Focusing Target (e.g., Conical Target, Plural Inclined Targets, Etc.) Patents (Class 204/298.18)
  • Patent number: 7179351
    Abstract: In one embodiment, a magnetron sputtering apparatus forms a closed plasma loop and an open plasma loop within the closed plasma loop. The open plasma loop allows for relatively uniform erosion on the face of a target by broadening the sputtered area of the target. The open plasma loop may be formed and swirled using a rotating magnetic array to average the target erosion.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: February 20, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Daniel R. Juliano, Douglas B. Hayden
  • Patent number: 7179350
    Abstract: An asymmetric alternating voltage (preferably 40 KHz) is provided between a pair of targets having a coaxial (preferably frusto-conical) relationship to (1) deposit the material in a uniform thickness on the substrate surface (2) eliminate dielectric material from the surfaces of the targets and other components (3) provide a single ignition of the targets and eliminate target ignitions thereafter and (4) reduce the substrate temperature by using low energy (“cold”) electrons from a plasma discharge to produce a low energy current. The asymmetry may result from amplitude differences between the voltage in alternate half cycles and the voltage in the other half cycles. A second alternating voltage (preferably radio frequency) modulates the asymmetric alternating voltage to provide the smooth plasma ignition.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: February 20, 2007
    Assignee: Tegal Corporation
    Inventors: Pavel N. Laptev, Valery V. Felmetsger
  • Patent number: 7141145
    Abstract: A method of forming a thin film on a substrate/workpiece by sputtering, comprising steps of: (a) providing an apparatus comprising a vacuum chamber including at least one sputtering source and a gas supply means for injecting a gas containing at least one reactive component into said chamber, the gas supply means comprising a plurality of differently-sized outlet orifices adapted for providing substantially the same flow rate of gas from each orifice; (b) providing a substrate/workpiece having at least one surface for formation of a thin film thereon; (c) generating a sputtered particle flux from the at least one sputtering source; (d) injecting the gas containing the at least one reactive component into the chamber via the gas supply means, such that the same gas flow rate is provided at each orifice; and (e) forming a reactively sputtered thin film on the at least one surface of the substrate/workpiece, the reactively sputtered thin film having a substantially uniform content of the at least one reactive
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: November 28, 2006
    Assignee: Seagate Technology LLC
    Inventors: Charles Frederick Brucker, Paul S. McLeod, Chang Yi
  • Patent number: 7135097
    Abstract: Disclosed is a box-shaped facing-targets sputtering apparatus capable of forming, at low temperature, a compound thin film of high quality while causing minimal damage to an underlying layer.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: November 14, 2006
    Assignee: FTS Corporation
    Inventors: Sadao Kadokura, Hisanao Anpuku
  • Patent number: 7018515
    Abstract: A dual-position magnetron that is rotated about a central axis in back of a sputtering target, particularly for sputtering an edge of a target of a barrier material onto a wafer and cleaning material redeposited at a center of the target. During target cleaning, wafer bias is reduced. In one embodiment, an arc-shaped magnetron is supported on a pivot arm pivoting on the end of a bracket fixed to the rotary shaft. A spring biases the pivot arm such that the magnetron is urged towards and overlies the target center. Centrifugal force at increased rotation rate overcomes the spring bias and shift the magnetron to an outer position with the long magnetron dimension aligned with the target edge. Mechanical stops prevent excessive movement in either direction. Other mechanisms include linear slides and actuators.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: March 28, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Tza-Jing Gung, Hong S. Yang, Anantha K. Subramani, Maurice E. Ewert, Keith A. Miller, Vincent E. Burkhart
  • Patent number: 6881311
    Abstract: Disclosed is a facing-targets-type sputtering apparatus including a sputtering unit including a pair of facing targets which are disposed a predetermined distance away from each other, and permanent magnets serving as magnetic-field generation means which are disposed around each of the facing targets, the permanent magnets being provided so as to generate a facing-mode magnetic field and a magnetron-mode magnetic field, the facing-mode magnetic field extending in the direction perpendicular to the facing targets in such a manner as to surround a confinement space provided between the targets, and the magnetron-mode magnetic field extending from the vicinity of a peripheral edge portion of each of the targets to a center portion thereof, thereby confining plasma within the confinement space by means of these magnetic fields for forming a thin film on a substrate disposed beside the confinement space, which apparatus further includes magnetic-field regulation means for regulating the magnetron-mode magnetic fi
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: April 19, 2005
    Assignee: FTS Corporation
    Inventors: Sadao Kadokura, Hisanao Anpuku
  • Patent number: 6872285
