the modification of electrodes.
    Type: Application
    Filed: July 20, 2011
    Publication date: January 19, 2012
    Applicant: OHMX CORPORATION
    Inventors: Michael Ahrens, Paul A. Bertin, Harry B. Gray, Thomas J. Meade
  • Publication number: 20110233075
    Abstract: Nanostructured microelectrodes and biosensing devices incorporating the same are disclosed herein.
    Type: Application
    Filed: September 1, 2009
    Publication date: September 29, 2011
    Applicant: The Governing Council of the University of Toronto
    Inventors: Leyla Soleymani, Zhichao Fang, Shana Kelley, Edward Sargent, Bradford Taft
  • Publication number: 20110226628
    Abstract: The present invention relates to a carbon electrode having a conical or pyramidal tip, wherein the tip is surrounded on its side by a raised edge.
    Type: Application
    Filed: February 23, 2011
    Publication date: September 22, 2011
    Applicant: WACKER CHEMIE AG
    Inventor: Heinz KRAUS
  • Publication number: 20110226616
    Abstract: The present invention provides a process for producing an electrode for electrochemical reaction, wherein a conductive diamond layer is formed on an electrode substrate in the electrode; and the electrode substrate on which the conductive diamond layer is formed is kept at a temperature of 400° C. or more and 1,000° C. or less in a water vapor, thereby forming a micropore in the conductive diamond layer. Also, the present invention provides an electrode for electrochemical reaction obtained by the foregoing production process.
    Type: Application
    Filed: September 9, 2010
    Publication date: September 22, 2011
    Applicants: SHINSHU UNIVERSITY, PERMELEC ELECTRODE LTD.
    Inventors: Yoshio TAKASU, Wataru SUGIMOTO, Tatsuya OHASHI, Junfeng ZHANG
  • Publication number: 20110198238
    Abstract: An electrode for electrochemical water treatment, the electrode including a nanodiamond and a conducting agent.
    Type: Application
    Filed: September 10, 2010
    Publication date: August 18, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Joo-wook LEE, Hyo-rang KANG, Jae-young KIM, Jae-eun KIM
  • Patent number: 7976688
    Abstract: Method for manufacturing anodes used for the production of aluminium by fused bath electrolysis, said anodes comprising an anode stem made of a conducting metal and at least one block made of carbonaceous material called an anode block, said method including at least the following steps: a) obtain an anode stem; b) obtain a new anode block; c) fix one end of the anode stem onto the anode block, so as to give good mechanical attachment and good electrical connection between said stem and said anode block; said method being characterised in that before, during or after step c), but before placement of said anode in the electrolytic cell, a protective layer with a controlled thickness, typically between 5 and 25 cm composed of a material resistant to temperature and corrosion by the medium above the electrolytic bath is at least partially deposited on the upper surface of said anode block.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: July 12, 2011
    Assignee: E.C.L.
    Inventors: Ludovic Demeulenaere, Alain Van Acker, Didier Lescarcelle
  • Patent number: 7959773
    Abstract: An electroactivated film that includes: a first electrode that is spaced apart from a second electrode, a water insoluble electrically conductive medium which is permeable to moisture and oxygen and which contacts both electrodes, an electrocatalyst which can be reversibly oxidized and reduced and which facilitates the production of a peroxide when an electrical potential is imposed across the electrodes, and optionally a peroxide-activating catalyst which converts the peroxide to an activated peroxide, wherein one or both electrodes have electrocatalyst immobilized thereupon.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: June 14, 2011
    Assignee: Lumimove, Inc.
    Inventors: Shifeng Hou, Von Howard M. Ebron, Yevgenia V. Ulyanova, Sriram Viswanathan, Patrick J. Kinlen
  • Patent number: 7955856
    Abstract: An auto-calibration system for diagnostic test strips is described for presenting data individually carried on each test strip readable by a diagnostic meter. The carried data may include an embedded code relating to data particular to that individual strip. The data is presented so as to be read by a meter associated with the diagnostic test strip in order to avoid manually inputting the information.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: June 7, 2011
    Assignee: Nipro Diagnostics, Inc.
    Inventors: Gary T. Neel, Brent E. Modzelewski, Allan Javier Caban, Adam Mark Will, Carlos Oti, Natasha Popovich, Stephen Davies
  • Patent number: 7951274
    Abstract: A diamond electrode includes a conductive silicon substrate having a plurality of pores. The diamond electrode also includes a conductive diamond covering the conductive silicon substrate. The inner wall surfaces of the plurality of pores are at an angle of 60° to 85° with respect to a substrate of the conductive silicon substrate.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: May 31, 2011
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Shigeru Yoshida, Katsuhito Yoshida, Toshiya Takahashi, Takahisa Iguchi, Fuminori Higuchi
  • Publication number: 20110108433
    Abstract: The present invention relates to a process for activating a diamond-based electrode, which includes a step consisting in subjecting, in the presence of an aqueous solution containing an ionic electrolyte, said electrode to an alternately cathodic and anodic polarization potential, of increasing amplitude so as to obtain an anodic and cathodic current density of between 10 ?A/cm2 and 1 mA/cm2. The present invention also relates to a diamond-based electrode activated by said process and to the uses thereof.
    Type: Application
    Filed: June 5, 2008
    Publication date: May 12, 2011
    Inventors: Jacques De Sanoit, Emilie Vanhove
  • Patent number: 7927470
    Abstract: An electrolytic cell is provided that can include: a first electrode plate including a first surface that can include a graphite material; a second electrode plate including a second surface that can include a graphite material opposing the first surface; an electrolytic reaction zone between the first surface and the second surface; and an inlet to and an outlet from the electrolytic reaction zone. The first electrode plate and the second electrode plate can include resin-impregnated monolithic graphite plates. The first electrode plate and the second electrode plate can form opposite internal walls of a chamber for the electrolytic reaction and thus can be provided without a container for containing the electrode plates. Methods are also provided for flow-through-resin-impregnating porous, monolithic graphite plates to form electrode plates.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: April 19, 2011
    Assignee: ProChemTech International, Inc.
    Inventor: Timothy Edward Keister
  • Patent number: 7901560
    Abstract: A method of producing aluminium in a Hall-Héroult cell with prebaked anodes, as well as anodes for the same. The anodes are provided with slots in a wear (bottom) surface thereof for gas drainage. The slots are 2-8 millimeters wide, and preferably 3 millimeters.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: March 8, 2011
    Assignee: Norsk Hydro ASA
    Inventor: Arild Storesund
  • Publication number: 20110048943
    Abstract: A cathodic material for use in an electrochemical sensor comprising: a carbonaceous material and an oxygen reduction catalyst associated with the carbonaceous material; and wherein the cathodic material does not materially exhibit catalytic activity for the oxidation of carbon monoxide. Associated electrochemical sensors may include an anode and cathode that are disposed upon the same or opposite sides of an ion exchange membrane and/or exposed to the same or different gaseous environments.
    Type: Application
    Filed: August 3, 2010
    Publication date: March 3, 2011
    Inventor: Joel C. Nemes