Of Biological Material (e.g., Urine, Etc.) Patents (Class 205/792)
  • Publication number: 20150094553
    Abstract: In aspects of the present disclosure, a no coding blood glucose monitoring unit including a calibration unit is integrated with one or more components of an analyte monitoring system to provide compatibility with in vitro test strip that do not require a calibration code is provided. Also disclosed are methods, systems, devices and kits for providing the same.
    Type: Application
    Filed: December 5, 2014
    Publication date: April 2, 2015
    Applicant: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Benjamin Jay Feldman, Shridhara Alva Karinka, Yi Wang, John R. Galasso
  • Patent number: 8986613
    Abstract: The present invention provides a handheld USB Cup for use in collection of a fluidic body sample, comprising ad receptacle comprising side surfaces, a bottom plate and a sensor assembly, the sensor assembly comprising at least one sensor and a slave circuitry; said sensor assembly is permanently affixed to said side surfaces or said bottom plate. The receptacle is capable of maintaining the fluidic body sample for a sufficient time period in the vicinity of the sensor thereby the sensor is operative to provide continuous measurement of an electric, chemical or physical property of the urine. The slave circuitry responds to the electric, chemical or physical property of the fluidic body sample received from the sensor and is configured and operable to electronically communicate the measurement of the electric, chemical or physical property of the fluidic body sample to an external processing master unit.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: March 24, 2015
    Assignee: Flometrica Ltd.
    Inventor: Zeev Cohen
  • Patent number: 8986526
    Abstract: The invention is directed to enzyme immobilization compositions comprising: one or more enzymes, a humectant, an acrylic-based monomer, a water-soluble organic photo-initiator and a water-soluble acrylic-based cross-linker in a substantially homogeneous aqueous mixture. The invention is also directed to methods for forming sensors comprising such compositions and to apparati for forming arrays of immobilized layers on an array of sensors by dispensing such compositions onto a substrate.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: March 24, 2015
    Assignee: Abbott Point of Care Inc.
    Inventors: Gordon Bruce Collier, Jason Andrew Macleod, Anjulia Wong, Attila Csaba Nemeth
  • Patent number: 8986535
    Abstract: The invention discloses an erythropoietin receptor modified electrode, which is a glassy carbon electrode with erythropoietin receptor as recognition element fixed onto the electrode surface via ZnO sol-gel. The modified electrode can be prepared easily, and its performance is stable. After 50-day storage in the dark at 4° C., its response current remained approximately 77% of the original value. An electrochemical biosensor using this modified electrode as working electrode, a platinum electrode as counter electrode, a saturated calomel electrode as reference electrode, and 2 mmol/L K3[Fe(CN)6]—K4[Fe(CN)6]phosphate buffer as the test base solution, can detect erythropoietin (EPO) and/or recombinant human erythropoietin (rhEPO) in a fast, specific, and sensitive manner, with a linear range of 5 pg/L-500 ng/L and a limit of detection of 0.5 pg/L. In particular, according to peak potential differences, the biosensor allows accurate discrimination of EPO and rhEPO.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: March 24, 2015
    Assignee: First Affiliated Hospital, Third Military Medical University, Chinese People's Liberation Army
    Inventors: Liqun Zhang, Yunxia Wang, Weiling Fu
  • Publication number: 20150076008
    Abstract: A plug side surface of a plug housing is provided with a claw portion. The claw portion includes a plug lock surface facing in a direction away from a connector mounting surface. Each assistant fitting of a receptacle connector includes a receptacle lock surface that faces in a direction approaching the connector mounting surface and is opposed to the plug lock surface in a mated state. The plug lock surface includes a lock maintaining surface and an unlocking surface. Assuming that an angle formed between a reference plane and the lock maintaining surface is a lock maintaining angle and an angle formed between the reference plane and the unlocking surface is an unlocking angle, the lock maintaining angle is smaller than the unlocking angle.