    Abstract: This application discloses a system for depositing a magnetic film for a magnetic recording layer or depositing an underlying film prior to depositing a magnetic film as a recording layer. The system comprises; a chamber in which the film is deposited onto a substrate by sputtering, a target that is provided in the chamber and made of material of the film to be deposited, a sputter power source for applying voltage to the target for the sputtering, and a direction control member for controlling sputter-particles released from the target during the sputtering. The direction control member is provided between the substrate and the target. The direction control member provides a passage for the sputter-particles. The direction control member lets the sputter-particles selectively pass through, thereby allowing magnetic anisotropy to the magnetic film. The passage is not close but open in its cross section.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: March 29, 2005
    Assignee: Anelva Corporation
    Inventors: Shinji Furukawa, Miho Sakai
  • Patent number: 6860977
    Abstract: A workpiece is manufactured using a magnetron source that has an optimized yield of sputtered-off material as well as service life of the target. Good distribution values of the layer on the workpiece are obtained that are stable over the entire target service life, and a concave sputter face in a configuration with small target-to-workpiece distance is combined with a magnet system to form the magnetron electron trap in which the outer pole of the magnetron electron trap is stationary and an eccentrically disposed inner pole with a second outer pole part is rotatable about the central source axis.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: March 1, 2005
    Assignee: Unaxis Balzers Limited
    Inventors: Bernd Heinz, Martin Dubs, Thomas Eisenhammer, Pius Grunenfelder, Walter Haag, Stanislav Kadlec, Siegfried Krassnitzer
  • Patent number: 6830664
    Abstract: A cathode for a cluster tool in accordance with the present invention includes a base, a disc-shaped target mounted to the base and a magnetic source for establishing magnetic flux lines through the target. The target further comprises a top plate with a plurality of through holes; and a bottom plate with a plurality of bottom plate openings which interconnect distribution grooves formed in one surface with base face channels formed in the other surface. When the top plate is mated to the bottom plate, a path of fluid communication is established from the base face channels to the through holes to allow for inert gas to pass through the target. During operation, the through holes act as micro-cathodes to more efficiently cause material to be sputtered from the target. Each through hole defines a through hole axis, and the magnetic flux lines are parallel with the through holes axes.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: December 14, 2004
    Assignee: Tegal Corporation
    Inventor: Andrew P. Clarke
  • Publication number: 20040231972
    Abstract: An asymmetric alternating voltage (preferably 40 KHz) is provided between a pair of targets having a coaxial (preferably frusto-conical) relationship to (1) deposit the material in a uniform thickness on the substrate surface (2) eliminate dielectric material from the surfaces of the targets and other components (3) provide a single ignition of the targets and eliminate target ignitions thereafter and (4) reduce the substrate temperature by using low energy (“cold”) electrons from a plasma discharge to produce a low energy current. The asymmetry may result from amplitude differences between the voltage in alternate half cycles and the voltage in the other half cycles. A second alternating voltage (preferably radio frequency) modulates the asymmetric alternating voltage to provide the smooth plasma ignition.
    Type: Application
    Filed: May 23, 2003
    Publication date: November 25, 2004
    Inventors: Pavel N. Laptev, Valery V. Felmetsger
  • Publication number: 20040231973
    Abstract: According to the invention, when targets are sputtered, each of them moves with respect to a substrate; and therefore, the entire area of the substrate is opposed to the targets during sputtering, so that a film of homogeneous quality can be formed on the surface of the substrate. During the sputtering, not only the targets but also magnetic field forming devices are moved relative to the targets, and therefore, a large area of the targets can be sputtered. In addition, when the magnetic field forming devices are also moved with respect to the substrate, the region of the target which is highly sputtered, moves with respect to the substrate, so that the thickness distribution of the film formed on the substrate can be even more uniform.
    Type: Application
    Filed: May 19, 2004
    Publication date: November 25, 2004
    Applicant: ULVAC, INC.
    Inventors: Shigemitsu Sato, Masasuke Matsudai, Hiroki Oozora, Junya Kiyota, Hajime Nakamura, Satoru Ishibashi, Atsushi Ota
  • Publication number: 20040180144
    Abstract: A method is disclosed to effectively achieve a low deposition temperature of CMO memory materials by depositing the CMO memory material at relatively low temperatures that give an amorphous film, then to later melt and re-crystallize the CMO memory material with a laser (laser annealing).
    Type: Application
    Filed: March 13, 2003
    Publication date: September 16, 2004
    Inventors: Makoto Nagashima, Darrell Rinerson, Steve K. Hsia
  • Patent number: 6790326
    Abstract: A plasma sputter reactor including a target with an annular vault formed in its surface facing the wafer to be sputter coated and having inner and outer sidewalls and a roof thereover. A well is formed at the back of the target between the tubular inner sidewall. A magneton associated with the target includes a stationary annular magnet assembly of one vertical polarity disposed outside of the outer sidewall, a rotatable tubular magnet assembly of the other polarity positioned in the well behind the inner sidewall, and a small unbalanced magnetron rotatable over the roof about the central axis of the target.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: September 14, 2004
    Assignee: applied materials, inc.
