Abstract: The present invention relates to crude oil-water separation processes, specifically desalting in a petroleum refinery. More particularly, the present invention relates to a method and system for increase coalescence rates of water drops in a desalter.
Abstract: A high temperature high pressure electrostatic treater and method of use are described for removing water from heavy crude oil. The electrostatic treater is comprised of a vessel with a wet bitumen inlet and water outlet in the upper portion of the vessel, a dry bitumen outlet in the lower portion of the vessel, a plurality of electrodes on an electrically isolating support inside the vessel, an entrance bushing, and an interface control to regulate the flow of water through the water outlet. The water outlet is located above the dry bitumen outlet. The electrostatic treater and method reduce the amount of diluent needed to process the heavy crude when compared to the prior art.
Abstract: A sucker-rod pumping system includes diametrically charged rare earth magnets having significant monopolar character mounted on the rod string and, optionally, within a magnet barrel below the pump barrel. The magnets are jacketed to preclude contact with crude petroleum. The magnets subject the petroleum to a significant magnetic flux to substantially preclude precipitation of paraffins and asphaltenes with a minimum of retrofit to existing equipment and without substantially altering the operation of the rod string.
Abstract: The system and method for conversion of molecular weights of fluids includes an elongate metallic pipe. A fluid is caused to flow through the pipe. A center electrode is mounted within the pipe coaxially with the pipe axis and the flow direction, the electrode being insulated from the pipe wall. The center electrode and the pipe wall are connected to the terminals of a voltage source to create an electric field extending radially between the center electrode and the pipe wall. A source of gamma radiation positioned either within the center electrode or external to the pipe directs gamma rays transverse to the direction of fluid flow. The combined radiation and electric field disrupts chemical bonds, creating ionization zones and resulting in the formation of lower-molecular-weight compounds. Optionally, a magnetic field may be superimposed in the direction of fluid flow.
Type:
Application
Filed:
July 15, 2009
Publication date:
January 20, 2011
Inventors:
William M. Sackinger, Halim Hamid Redhwi, Abdullah M. Aitani, Mohammad Ashraf Ali
Abstract: The system and method for conversion of molecular weights of fluids includes an elongate metallic pipe. A liquid, e.g., a hydrocarbon liquid, is caused to flow through the pipe. A center electrode is mounted within the pipe coaxially with the pipe axis and the flow direction, the electrode being insulated from the pipe wall. The center electrode and the pipe wall are connected to the terminals of a voltage source to create an electric field extending radially between the center electrode and the pipe wall. A source of gamma radiation positioned either within the center electrode or external to the pipe directs gamma rays transverse to the direction of fluid flow. The combined radiation and electric field disrupts carbon-sulfur, carbon-hydrogen, and carbon-carbon bonds, creating ionization zones and resulting in the formation of lower molecular weight compounds. Optionally, a magnetic field may be superimposed in the direction of fluid flow.
Type:
Application
Filed:
July 15, 2009
Publication date:
January 20, 2011
Inventors:
William M. Sackinger, Halim Hamid Redhwi, Abdullah M. Aitani
Abstract: Provided is a method for purifying a biodiesel fuel while completely preventing or greatly reducing generation of waste water. The present invention relates to a method for purifying a biodiesel fuel characterized by applying an electric field to or heating a crude biodiesel fuel and a method for purifying a biodiesel fuel characterized by adding water (preferably containing a demulsifier such as an inorganic calcium salt or a magnesium salt) to a crude biodiesel fuel to form W/O emulsion, and breaking the emulsion by application of an electric field or heating, etc.
Abstract: The present invention relates to a liquid fuel blended by dissolving crude pentane into the heavy oil with different proportions, and applied to different combustion system respectively; the fuel thus formed is easily dissolved, volatilized, atomized and vaporized into fine vapor articles, so it will burn completely to not only increase the heat value but also reduce the pollution without producing the dense smoke like common heavy oil combustion furnace. In addition, alkanes with low price, low octane value and high volatility substitute or blend with the crude pentane to become a liquid fuel having suitable initial boiling point, viscosity and fluidity as well as low price and low pollution, which is much better than common diesel oil.
Abstract: A method of augmenting the separation of immiscible heavier and lighter components of an emulsion including the steps of passing the emulsion into a treatment vessel, establishing at least one dual frequency electric field within the vessel and selectably varying the electric field at a frequency F1 modulated in intensity at a frequency F2 where F1 is greater than F2.