    Type: Application
    Filed: March 28, 2013
    Publication date: March 19, 2015
    Inventors: Panteleimon Athanasiou, Alpesh Patel, David Whitaker, Hua Bai, John Palmer-Felgate, Daniel Coomber-Alford, Jessica Fisher, Chad Schenider, Alex Flamm, Ben Lane, Sam Reed
  • Publication number: 20150076007
    Abstract: An electrochemical method for measuring temperature, the method comprising •determining, at a temperature of interest, a first potential at which a first electrochemical reaction of a species occurs, •determining, at the temperature of interest, a second potential at which a second electrochemical reaction of the species occurs, •determining the difference between the first and second potentials, •converting the difference between the first and second potentials to a value of temperature. •Further provided is a temperature sensor for carrying out the method.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 19, 2015
    Inventors: Richard Guy Compton, Linhongjia Xiong
  • Publication number: 20150076009
    Abstract: A method of measuring a sample that includes at least one reactant that can be oxidised and reduced between at least one working electrode and a counter electrode. The method involves: applying across the working and counter electrodes a cycle of at least three pulses, and measuring current at the working electrode during each pulse, wherein the at least three pulses comprise at least one over-potential pulse that has an amplitude equal to or greater than an oxidation or a reduction peak potential of the reactant; at least one under-potential pulse of amplitude less than the at least one over-potential pulse, and at least one other over-potential pulse or under-potential pulse.
    Type: Application
    Filed: May 2, 2013
    Publication date: March 19, 2015
    Inventors: Alan McNeilage, Dominic Steele, Zhiyan Wang
  • Publication number: 20150076010
    Abstract: An analyte test sensor strip is disclosed having information coded thereon as well as a method of forming the same and conducting an analyte test using the analyte test sensor strip. Information relating to an attribute of the strip or batch/lot of strips may be coded based on resistance values pertaining to electrical aspects of the strip, such as a primary resistive element and a secondary resistive element, the secondary resistive element having one of a plurality of states defined by a location of a closed tap to form a unique resistive path for the secondary resistive element that includes a portion of the primary resistive element depending on the location of the closed tap. The states may be formed on the strip by a secondary processing step in the manufacture of the strip in which a plurality of taps are severed leaving only one tap in a closed state.
    Type: Application
    Filed: November 17, 2014
    Publication date: March 19, 2015
    Inventors: John T. Austera, Terry A. Beaty, Abner D. Joseph, Nathan E. Manlove, Steven K. Moore, James L. Pauley, JR., Randall K. Riggles
  • Publication number: 20150068925
    Abstract: The present invention relates to a structure comprising a biological membrane and a porous or perforated substrate, a biological membrane, a substrate, a high throughput screen, methods for production of the structure membrane and substrate, and a method for screening a large number of test compounds in a short period. More particularly it relates to a structure comprising a biological membrane adhered to a porous or perforated substrate, a biological membrane capable of adhering with high resistance seals to a substrate such as perforated glass and the ability to form sheets having predominantly an ion channel or transporter of interest, a high throughput screen for determining the effect of test compounds on ion channel or transporter activity, methods for manufacture of the structure, membrane and substrate, and a method for monitoring ion channel or transporter activity in a membrane.
    Type: Application
    Filed: June 23, 2014
    Publication date: March 12, 2015
    Inventors: David Geraint Owen, Nicholas Gerard Byrne
  • Publication number: 20150068926
    Abstract: A sampling plate (1) is provided comprising a sample zone (2) for receiving a liquid sample, and two drive electrodes (3, 4) with separate respective electrode terminals spaced by a spacing for receiving a the liquid sample within the sample zone for use in driving an electrical signal through the sample. Two sensing electrodes (5, 6) are provided with separate respective electrode terminals spaced between the electrode terminals of the two drive electrodes for use in sensing an electrical signal generated by the drive electrodes within a the sample. A sampling apparatus (15) is provided for use with the plate.
    Type: Application
    Filed: April 12, 2013
    Publication date: March 12, 2015
    Inventors: Phillip J. Ainger, Matthew Robert Bryan
  • Patent number: 8974658
    Abstract: An exemplary embodiment of the invention may include a method for electrochemically monitoring the mobility of particles in a fluid in response to an external field, the method may include monitoring an electrical characteristic of the fluid in an electrochemical cell, the fluid comprising particles that can be moved under the influence of an externally applied field; observing changes in the electrical characteristic caused by particle movement induced by the external field; and inferring a change in the physical state of the fluid from a change in the magnitude of the electrical characteristic observed.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: March 10, 2015
    Assignee: Universal Biosensors Pty Ltd
    Inventors: Peter Michael Newman, Ronald Christopher Chatelier
  • Publication number: 20150060301
    Abstract: An article suitable for conducting one or more assays with an apparatus, e.g., a meter, for determining the presence or concentration of an analyte in a sample of biological fluid. The article contains a plurality of biosensors arranged in such a manner that each of the biosensors can be utilized before the article must be removed from the apparatus.