    Inventors: Anantha Subramani, Umesh Kelkar, Jianming Fu, Praburam Gopalraja
  • Publication number: 20040173455
    Abstract: A sputtering target having an annular vault with a throat between two sidewalls and facing a substrate to be sputter coated. The vault is partially closed by a plate placed in the annular throat between the sidewalls. Thereby, the plasma density is increased within the vault. Furthermore, the position of the annular gap in the plate between the two sidewalls may be chosen to increase uniformity of sputtering deposition arising from the two sidewalls. The plate may be formed of one or more annular rings attached to the walls or a single plate having apertures formed therein may bridge the throat. Alternatively, the target may be formed as a cylindrical hollow cathode with the plate partially closing the circular throat. A rotating asymmetric roof magnetron may be combined with a hollow cathode without the restricting plate.
    Type: Application
    Filed: March 9, 2004
    Publication date: September 9, 2004
    Inventor: Wei Wang
  • Publication number: 20040163952
    Abstract: A magnetron with mechanisms for controlling the magnetic field that acts on its targets in such a manner as to provide control over erosion patterns and independent control of stress, uniformity, deposition rate, and coupling coefficient of a deposited film. A magnetron according to the present teachings includes a set of targets each for eroding a material for deposition onto a wafer contained in the magnetron and a mechanism for adjusting a racetrack position on each target. The racetrack position defines the areas of the targets from which a predominant amount of the material is eroded. The control of racetrack position enables precise control of erosion characteristics and control over stress, uniformity, deposition rate, and coupling coefficient.
    Type: Application
    Filed: February 21, 2003
    Publication date: August 26, 2004
    Inventors: Yury Oshmyansky, Sergey Mishin, Richard C. Ruby, John D. Larson
  • Publication number: 20040163944
    Abstract: A magnetron with mechanisms for smoothly and continuously adjusting a DC power applied to its targets to compensate for the changes in the sputtering characteristics of the targets that occur with target aging. A magnetron according to the present teachings includes a set of concentric targets for sputtering a film onto a wafer in response to an AC power and a DC power applied to the targets and a power controller that adjusts the DC power. The adjustments to the DC power enable the magnetron to maintain uniformity in the thicknesses of films formed with the magnetron throughout the life of its targets.
    Type: Application
    Filed: February 21, 2003
    Publication date: August 26, 2004
    Inventors: Yury Oshmyansky, Sergey Mishin, Richard C. Ruby, John D. Larson
  • Patent number: 6776881
    Abstract: For optimizing the yield of atomized-off material on a magnetron atomization source, a process space, on the source side, is predominantly walled by the atomization surface of the target body. The magnetron atomization source has a target body with a mirror-symmetrical, concavely constructed atomization surface with respect to at least one plane and a magnetic circuit arrangement operable to generate a magnetic field over the atomization surface. The magnetic circuit arrangement includes an anode arrangement, a receiving frame which extends around an edge of the target body and is electrically insulated with respect thereto. The receiving frame has a receiving opening for at least one workpiece to be coated. The magnetron source can be used to provide storage disks, such as CDs, with an atomization coating.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: August 17, 2004
    Assignee: Unaxis Balzers Aktiengesellschaft
    Inventors: Pius Gruenenfelder, Hans Hirscher, Urs Schwendener, Walter Haag
  • Publication number: 20040149575
    Abstract: An array of unbalanced magnetrons arranged around a centrally-located space for sputter coating of material from target electrodes in the magnetrons onto a substrate disposed in the space. The electrodes are powered in pairs by an alternating voltage and current source. The unbalanced magnetrons, which may be planar, cylindrical, or conical, are arranged in mirror configuration such that like poles are opposed across the substrate space or are adjacent on the same side of the substrate space. The magnetrons are all identical in magnetic polarity, such that there is no magnetic coupling between either opposed or adjacent magnetrons. A positive plasma potential produced by the AC driver prevents electrons from escaping to ground along the unclosed field lines, increasing plasma density in the background working gas and thereby improving the quality of coating being deposited on the substrate.
    Type: Application
    Filed: November 24, 2003
    Publication date: August 5, 2004
    Applicant: Isoflux, Inc.