Abstract: The instant invention is directed to an electrochemical process for removing sulfur from a stream comprising hydrocarbon and polymerizable sulfur compounds comprising:
(a) combining a hydrocarbon feed containing polymerizable sulfur compounds with a ionic liquid;
(b) electrochemically oxidizing said combination of step (a) in an electrochemical reactor, under conditions capable of producing sulfur oligomers from said polymerizable sulfur compounds to obtain a first fraction comprising sulfur oligomers, ionic liquid, and entrained hydrocarbon, and a second fraction comprising desulfurized hydrocarbon feed;
(c) recovering said first fraction and said second fraction.
Type:
Grant
Filed:
March 31, 2000
Date of Patent:
August 14, 2001
Assignee:
ExxonMobil Research and Engineering Company
Inventors:
Robert Charles Schucker, William Chalmers Baird, Jr.
Abstract: A method and a reactor for electrochemical conversion of a material (21) being insoluble in a fluid into a material being soluble in the fluid, which method comprises that a flow of the fluid is passed to a reaction zone which comprises an internal circuit consisting of: one or more working electrodes (12), one or more counter-electrodes (13), and one or more ion-selective electrolytes (11), and which internal circuit is applied with an electrical voltage difference sufficient for the electrochemical processes; and use thereof for removal of soot particles from flue gasses and removal of oil in waste water.
Abstract: The present invention provides for a method for decreasing the Conradson carbon content of petroleum streams by forming a mixture of the petroleum stream and an essentially aqueous electrolysis medium, and passing an electric current through the mixture at an anodic voltage and pH sufficient to produce a petroleum fraction having decreased Conradson carbon content. The anodic voltage is from +0.5 to +1.5V vs. SCE. Preferably the pH is acidic. The invention provides a method for enhancing the value of petroleum feeds that traditionally have limited use in refineries.
Type:
Grant
Filed:
December 20, 1996
Date of Patent:
October 12, 1999
Assignee:
Exxon Research and Engineering Company
Inventors:
Mark Alan Greaney, Michael Charles Kerby
Abstract: The present invention provides for a process for electrochemically decreasing the Conradson carbon number of petroleum streams by contacting a Conradson carbon containing petroleum stream and an aqueous electrolysis medium with a low hydrogen overpotential metal cathode at an electric current and pH sufficient to decrease the Conradson carbon of the petroleum stream. The cathode voltage is from 0 V to -3.0 V vs. SCE at a pH of from 7 to 14. The cathode material typically is stainless steel, chromium, copper and nickel.
Abstract: The present invention provides for a process for electrochemically demetallating petroleum streams by contacting a hydrocarbon-soluble metals containing petroleum stream and an aqueous electrolysis medium with a low hydrogen overpotential metal cathode at an electric current and pH sufficient to demetallate the petroleum stream. The cathode voltage is from 0 V to -3.0 V vs. SCE at a pH of from 7 to 14. The cathode material typically is stainless steel, chromium, copper and nickel.
Abstract: The present invention provides for a method of decreasing the Conradson carbon content of metal containing petroleum streams by forming a mixture of the Conradson carbon containing petroleum fraction and an aqueous electrolysis medium containing an electron transfer agent, and passing an electric current through the mixture or optionally through the pretreated aqueous electrolysis medium at a voltage, sufficient to decrease the Concarbon content of the stream. The cathodic voltage is from 0 V to -3.0 V vs. SCE. The invention provides a method for enhancing the value of petroleum feeds that traditionally have limited use in refineries.
Type:
Grant
Filed:
July 15, 1997
Date of Patent:
March 9, 1999
Assignee:
Exxon Research and Engineering Company
Inventors:
Mark Alan Greaney, William Neergaard Olmstead
Abstract: A method and means for changing the characteristics of a substance, particularly a viscous substance, involves passing the substance into a path, passing a solvent for that substance into the path, and subjecting the substance and the solvent to a pulsating electric field in the frequency range of 0.1 Hz to 100 Hz.
Abstract: The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil.
Abstract: The present invention provides a method for decreasing the Conradson carbon ("Concarbon") number of petroleum feedstreams by passing an electric current through a mixture of a petroleum stream, typically having a Conradson carbon residue of at least about 0.1% and an aqueous electrolysis medium at a pH and cathodic voltage for a time sufficient to decrease the Conradson carbon number of the petroleum stream. The electrolysis medium contains quaternary carbyl or hydrocarbyl onium salts; inorganic hydroxides such as NaOH or KOH, or mixtures thereof. A cathodic voltage of 0 V to -3.0 V vs. Saturated Calomel Electrode (SCE) and a pH of 6-14, preferably 7 to 14, more preferably above 7 to 14 are used.The invention has utility for converting less economically desirable refinery feeds to feeds that are more valuable.
Type:
Grant
Filed:
May 12, 1995
Date of Patent:
May 7, 1996
Assignee:
Exxon Research and Engineering Company
Inventors:
Michael C. Kerby, Jr., Mark A. Greaney, Carl W. Hudson