    Type: Application
    Filed: November 17, 2014
    Publication date: March 5, 2015
    Inventors: Yi Wang, Jared Lee Watkin, Chad Harold Mace, Michael Robert Zocchi, Shridhara Alva Karinka, Mark E. Tess
  • Publication number: 20150060306
    Abstract: A biosensor includes a working electrode 101, a counter electrode 102 opposing the working electrode 101, a working electrode terminal 103 and a working electrode reference terminal 10 connected to the working electrode 101 by wires, and a counter electrode terminal 104 connected to the counter electrode 102 by a wire. By employing a structure with at least three electrodes, it is possible to assay a target substance without being influenced by the line resistance on the working electrode side.
    Type: Application
    Filed: October 13, 2014
    Publication date: March 5, 2015
    Inventors: Hiroya Ueno, Junji Nakatsuka
  • Publication number: 20150060303
    Abstract: The invention relates to a measuring chip cartridge module conducting mobile multi-parameter analyses of chemical and/or biological substances, comprising a sample inlet for the extraneous introduction of a sample substance into said measuring chip cartridge module, at least one separate reagent inlet for the extraneous introduction of reagents into said measuring chip cartridge module, a measuring chip, the surface of which—designed for sample analysis—at least partially restricts an analysis cell with two openings, such that a liquid surrounding said sample substance can pass into the analysis cell through a first opening for the sample analysis, as well as a channel system, in which said sample substance can be conveyed from said sample inlet to said analysis cell and said reagents can be conveyed from at least the one reagent inlet to said analysis cell, wherein said channel system has no solid reagents, preferably no other substances apart from air and/or inert gas, prior to the introduction of said sam
    Type: Application
    Filed: March 27, 2013
    Publication date: March 5, 2015
    Inventors: Lars Blohm, Eric Nebling, Joerg Albers, Gundula Piechotta
  • Publication number: 20150060305
    Abstract: A biosensor includes a working electrode 101, a counter electrode 102 opposing the working electrode 101, a working electrode terminal 103 and a working electrode reference terminal 10 connected to the working electrode 101 by wires, and a counter electrode terminal 104 connected to the counter electrode 102 by a wire. By employing a structure with at least three electrodes, it is possible to assay a target substance without being influenced by the line resistance on the working electrode side.
    Type: Application
    Filed: October 10, 2014
    Publication date: March 5, 2015
    Inventors: Hiroya Ueno, Junji Nakatsuka
  • Publication number: 20150060302
    Abstract: Various embodiments of a technique to sample output signals at different time intervals from each of the electrodes in a biosensor to obtain respective glucose estimates including one where the output signals of at least one combination of electrodes measured at various time intervals are summed together to provide for a combined glucose estimate.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 5, 2015
    Applicant: LiffeScan Scotland Limited
    Inventor: Michael MALECHA
  • Publication number: 20150060304
    Abstract: A biosensor includes a working electrode 101, a counter electrode 102 opposing the working electrode 101, a working electrode terminal 103 and a working electrode reference terminal 10 connected to the working electrode 101 by wires, and a counter electrode terminal 104 connected to the counter electrode 102 by a wire. By employing a structure with at least three electrodes, it is possible to assay a target substance without being influenced by the line resistance on the working electrode side.
    Type: Application
    Filed: October 10, 2014
    Publication date: March 5, 2015
    Inventors: Hiroya Ueno, Junji Nakatsuka
  • Patent number: 8972198
    Abstract: Methods of determining analyte concentration. The methods use a fraction of the predicted total charge, from analyte electrolysis, instead of using time, for determination of a data collection endpoint. The total charge is then extrapolated from the data collection endpoint. The analyte concentration is determined from the total charge.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: March 3, 2015
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Ting Chen, Benjamin J. Feldman
  • Publication number: 20150057515
    Abstract: Biological chemicals, potentially found in blood are measured by collecting sweat and determining the concentration or meaning of the selected chemical in sweat. The sweat can be collected using a time based, interval collector and analyzed using an external device. It can also be collected on a one time basis, using a flexible, chemical capacitor, or on a continuous basis using a chemical, field effect transducer.
    Type: Application
    Filed: April 3, 2013
    Publication date: February 26, 2015
    Applicant: University of Cincinnati
    Inventors: Joshua A Hagen, Jason C. Heikenfeld, Ian Papautsky, Linlin Hou, Rajesh Naik, Nancy Kelly-Loughnane, Morley Stone, John Busbee, Xiao Wang
  • Publication number: 20150053577
    Abstract: The invention discloses methods and devices for rapidly detecting a biological or other residue in a liquid sample. In some embodiments of the instant invention, a single electrode is employed to contact a flowing aqueous solution, with electrical outputs being recorded by an electrical metering device. Injection or flow of sample leads to changes in solution electrostatic behavior; those changes are recorded in the metering device, with absence of predetermined residues or targets yielding the highest signals. General and specific target detection may be performed with various embodiments of the instant invention.