    Inventors: David A. Glocker, Mark Romach
  • Patent number: 6761804
    Abstract: A source of sputtered deposition material has, in one embodiment, a torus-shaped plasma generation area in which a plasma operates to sputter the interior surface of a toroidal cathode. In one embodiment, the sputtered deposition material passes to the exterior of the source through apertures provided in the cathode itself. A torus-shaped magnetic field generated in the torus-shaped plasma facilitates plasma generation, sputtering of the cathode and ionization of the sputtered material by the plasma.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: July 13, 2004
    Assignee: Applied Materials, Inc.
    Inventor: Mark A. Perrin
  • Patent number: 6752911
    Abstract: The invention relates to a device for coating an object at a high temperature by means of cathode sputtering, having a vacuum chamber and a sputter source, the sputter source having a sputtering cathode. Inside the vacuum chamber is arranged an inner chamber formed from a heat-resistant material, which completely surrounds the sputtering cathode and the object to be coated, at a small spacing, and which has at least one opening to let a gas in and at least one opening to let a gas out.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: June 22, 2004
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventor: Thomas Jung
  • Patent number: 6749730
    Abstract: An object of the present invention is to alter the shape of the magnetic field with ease in the state of auxiliary magnet poles being disposed in a sputtering apparatus. In a sputtering apparatus according to the present invention, one or more magnetron type sputtering evaporation sources 3 and one or more auxiliary magnet poles 9 are disposed in a chamber 1 so as to surround a solid substance 2 to be deposited, wherein an angle changing mechanism for changing the alignment angle of the auxiliary magnet poles 9 relative to the solid substance 2 to be deposited in order to alter the shape of the magnetic field formed by the magnetron type sputtering evaporation sources 3 and the auxiliary magnet poles 9.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: June 15, 2004
    Assignee: Kobe Steel, Ltd.
    Inventors: Toshimitsu Kohara, Koichiro Akari
  • Patent number: 6743342
    Abstract: A sputtering target having an annular vault with a throat between two sidewalls and facing a substrate to be sputter coated. The vault is partially closed by a plate placed in the annular throat between the sidewalls. Thereby, the plasma density is increased within the vault. Furthermore, the position of the annular gap in the plate between the two sidewalls may be chosen to increase uniformity of sputtering deposition arising from the two sidewalls. The plate may be formed of one or more annular rings attached to the walls or a single plate having apertures formed therein may bridge the throat. Alternatively, the target may be formed as a cylindrical hollow cathode with the plate partially closing the circular throat. A rotating asymmetric roof magnetron may be combined with a hollow cathode without the restricting plate.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: June 1, 2004
    Assignee: Applied Materials, Inc.
    Inventor: Wei Wang
  • Patent number: 6733642
    Abstract: An array of unbalanced magnetrons arranged around a centrally-located space for sputter coating of material from target electrodes in the magnetrons onto a substrate disposed in the space. The electrodes are powered in pairs by an alternating voltage and current source. The unbalances magnetrons, which may be planar, cylindrical, or conical, are arranged in mirror configuration such that like poles are opposed across the substrate space or are adjacent on the same side of the substrate space. The magnetrons are all identical in magnetic polarity. A positive plasma potential produced by the AC driver prevents electrons from escaping to ground along the unclosed field lines, increasing plasma density in the background working gas and thereby improving the quality of coating being deposited on the substrate.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: May 11, 2004
    Inventors: David A. Glocker, Mark Romach
  • Patent number: 6730196
    Abstract: A magnetron sputter reactor having a complexly shaped target with a vault arranged about a central axis facing the wafer. The vault may be right cylindrical with axially magnetized magnets disposed in back of its sidewall or be annular with preferably opposed magnets disposed in back of its two sidewalls. One or two electromagnetic coils are disposed about the processing space between the target and the wafer to either promote extraction of metal ions from the vault, to defocus the ion beam extracted from the vault and focused towards the central axis, or to compensate for a magnetic shield surrounding the reactor.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: May 4, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Wei D. Wang, Praburam Gopalraja, Jianming Fu
  • Patent number: 6719886
    Abstract: Ionized Physical Vapor Deposition (IPVD) is provided by a method of apparatus (500) particularly useful for sputtering conductive metal coating material from an annular magnetron sputtering target (10). The sputtered material is ionized in a processing space between the target (10) and a substrate (100) by generating a dense plasma in the space with energy coupled from a coil (39) located outside of the vacuum chamber (501) behind a dielectric window (33) in the chamber wall (502) at the center of the opening (421) in the sputtering target. A Faraday type shield (26) physically shields the window to prevent coating material from coating the window, while allowing the inductive coupling of energy from the coil into the processing space.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: April 13, 2004
    Assignee: Tokyo Electron Limited
    Inventors: John Stephen Drewery, Glyn Reynolds, Derrek Andrew Russell, Jozef Brcka, Mirko Vukovic, Michael James Grapperhaus, Frank Michael Cerio, Jr., Bruce David Gittleman
  • Publication number: 20040026233
    Abstract: Methods and apparatuses for shielding magnetic flux which is associated with a semiconductor fabrication system are provided. A magnetic shield assembly substantially surrounds a side wall of a plasma reactor. The shield assembly comprises a passive shield member in combination with an active shield member. As a result, effective shielding of magnetic flux can occur without excessive distortion of the magnetic field line pattern in the plasma region of the plasma reactor. In one aspect, the shield assembly comprises a first shield member adapted to attenuate a magnetic flux density. The first shield member is disposed in a parallel, spaced apart relationship from the side wall. A second member is attached to the first shield member and is constructed of a ferromagnetic material which is permanently magnetized.
