Of Biological Material (e.g., Urine, Etc.) Patents (Class 205/792)
  • Patent number: 8834703
    Abstract: Apparatus and methods are described for preparing, maintaining, and stabilizing sensors. The apparatus and methods for preparing sensors for use are utilized in advance of the sensor being removed from a sealed, sterilized package. The apparatus include packaging materials having electrical circuits capable of stabilizing a sensor to prepare the sensor for use. The methods for preparing a sensor for use includes methods of providing a solution to a sterilized packaging that contains a sensor connected to a sensor activating circuit, activating the circuit, and allowing the sensor to stabilize. These methods can be performed without compromising the packaging. The apparatus for stabilizing a sensor that is in use include a circuit connectable to the sensor that provides a signal to the sensor that prevents the sensor from becoming destabilized when disconnected from a monitoring device.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: September 16, 2014
    Assignee: Edwards Lifesciences Corporation
    Inventors: Michael Higgins, Mark Konno, Todd Fjield
  • Publication number: 20140251826
    Abstract: Biosensors and biosensor systems are disclosed that have manganese (III) oxide (Mn2O3)-based electrodes that can attenuate interference of a detection signal resulting from an analyte-relevant reaction caused by undesired reaction of interferents in a sample. Methods are also disclosed for making and using the same.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 11, 2014
    Applicant: Roche Diagnostics Operations, Inc.
    Inventors: Karl-Heinz Koelker, Arnulf Staib
  • Publication number: 20140255962
    Abstract: Test elements are disclosed for detecting at least one analyte in a body fluid. The test element include at least one strip-shaped carrier element and at least one test field having at least one test chemistry for detecting the analyte. The test element has a symmetrical shape such that the test element may be inserted in one of at least two different correct measurement orientations into a test element receptacle of a testing device, which includes a detection device. In the different orientations, at least one analyte-induced change in the test chemistry of the test field is detectable. Test systems including the test elements and methods of detecting at least one analyte in the body fluid using the test elements also are disclosed.
    Type: Application
    Filed: May 22, 2014
    Publication date: September 11, 2014
    Applicant: Roche Diagnostics Operations, Inc.
    Inventors: Frank Rueckert, Bruno Thoes
  • Publication number: 20140251837
    Abstract: An improved electrode layout for a continuous strip sensor is provided which reduces misalignment of the electrodes with the contacts which read the position of the strip. Better contact with the electrodes reduces or eliminates transient signals between stop positions of the sensor strip.
    Type: Application
    Filed: May 22, 2014
    Publication date: September 11, 2014
    Applicant: BECTON, DICKINSON AND COMPANY
    Inventors: Jason Mondro, David Schiff, Scott W. Gisler
  • Publication number: 20140251836
    Abstract: An apparatus and method for analyzing multiple samples is disclosed. In some embodiments, the apparatus and method use a multi-channel analyzer configured to simultaneously process results from a plurality of sample ports. The multi-channel analyzer further comprises a system for storing and transmitting the sample results from the plurality of samples, including unique sample identifiers. In some embodiments, the sample results may be transmitted to a laboratory information management system, a hospital network, or other similar location.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 11, 2014
    Applicant: MAGELLAN DIAGNOSTICS, INC.
    Inventor: Rosemary Feeney
  • Publication number: 20140246336
    Abstract: A technique allowing improved determination accuracy in quantifying a substance to be determined by lessening influence by a current component different from an oxidation current is provided. The oxidation current results from oxidation of a reducing substance generated through reaction between an enzyme and the substance to be determined. Current components are contained in a response current resulting from application of a determination potential, referenced to a counter electrode, to a working electrode. Since a conditioning potential higher than a determination potential is applied as a pulse to the working electrode, influence by a current component different from an oxidation current can be lessened. Thus, the response current can be measured in a stable manner and determination accuracy in quantification of a substance to be determined which is contained in a specimen can be improved.
    Type: Application
    Filed: May 15, 2014
    Publication date: September 4, 2014
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Hideaki OOE, Jun TAKAGI, Kenji YOKOYAMA, Atsunori HIRATSUKA, Nobuyuki YOSHIDA, Noriko SASAKI
  • Publication number: 20140246335
    Abstract: A technique and a sensor chip allowing determination of a hematocrit value of a blood sample in a short period of time with low cost are provided. A response current obtained by sweep of a voltage applied across a working electrode for determination and a counter electrode for determination included in a sensor chip is measured and a hematocrit value is derived based on followability of the response current to temporal change in swept applied voltage. Therefore, it is not necessary to stand by until oxidation reduction reaction of an oxidation reducing substance is stabilized for determining a hematocrit value as in a conventional method of determining a hematocrit value, and thus a hematocrit value of a blood sample can be determined in a short period of time. Since no oxidation reducing substance is necessary for determining a hematocrit value, a hematocrit value can be determined with low cost.