    Type: Application
    Filed: August 25, 2013
    Publication date: February 26, 2015
    Inventor: ALAN JOSEPH BAUER
  • Patent number: 8965478
    Abstract: An eye-mountable device includes an electrochemical sensor embedded in a polymeric material configured for mounting to a surface of an eye. The electrochemical sensor includes a working electrode, a reference electrode, and a reagent that selectively reacts with an analyte to generate a sensor measurement related to a concentration of the analyte in a fluid to which the eye-mountable device is exposed. The working electrode can have at least one dimension less than 25 micrometers. The reference electrode can have an area at least five times greater than an area of the working electrode. A portion of the polymeric material can surround the working electrode and the reference electrode such that an electrical current conveyed between the working electrode and the reference electrode is passed through the at least partially surrounding portion of the transparent polymeric material.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: February 24, 2015
    Assignee: Google Inc.
    Inventor: Zenghe Liu
  • Patent number: 8961777
    Abstract: Provided is a method for accurately quantifying a chemical substance contained in a sample solution at a significantly low concentration of not more than 1×10?8M. First, prepared is a measurement system including a counter electrode 13, a first reference electrode 12, a first working electrode 11a, a second working electrode 11b and a second reference electrode 14. Second, voltages of V1 volts and V2 volts (V1>V2) are applied to the first working electrode 11a and the second working electrode 11b, respectively. Third, a voltage difference ?E between the second working electrode 11b and the second reference electrode 14 is measured. Finally, the concentration of the chemical substance is calculated on the basis of the voltage difference ?E.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: February 24, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Makoto Takahashi, Satoshi Arimoto
  • Patent number: 8956517
    Abstract: Disclosed are nanocomposite-based biosensors. The biosensors include an electrode, a nanocomposite over the surface of the electrode, the nanocomposite comprising a population of carbon nanotubes and a population of magnetic nanoparticles dispersed in the population of carbon nanotubes, wherein the magnetic nanoparticles comprise a ferromagnetic metal or compound thereof, and one or more biomolecules over the surface of the electrode, wherein the biomolecules are capable of undergoing a redox reaction with a target molecule. Also disclosed are nanocomposites, modified electrodes, kits, and methods for using the biosensors.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: February 17, 2015
    Assignee: Indian Institute of Technology Madras
    Inventors: Ramaprabhu Sundara, Tessy Theres Baby
  • Publication number: 20150041336
    Abstract: A method for shielding an electrical signal without substantially degrading the system speed or substantially increasing the bulk of the system is provided. The method includes applying a first signal to a conductor coupled to the electrode, applying a second signal to a shield substantially surrounding the conductor, blocking electrical interference to the first signal, and increasing an effective impedance on the electrode coupled to the conductor. The second signal may be a buffered and compensated version of the first signal.
    Type: Application
    Filed: August 7, 2014
    Publication date: February 12, 2015
    Inventor: Wen Chan
  • Publication number: 20150041338
    Abstract: A biosensor manufacturing method including a sheet material forming process and a dicing process. In the sheet material forming process a sheet material with plural biosensor forming sections is formed. Each of the biosensor forming sections includes a first base plate, a second base plate stacked on the first base plate and forming a capillary between the second base plate and the leading end portion of the first base plate for sucking in sample liquid, and a hydrophilic layer formed on the second base plate at least in a region facing the capillary. In the dicing process plural biosensors are obtained by dicing the sheet material with a blade from the first base plate side at the leading end of each of the biosensor forming sections, such that the leading end of the capillary opens onto the leading end face of the first base plate and the second base plate.
    Type: Application
    Filed: October 7, 2014
    Publication date: February 12, 2015
    Applicant: ARKRAY, INC.