    Type: Application
    Filed: August 8, 2002
    Publication date: February 12, 2004
    Applicant: Applied Materials, Inc.
    Inventor: Mark A. Perrin
  • Patent number: 6689253
    Abstract: A facing target sputtering apparatus, comprising: inner and outer spaced-apart, concentric, and coextensive tubular cathodes open at each end, with the inwardly facing surface of the outer cathode and the outwardly facing surface of the inner cathode; a first pair of ring-shaped magnet means extending around the outwardly facing surface of the outer cathode at the ends thereof, with a first polarity magnetic pole facing the outwardly facing surface; a second pair of ring-shaped magnet means extending around the inwardly facing surface of the inner cathode at the ends thereof, with a second, opposite polarity magnetic pole facing the inwardly facing surface; and a substrate positioned in spaced adjacency to an end of the inner and outer cathodes; wherein: magnetic flux lines from the first and second pairs of magnet means uni-directionally pass through portions of an annularly-shaped space between the ends of the inner and outer cathodes, and during sputtering operation, plasma is substantially confined t
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: February 10, 2004
    Assignee: Seagate Technology LLC
    Inventors: Chinsoon Koh, Stephen Hiroshi Sawasaki, Jianzhong Shi, Yuanda Randy Cheng
  • Publication number: 20040020770
    Abstract: A magnetron sputter reactor having a complexly shaped target with a vault arranged about a central axis facing the wafer. The vault may be right cylindrical with axially magnetized magnets disposed in back of its sidewall or be annular with preferably opposed magnets disposed in back of its two sidewalls. One or two electromagnetic coils are disposed about the processing space between the target and the wafer to either promote extraction of metal ions from the vault, to defocus the ion beam extracted from the vault and focused towards the central axis, or to compensate for a magnetic shield surrounding the reactor.
    Type: Application
    Filed: August 1, 2002
    Publication date: February 5, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Wei D. Wang, Praburam Gopalraja, Jianming Fu
  • Patent number: 6682637
    Abstract: To optimize the yield of sputtered-off material as well as the service life of the target on a magnetron source, in which simultaneously good attainable distribution values of the layer on the substrate, stable over the entire target service life, a concave sputter face 20 in a configuration with small target-substrate distance d is combined with a magnet system to form the magnetron electron trap in which the outer pole 3 of the magnetron electron trap is disposed stationarily and an eccentrically disposed inner pole 4 with a second outer pole part 11 is developed rotatable about the central source axis 6.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: January 27, 2004
    Assignee: Unaxis Balzers Limited
    Inventors: Bernd Heinz, Martin Dubs, Thomas Eisenhammer, Pius Grunenfelder, Walter Haag, Stanislav Kadlec, Siegfried Krassnitzer
  • Publication number: 20040000478
    Abstract: A hollow cathode sputtering target and associated magnetron. The target includes a tubular sidewall and a circular roof forming a cylindrical vault arranged about an axis. The sidewall is surrounded by a first set of magnets of a first magnetic polarity along the axis. A second set of magnets, disposed in back of the roof, and asymmetric and rotatable about the axis, includes an outer pole preferably of the first magnetic polarity surrounding an inner pole of the opposed magnetic polarity and of lesser total magnetic intensity. Optionally, the roof and sidewall are separate members having individual power supplies. Further optionally, the first set of magnets are asymmetric and rotatable with the second set of magnets about the axis.
    Type: Application
    Filed: June 26, 2002
    Publication date: January 1, 2004
    Inventor: Charles S. Guenzer
  • Patent number: 6660140
    Abstract: In a sputtering apparatus for depositing material onto a workpiece, an RF coil is disposed in a chamber between a first target and a workpiece support. The RF coil includes a re-sputtering surface of electrically conductive non-target material which faces towards the workpiece support and which receives a coating of target material for re-sputtering onto the workpiece. A second target, located between the RF coil and the workpiece support, includes a sputtering surface which faces towards the RF coil and which supplies at least a portion of thc coating of target material to the re-sputtering surface of the RF coil.