    Inventors: Yoshimitsu MATSUURA, Shuzo KANDA
  • Publication number: 20150041337
    Abstract: Aspects of a biosensor platform system and method are described. In one embodiment, the biosensor platform system includes a fluidic system and tunneling biosensor interface coupled to the fluidic system. The tunneling biosensor interface may include a transducing electrode array having at least one dielectric thin film deposited on an electrode array. The biosensor platform system may further include processing logic operatively coupled to the transducing electrode array. In operation, the application of an electromagnetic field at an interface between an electrode and an electrolyte in the system, for example, may result in the transfer of charge across the interface. The transfer of charge is, in turn, characterized by electromagnetic field-mediated tunneling of electrons that may be assisted by exchange of energy with thermal vibrations at the interface. By analysis of the transfer of charge, the identify of various analytes, for example, or other compositions.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 12, 2015
    Inventor: Chaitanya Gupta
  • Patent number: 8951404
    Abstract: The system includes an electronic measuring apparatus for receiving an electrochemical sensor including a substrate that carries the current collectors for connecting the measuring and reference electrodes to the measuring apparatus. The measuring electrode is coated with a reagent including at least the specific enzyme of the biological compound to be analysed in a body fluid. The measuring apparatus can impose at least two different temperatures to enable the signal from the compound to be analysed from those of other biological compounds interfering with the signal. Application to measuring glucose in the blood with glucose dehydrogenase as the enzyme, without interference with maltose.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: February 10, 2015
    Assignee: The Swatch Group Research and Development Ltd
    Inventors: Wolfgang Schuhmann, Sabine Borgmann
  • Publication number: 20150038410
    Abstract: The present invention is directed to membranes composed of heterocyclic nitrogen groups, such as vinylpyridine and to electrochemical sensors equipped with such membranes. The membranes are useful in limiting the diffusion of an analyte to a working electrode in an electrochemical sensor so that the sensor does not saturate and/or remains linearly responsive over a large range of analyte concentrations. Electrochemical sensors equipped with membranes described herein demonstrate considerable sensitivity and stability, and a large signal-to-noise ratio, in a variety of conditions.
    Type: Application
    Filed: August 19, 2014
    Publication date: February 5, 2015
    Inventors: Benjamin J. Feldman, Tianmei Ouyang, Hyun Cho
  • Publication number: 20150034499
    Abstract: A determination method is provided. The determination method is performed for a biochemistry detection strip which includes first and second electrodes and a reaction area coupled to the first and second electrodes. The determination method includes steps of: disposing a to-be-detected object in the reaction area; applying a first voltage to the reaction area through the first and second electrodes to obtain a first value; stopping applying the first voltage to the reaction area for a first period; applying a second voltage to the reaction area through the first and second electrodes to obtain a second value; stopping applying the second voltage to the reaction area for a second period; and obtaining a determination index, which represents a filling situation of the to-be-detected object in the reaction area, according to the first and second values. Polarities of the first and second voltages are inverse to each other.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 5, 2015
    Inventors: Miao-Ju YEN, Po-Chin NIEN, Chi-Yan CHEN, Bo-Jiun SHEN
  • Publication number: 20150027907
    Abstract: Methods for determining the hematocrit of a blood sample, and devices and systems used in conjunction with the same. The hematocrit value can be determined on its own, and further, it can be further used to determine a concentration of an analyte in a sample. In one exemplary embodiment of a method for determining the hematocrit value in a blood sample, a volume of blood is provided in a sample analyzing device having a working and a counter electrode. An electric potential is applied between the electrodes and an initial fill velocity of the sample into the device is calculated. The hematocrit of the blood, as well as a concentration of an analyte in view of the initial fill velocity can then be determined. Systems and devices that take advantage of the use of an initial fill velocity to determine hematocrit levels and make analyte concentration determinations are also provided.
    Type: Application
    Filed: October 10, 2014
    Publication date: January 29, 2015
    Inventors: Ronald C. Chatelier, Dennis Rylatt, Linda Raineri, Alastair M. Hodges
  • Publication number: 20150027905
    Abstract: The present invention relates to a composition which reduces the measurement error caused by the effect of hematocrit in a biosensor and to a biosensor comprising the same. Specifically, the invention relates to a reagent composition comprising an enzyme, an electron transfer mediator, a water-soluble polymer, and bile acid, and to a biosensor comprising a reagent layer formed of the composition. The reagent layer reduces the measurement error caused by the effect of hematocrit in the biosensor.
    Type: Application
    Filed: March 6, 2012
    Publication date: January 29, 2015
    Applicant: LG ELECTRONICS INC.
    Inventors: Jisu Kim, Gueisam Lim
  • Patent number: 8940141
    Abstract: An electrochemical-based analytical test strip for the determination of an analyte (e.g., glucose) in a bodily fluid sample (such as a whole blood sample) includes an electrically insulating base layer and a patterned conductor layer (for example, a gold patterned conductor layer) disposed over the electrically-insulating layer. The patterned conductor layer includes at least one electrode with the electrode having electrochemically inert areas and an electrochemically active area(s). Moreover, the electrochemically inert areas and electrochemically active area(s) are of a predetermined size and a predetermined distribution such that electrochemical response of the electrode during use of the electrochemical-based analytical test strip is essentially equivalent to a predetermined electrochemical response.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: January 27, 2015
    Assignee: Lifescan Scotland Limited
    Inventors: Gavin Macfie, Craig Redpath, James Iain Rodgers, Neil Whitehead
  • Patent number: 8940142
    Abstract: Disclosed are methods and devices for biomolecular detection, comprising a nanopipette, exemplified as a hollow inert, non-biological structure with a conical tip opening of nanoscale dimensions, suitable for holding an electrolyte solution which may contain an analyte such as a protein biomolecule to be detected as it is passed through the tip opening. Biomolecules are detected by specific reaction withy peptide ligands chemically immobilized in the vicinity of the tip. Analytes which bind to the ligands cause a detectible change in ionic current. A sensitive detection circuit, using a feedback amplifier circuit, and alternating voltages is further disclosed. Detection of Il-10 at a concentration of 4ng/nl is also disclosed, as is detection of VEGF.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: January 27, 2015
    Assignee: The Regents of the University of California
    Inventors: Miloslav Karhanek, Chris D. Webb, Senkei Umehara, Nader Pourmand
  • Patent number: 8940138
    Abstract: The present biosensor system prevents a measurement error caused by the temperature of the environment in use. A biosensor system 100 includes a measuring instrument 101 having an operation part 306, and a sensor chip 200 insertable into and removable from the measuring instrument 101 and which accepts a blood sample. The sensor chip 200 includes a measurement part 41 that acquires Data a related to the concentration of an analyte in a blood sample based on the amount of electric current that flows in the sample due to a reaction in which an oxidoreductase with the analyte used as a substrate is involved, and a measurement part 42 that acquires, from the sample, Data b for temperature correction of Data a. The operation part 306 determines the concentration of the analyte in the sample, corrected according to the temperature of the sample based on Data a and Data b.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: January 27, 2015
    Assignee: Panasonic Healthcare Holdings Co., Ltd.
    Inventor: Masaki Fujiwara
  • Publication number: 20150021207
    Abstract: Disclosed herein are a near-field-communication or a Radio-Frequency Identification (RFID) based electrochemical biosensor capable of measuring an ingredient by being inter-worked with a wireless communication device such as a smartphone and a method for an ingredient measurement using thereof. The near field communication or radio-frequency identification based electrochemical biosensor, includes: a casing having a specimen introduction channel formed therein; an ingredient measurement electrode disposed in the casing and measuring a specific ingredient of a specimen; a reaction reagent portion disposed in the casing and reacting with the specimen; a specimen recognition electrode disposed in the casing and recognizing the introduction of the specimen; an antenna transmitting and receiving signals and power to and from a smart device or a tester; and a control integrated circuit (IC) chip controlling the ingredient measurement electrode, the specimen recognition electrode, and the antenna.
    Type: Application
    Filed: September 3, 2013
    Publication date: January 22, 2015
    Applicant: CENTER FOR INTEGRATED SMART SENSORS FOUNDATION
    Inventors: Chong-Min KYUNG, Hyun Tae CHO, Seung Ro LEE
  • Publication number: 20150021208
    Abstract: Provided is a measuring method for a biological substance, a measuring chip, and a measuring device which exhibit improved electrical responsiveness and reliability. For example, the device or chip provided for measuring the amount of a biological substance in a liquid being measured comprises immobilized antibodies, a substance that is labeled with an ion-conductive compound and that is bonded to the antibodies, and an electrode containing a working electrode and a counter electrode, and the working electrode has a thin film on the surface thereof that contains a hydrocarbon group.
    Type: Application
    Filed: November 20, 2012
    Publication date: January 22, 2015
    Applicant: PANASONIC CORPORATION
    Inventors: Takaiki Nomura, Yasuyuki Nukina, Kazuhito Hato, Shuzo Tokumitsu
  • Patent number: 8937540
    Abstract: Methods and apparatus for providing multi-stage signal amplification in a medical telemetry system are provided.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: January 20, 2015
    Assignee: Abbott Diabetes Care Inc.