    Type: Grant
    Filed: January 5, 2000
    Date of Patent: December 9, 2003
    Assignee: Trikon Holdings Limited
    Inventors: Keith Edward Buchanan, Stephen Robert Burgess, Paul Rich
  • Patent number: 6649036
    Abstract: A mirrortron sputtering apparatus for sputtering on a substrate includes a vacuum chamber for placing therein a pair of targets spaced apart from each other with inner surfaces thereof facing each other and outer surfaces thereof positioned opposite to the inner surfaces, and magnets respectively disposed closer to the outer surfaces of the targets for forming a magnetic field between said pair of targets. The magnetic field has a magnetic field distribution with a peripheral region having a high magnetic flux density and a center region having a low magnetic flux density. In this arrangement, the substrate is set alongside a space between the pair of targets as facing said magnetic field.
    Type: Grant
    Filed: February 8, 2001
    Date of Patent: November 18, 2003
    Inventors: Toyoaki Hirata, Masahiko Naoe
  • Patent number: 6641702
    Abstract: The present invention is directed to a sputtering device for depositing multi-layer films on a substrate, the sputtering device comprising at least one planar-magnetron-sputtering-cathode and at least one facing-targets-sputtering-cathode housed in a single vacuum chamber, and adapted such that each planar-magnetron-sputtering-cathode and facing-targets-sputtering-cathode can be selectively positioned for sputtering deposition onto a substrate.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: November 4, 2003
    Assignee: Data Storage Institute
    Inventors: Jian Zhong Shi, Jian Ping Wang
  • Publication number: 20030183518
    Abstract: A sputtering cathode comprising a concave surface for receiving and supporting a sputtering target having a substantially conformal concave shape. The cathode is cooled via passage of a suitable coolant through passageways within the cathode. The target is constrained to the cathode along the target periphery. The target expands thermally during sputtering, but being constrained laterally the target is forced into intimate contact with the cooled concave cathode surface. The target is thus cooled over its entire surface, resulting in predictable, uniform erosion rates and target wear, whereas prior art planar cathodes are known to suffer from undesirable buckling of the target away from the cathode due to thermal expansion of the target in use. Cathodes and targets in accordance with the invention are non-planar and preferably are either spherically or cylindrically concave.
    Type: Application
    Filed: March 24, 2003
    Publication date: October 2, 2003
    Inventors: David A. Glocker, Mark Romach
  • Publication number: 20030173215
    Abstract: A sputtering target having an annular vault with a throat between two sidewalls and facing a substrate to be sputter coated. The vault is partially closed by a plate placed in the annular throat between the sidewalls. Thereby, the plasma density is increased within the vault. Furthermore, the position of the annular gap in the plate between the two sidewalls may be chosen to increase uniformity of sputtering deposition arising from the two sidewalls. The plate may be formed of one or more annular rings attached to the walls or a single plate having apertures formed therein may bridge the throat. Alternatively, the target may be formed as a cylindrical hollow cathode with the plate partially closing the circular throat. A rotating asymmetric roof magnetron may be combined with a hollow cathode without the restricting plate.
    Type: Application
    Filed: March 12, 2002
    Publication date: September 18, 2003
    Applicant: Applied Materials, Inc.
    Inventor: Wei Wang
  • Patent number: 6620298
    Abstract: A first target is arranged opposite a substrate while a second target is arranged not opposite the substrate within a vacuum chamber. Pressure within the vacuum chamber is adjusted to a first pressure, and during a period wherein the pressure is changed from the first pressure to a second pressure which is lower than the first pressure, plasma density above the second target is made greater than plasma density above the first target. At a time point when the second pressure is reached, the plasma density above the first target is made greater than the plasma density above the second target.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: September 16, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Hiroshi Hayata
  • Patent number: 6620299
    Abstract: Process and device for coating substrates utilizing bipolar pulsed magnetron sputtering in the frequency range between 10 and 100 kHz, wherein the device includes at least three magnetron sources. Each of the at least three magnetron sources includes a target. At least two of the targets are connected to a potential-free bipolar power supply device. The at least three targets are arranged relative to the substrates in such a way that the substrates are located at least partially inside a discharge current during a coating of the substrates. A switching device is adapted to connect the targets to the bipolar power supply device. A technological predetermined program is used for controlling the switching device. The switching device connects at least two of the targets at a time to the bipolar power supply device according to the technologically predetermined program.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: September 16, 2003
    Assignee: Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung E.V.