    Inventor: Martin J. Fennell
  • Patent number: 8936713
    Abstract: Described and illustrated herein are one exemplary method and a measurement system having a meter and a test strip. The test strip has a first working electrode, reference electrode and second working electrode. In this method, acceptable fill data from known first current and known second current are used to predict an estimated second current at proximate the second time period (for a given batch of test strips) during the test sequence. The estimated second current at proximate the second time interval is then compared with a measured actual second current at proximate the second time interval during an actual test to determine if the measured actual second current is substantially equal to or within an acceptable percent deviation from the estimated second current so as to determine sufficient volume of a physiological fluid sample in the test strip.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: January 20, 2015
    Assignee: Lifescan Scotland Limited
    Inventors: James Iain Rodgers, Leanne Mills, Marco Cardosi, Chris Leach, James Moffat
  • Publication number: 20150018232
    Abstract: A two-electrode detection system having target substrates including nucleic acids, proteins, and/or small molecules on specifically defined regions of a single surface. The spatial distribution of the target substrate on the surface allows for more accurate substrate interactions and analysis. Additionally, the detection system of the present invention allows for patterning of different target substrates, thereby affording more accurate analysis of multiple substrate targets.
    Type: Application
    Filed: July 14, 2014
    Publication date: January 15, 2015
    Inventors: Ariel L. Furst, Michael G. Hill, Natalie B. Muren, Jacqueline K. Barton
  • Publication number: 20150014185
    Abstract: The invention relates to a cartridge (790) for processing a fluid comprising (i)a pre-treatment fluidic system with an inlet (710) via which the fluid can be supplied and at least one primary processing chamber (712) in which said fluid can be processed; (ii) a post-treatment fluidic system with at least one secondary processing chamber (755) in which fluid can be processed; (iii) a fluid-treatment element (701) that is permeable to at least a part oft he fluid and that couples the post-treatment fluidic system to the pre-treatment fluidic system. The fluid-treatment element may particularly be a filter material (701) integrated into at least one foil (702, 703, 704).
    Type: Application
    Filed: January 18, 2013
    Publication date: January 15, 2015
    Inventors: Jacobus Hermanus Maria Neijzen, Toon Hendrik Evers
  • Patent number: 8932449
    Abstract: An electrochemical-based analytical test strip for the determination of an analyte (e.g., glucose) in a bodily fluid sample (such as a whole blood sample) includes an electrically insulating base layer and a patterned conductor layer (for example, a gold patterned conductor layer) disposed over the electrically-insulating layer. The patterned conductor layer includes at least one electrode with the electrode having electrochemically inert areas and an electrochemically active area(s). Moreover, the electrochemically inert areas and electrochemically active area(s) are of a predetermined size and a predetermined distribution such that electrochemical response of the electrode during use of the electrochemical-based analytical test strip is essentially equivalent to a predetermined electrochemical response.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: January 13, 2015
    Assignee: Lifescan Scotland Limited
    Inventors: Gavin Macfie, Craig Redpath, James Iain Rodgers, Neil Whitehead
  • Publication number: 20150008144
    Abstract: The invention relates to an arrangement (1) and to a method for the electrical detection of liquid samples (5) by means of lateral flow assays. The lateral flow assay comprises a membrane (4) that is arranged on a front side of a first carrier (2). The first carrier (2) is electrically insulating. On the front side of the first carrier (2) between the carrier (2) and the membrane (4), electrically conductive electrodes (3) are arranged in direct contact with the membrane (4).
    Type: Application
    Filed: January 21, 2013
    Publication date: January 8, 2015
    Inventors: Walter Gumbrecht, Peter Paulicka
  • Patent number: 8926808
    Abstract: An electrochemical paper-immunosensor and method for detecting aminoglycoside antibiotics is developed in the present invention. Single-walled carbon nanotubes are coated on the common filtration paper by dip-dry cycles. With antibody against neomycin adding to the coating solution, a high sensitive biosensor for specific detection of neomycin is prepared, satisfying to the rigid authority regulations. The sensor is not only sensitive but also rapid, comparing with the classic ELISA method, with LOD of 0.04 ng mL?1 and the whole detection process lasting less than 30 min. Another notable advantage of this invention is the versatility of the sensor, similar method is engaged to prepare the versatile sensor for other aminoglycoside antibiotics, replacement with relevant antibodies.
    Type: Grant
    Filed: November 25, 2011
    Date of Patent: January 6, 2015
    Assignee: Jiangnan University
    Inventors: Chuanlai Xu, Libing Wang, Xiaoling Wu, Hua Kuang, Wei Chen, Wei Ma
  • Publication number: 20150004633
    Abstract: Provided are methods for diagnosing ovarian cancer or assessing the risk of developing ovarian cancer in a subject by measuring, in a biological sample from the subject, the amount of IL-6 and comparing the amount of IL-6 measured to a predetermined IL-6 cutoff value. Also provided are methods that further include measuring, in the biological sample, the amount of two or more biomarkers selected from the group consisting of transthyretin, apolipoprotein A1, transferrin, ?-2 microglobulin, and CA 125 II. The amount of IL-6 and biomarkers are useful in the diagnosis of ovarian cancer, and individuals can be identified as having ovarian cancer when the amount of IL-6 is greater than the IL-6 cutoff value and/or the biomarker score is greater than the biomarker score cutoff value.
    Type: Application
    Filed: September 26, 2012
    Publication date: January 1, 2015
    Applicant: Quest Diagnostics Investments Incorporated
    Inventors: Kenneth Sisco, Peter Chou
  • Patent number: 8920628
    Abstract: Systems and methods for multiple analyte analysis are provided. In one embodiment, a method includes determining concentrations of first and second analytes in a sample. The first and second analytes may be, for example, glucose and hydroxybutyrate. In this form, an indication related to the measured concentration of hydroxybutyrate is provided in response to determining that the concentration of hydroxybutyrate is above a predetermined value. In a further aspect of this form, a quantitative indication representative of the measured glucose concentration is automatically provided regardless of the value of the measured glucose concentration. In another embodiment, a system includes a meter configured to interact with a test element to assess first and second analytes in a sample. Further embodiments, forms, objects, features, advantages, aspects, and benefits shall become apparent from the description and drawings.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: December 30, 2014
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Martin T. Gerber, Eric R. Diebold
  • Publication number: 20140374277
    Abstract: The present disclosure provides a sensor port configured to receive a plurality of analyte sensors having different sizes, shapes and/or electrode configurations. Also provided are analyte meters, analyte monitoring devices and/or systems and drug delivery devices and/or systems utilizing the disclosed sensor ports.
    Type: Application
    Filed: September 9, 2014
    Publication date: December 25, 2014
    Inventors: Matthew Simmons, John R. Galasso, Gary Ashley Stafford, Cherie Bulala, Christopher Myles, Philip Justus Wunderle, III, Bonita Song, Richard G. Ries, Morvarid G. Shafie
  • Publication number: 20140374278
    Abstract: An analyte meter with a test strip port that detects an orientation of a test strip inserted therein. A control circuit of the test meter is configured to apply a first predetermined analyte measurement signal to a test strip electrode in response to detecting a first orientation of the test strip, and a second predetermined analyte measurement signal to the same, or a different, electrode in response to detecting a second orientation of the test strip.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 25, 2014
    Inventors: James Iain RODGERS, Lawrence RITCHIE, Anna ZVIKHACHEVSKAYA, Jonathan NELSON, Carlos MORALES
  • Publication number: 20140377789
    Abstract: The present invention provides for a home test or a point of care test device that can both detect blood glucose and insulin levels and methods using said device. The device and methods can be used to aid diabetic patients and medical practitioners to fine tune insulin administration, and to monitor disease progression or treatment.
    Type: Application
    Filed: February 8, 2013
    Publication date: December 25, 2014
    Inventor: Piet Moerman
  • Patent number: 8916040
    Abstract: Methods of determining a corrected analyte concentration in view of some error source are provided herein. The methods can be utilized for the determination of various analytes and/or various sources of error. In one example, the method can be configured to determine a corrected glucose concentration in view of an extreme level of hematocrit found within the sample. In other embodiments, methods are provided for identifying various system errors and/or defects. For example, such errors can include partial-fill or double-fill situations, high track resistance, and/or sample leakage. Systems are also provided for determining a corrected analyte concentration and/or detecting some system error.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: December 23, 2014
    Assignee: LifeScan, Inc.
    Inventors: Ronald C. Chatelier, Alastair McIndoe Hodges, Santhanagopalan Nandagopalan
  • Patent number: RE45384
    Abstract: An electrochemical test sensor adapted to assist in determining the concentration of analyte in a fluid sample is disclosed. The sensor comprises a base that assists in forming an opening for introducing the fluid sample, a working electrode being coupled to the base, and a counter electrode being coupled to the base, the counter electrode and the working electrode being adapted to be in electrical communication with a detector of electrical current, and a sub-element being coupled to the base. A major portion of the counter electrode is located downstream relative to the opening and at least a portion of the working electrode. The sub-element is located upstream relative to the working electrode such that when electrical communication occurs between only the sub-element and the working electrode there is insufficient flow of electrical current through the detector to determine the concentration of the analyte in the fluid sample.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: February 24, 2015
    Assignee: Bayer HealthCare LLC
    Inventors: Matthew K. Musho, J. Oakey Noell, Andrew J. Edelbrock, Dijia Huang