    Inventors: Fred Fietzke, Klaus Goedicke, Siegfried Schiller
  • Publication number: 20030164288
    Abstract: A target for physical-vapor deposition (PVD) and methods for depositing magnetic materials are described. Radio frequency (RF) or direct current (DC) power is introduced into the chamber through the target to produce plasma. The planar magnetron system is chosen for its high deposition rates. Since the permanent magnets are behind the target in the traditional system, a magnetic target interferes with the required magnetic fields on the target. To eliminate this problem permanent magnets are arranged on the surface and a magnetic target is used as a part of the magnetic circuit. Strong magnetic fields on the target can now be maintained for high deposition rates. The permanent magnets may be covered by a relatively thin, suitable protective-film or by a film of the same material as the target.
    Type: Application
    Filed: March 2, 2002
    Publication date: September 4, 2003
    Inventor: Shinzo Onishi
  • Patent number: 6613199
    Abstract: A hollow cathode magnetron comprises an open top target within a hollow cathode. The open top target can be biased to a negative potential so as to form an electric field within the cathode to generate a plasma. The magnetron uses at least one electromagnetic coil to shape and maintain a density of the plasma within the cathode. The magnetron also has an anode located beneath the cathode. The open top target can have one of several different geometries including flat annular, conical and cylindrical, etc.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: September 2, 2003
    Assignee: Novellus Systems, Inc.
    Inventors: Jeffrey A. Tobin, Jean Qing Lu, Thomas Mountsier, Hong Mei Zhang
  • Publication number: 20030155236
    Abstract: An object of the present invention is to alter the shape of the magnetic field with ease in the state of auxiliary magnet poles being disposed in a sputtering apparatus.
    Type: Application
    Filed: February 11, 2003
    Publication date: August 21, 2003
    Inventors: Toshimitsu Kohara, Koichiro Akari
  • Publication number: 20030150721
    Abstract: A source of sputtered deposition material has, in one embodiment, a torus-shaped plasma generation area in which a plasma operates to sputter the interior surface of a toroidal cathode. In one embodiment, the sputtered deposition material passes to the exterior of the source through apertures provided in the cathode itself. A torus-shaped magnetic field generated in the torus-shaped plasma facilitates plasma generation, sputtering of the cathode and ionization of the sputtered material by the plasma.
    Type: Application
    Filed: February 11, 2002
    Publication date: August 14, 2003
    Applicant: Applied Materials, Inc.
    Inventor: Mark A. Perrin
  • Patent number: 6605198
    Abstract: An electrical field between a positive anode and a negative target in a cavity and a magnetic field in the cavity cause electrons from the target to ionize neutral gas (e.g. argon) atoms in the cavity. The ions cause the target to release sputtered atoms (e.g. aluminum) for deposition on a substrate. A shield between the target and the substrate inhibits charged particle movement to the substrate. The anode potential may be positive, and the shield and the magnetic members may be grounded, to obtain electron movement to the anode, thereby inhibiting the heating of the shield and the magnetic members by electron impingement. The anode may be water cooled. The magnitude of the positive anode voltage relative to the target voltage provides selectively for (a) a uniform thickness of sputtered atoms on the walls of a groove in the substrate or (b) a filling of the groove by the sputtered atoms and a uniform thickness of deposition on the substrate surface including the filled groove.
    Type: Grant
    Filed: November 29, 1995
    Date of Patent: August 12, 2003
    Assignee: Sputtered Films, Inc.
    Inventors: Peter J. Clarke, Andrew P. Clarke
  • Patent number: 6589408
    Abstract: A non-planar target can be configured for use in a plasma vapor deposition (PVD) process in which ions bombard the non-planar target and cause alloy atoms present in the non-planar target to be knocked loose and form an alloy film layer. The target includes a top planar section having a first alloy concentration and a side annular section having a second alloy concentration. The side annular section has ends coupled to ends of the top planar section. The first alloy concentration and the second alloy concentration are different.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: July 8, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Pin-Chin Connie Wang, Paul R. Besser, Sergey D. Lopatin, Minh Q. Tran
  • Publication number: 20030094365
    Abstract: Disclosed is a facing-targets-type sputtering apparatus including a sputtering unit including a pair of facing targets which are disposed a predetermined distance away from each other, and permanent magnets serving as magnetic-field generation means which are disposed around each of the facing targets, the permanent magnets being provided so as to generate a facing-mode magnetic field and a magnetron-mode magnetic field, the facing-mode magnetic field extending in the direction perpendicular to the facing targets in such a manner as to surround a confinement space provided between the targets, and the magnetron-mode magnetic field extending from the vicinity of a peripheral edge portion of each of the targets to a center portion thereof, thereby confining plasma within the confinement space by means of these magnetic fields for forming a thin film on a substrate disposed beside the confinement space, which apparatus further includes magnetic-field regulation means for regulating the magnetron-mode magnetic fi
    Type: Application
    Filed: November 15, 2002
    Publication date: May 22, 2003
    Applicant: FTS CORPORATION
    Inventors: Sadao Kadokura, Hisanao Anpuku
  • Publication number: 20030066748
    Abstract: A system and method for sputter depositing a protective coating on a surface. The system includes a coating device, a first material for coating, a second material for coating and a surface to be coated. Preferably, the first material and the second material are sputter deposited on the surface in a predetermined proportion to yield a coating having tailored thermophysical and surface resistance properties. The proportion may be controlled by controlling exposed surface area of the first material and exposed surface area of the second material, as well as a magnetic field applied to the first and second materials.
    Type: Application
    Filed: October 4, 2001
    Publication date: April 10, 2003
    Inventors: William D. Gilmore, Richard M. Kurland
  • Publication number: 20030019740
    Abstract: For optimizing the yield of atomized-off material on a magnetron atomization source, a process space, on the source side, is predominantly walled by the atomization surface of the target body. The magnetron atomization source has a target body with a mirror-symmetrical, concavely constructed atomization surface with respect to at least one plane and a magnetic circuit arrangement operable to generate a magnetic field over the atomization surface. The magnetic circuit arrangement includes an anode arrangement, a receiving frame which extends around an edge of the target body and is electrically insulated with respect thereto. The receiving frame has a receiving opening for at least one workpiece to be coated. The magnetron source can be used to provide storage disks, such as CDs, with an atomization coating.
    Type: Application
    Filed: September 25, 2002
    Publication date: January 30, 2003
    Applicant: Unaxis Balzers Aktiengesellschaft
    Inventors: Pius Gruenenfelder, Hans Hirscher, Urs Schwendener, Walter Haag
  • Patent number: 6497803
    Abstract: Apparatus for creating subatmospheric high plasma densities in the vicinity of a substrate in a work space for use in magnetron sputter deposition aided by ion bombardment of the substrate. Unbalanced flux lines emanating from cylindrical or frusto-conical targets cannot be captured across the work space, because the energizing magnets are cylindrical, and instead converge toward the axis of the apparatus to provide a high flux density, and therefore a high plasma density, in the vicinity of a substrate disposed in this region. The plasma profile and the coating material profile within the work space are both cylindrically symmetrical, resulting in a consistent and predictable coating on substrates.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: December 24, 2002
    Assignee: Isoflux, Inc.
    Inventors: David A. Glocker, Mark M. Romach
  • Patent number: 6497796
    Abstract: A magnetron source comprises a hollow cathode with a non-planar target. By using a magnet between the cathode and a substrate, plasma can be controlled to achieve high ionization levels, good step coverage, and good process uniformity. Step coverage uniformity is also improved by controlling the magnetic fields, and thus the flow of ions and electrons, near the plane of the substrate.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: December 24, 2002
    Assignee: Novellus Systems, Inc.
    Inventors: Kaihan A. Ashtiani, Karl B. Levy, Kwok F. Lai, Andrew L. Nordquist, Larry D. Hartsough
  • Publication number: 20020189938
    Abstract: A system and method for performing sputter deposition includes at least one ion source that generates at least one ion current directed at first and second targets, at least one electron source that generates at least one electron current directed at the first and second targets, and circuitry that biases the first and second targets with independent first and second DC voltage pulse signals. A first current sensor, coupled to the biasing circuitry, monitors a positive current and a negative current from the first target during one or more cycles of the first DC voltage pulse signal, and a second current sensor, coupled to the biasing circuitry, monitors a positive current and a negative current from the second target during one or more cycles of the second DC voltage pulse signal. A controller, coupled to the first and second current sensors, varies the at least one ion current independently from the at least one electron current.
    Type: Application
    Filed: May 2, 2002
    Publication date: December 19, 2002
    Applicant: 4Wave, Inc.
    Inventors: David Alan Baldwin, Todd Lanier Hylton
  • Publication number: 20020175069
    Abstract: An apparatus for forming an electrode for a lithium secondary cell capable of readily forming an active material layer constituted by at least two elements and controlling the composition of the active material layer is obtained. The apparatus for forming an electrode for a lithium secondary cell comprises a first sputtering source for sputtering a first material forming the active material layer onto the surface of the collector and a second sputtering source for sputtering a second material forming the active material layer onto the surface of the collector. Plasma regions of the first and second sputtering sources are arranged to overlap with each other. Thus, the active material layer constituted by at least two elements is readily formed with excellent reproducibility. When power applied to the first sputtering source and the second sputtering source is controlled independently of each other, the composition of the active material layer constituted by at least two elements is readily controlled.
    Type: Application
    Filed: April 16, 2002
    Publication date: November 28, 2002
    Applicant: Sanyo Electric Co., Ltd.
    Inventors: Yoichi Domoto, Hisaki Tarui, Hiromasa Yagi