    Type: Application
    Filed: May 15, 2014
    Publication date: September 4, 2014
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Hideaki OOE, Jun TAKAGI, Kenji YOKOYAMA, Atsunori HIRATSUKA, Nobuyuki YOSHIDA, Noriko SASAKI
  • Publication number: 20140238875
    Abstract: In detection of a test substance including a biomolecule by utilizing photocurrent detection of dye sensitization, disclosed is a detection method in which process of the photocurrent detection is carried out by using an electrolyte solution not necessarily requiring an organic solvent. By making the electrolyte medium an aqueous system not containing an organic solvent, not only its usability can be enhanced but also measurement values with less dispersion can be obtained. Therefore, detection of the test substance including a biomolecule by utilizing the photocurrent detection of dye sensitization according to the present invention is characterized by that the processes from a reaction process of a test substance till detection of the photocurrent are carried out in a single apparatus, and that process of the photocurrent detection is carried out by using an electrolyte solution not necessarily requiring an aprotic solvent.
    Type: Application
    Filed: September 26, 2012
    Publication date: August 28, 2014
    Applicant: TOTO LTD.
    Inventors: Makoto Bekki, Junya Narita, Yumi Ogami, Koki Kanehira
  • Patent number: 8815076
    Abstract: A method and system is provided to allow for determination of substantially Hematocrit independent analyte concentration. In one example, an analyte measurement system is provided that includes a test strip and a test meter. The test strip includes a reference electrode and a working electrode, in which the working electrode is coated with a reagent layer. The test meter includes an electronic circuit and a signal processor. The electronic circuit applies a plurality of voltages to the reference electrode and the working electrode over respective durations. The signal processor is configured to determine a substantially hematocrit-independent concentration of the analyte from a plurality of current values as measured by the processor upon application of a plurality of test voltages to the reference and working electrodes over a plurality of durations interspersed with rest voltages lower than the test voltages being applied to the electrodes.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: August 26, 2014
    Assignee: Lifescan Scotland Limited
    Inventors: Marco F. Cardosi, Stephen Patrick Blythe, Matthew Finch, Arlene Thompson, Nina Antonia Naylor, Eric Jason Bailey, Michael Patick Dolan, Gretchen Anderson, Lorraine Comstock, Mary McEvoy, Thomas Sutton, Richard Michael Day, Leanne Mills, Emma Vanessa Jayne Day, Christopher Philip Leach
  • Patent number: 8815079
    Abstract: An electrochemical test sensor for detecting the analyte concentration of a fluid test sample includes a base, a dielectric layer, a reagent layer, a light guide area, and a lid. The base provides a flow path for the test sample having on its surface a counter electrode and a working electrode adapted to electrically communicate with a detector of electrical current. The dielectric layer forms a dielectric window therethrough. The reagent layer includes an enzyme that is adapted to react with the analyte. The lid is adapted to mate with the base and to assist in forming a capillary space with an opening for the introduction of the test sample thereto. The light guide area transmits light towards the capillary space.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: August 26, 2014
    Assignee: Bayer HealthCare LLC
    Inventors: Allen J. Brenneman, Dan O'Sullivan
  • Publication number: 20140231274
    Abstract: A single-molecule detection device includes a substrate having a through-hole therein, a first chamber configured to accommodate a first electrolytic solution therein, a second chamber configured to accommodate a second electrolytic solution therein, an electrode pair provided around the through-hole, and a chimeric protein immobilized to one end of the through-hole. The chimeric protein includes a target sequence configured to allow the biomolecule to act thereon, a first protein provided at one end of the target sequence, and a second protein provided at another end of the target sequence. The chimeric protein is immobilized at the one end of the through-hole via the first protein. This device can readily detect a single biomolecule.
    Type: Application
    Filed: November 16, 2012
    Publication date: August 21, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Akio Oki, Hiroaki Oka, Ken Shimono
  • Publication number: 20140231273
    Abstract: Two techniques of determining hematocrit using impedance and phase angle to determine hematocrit are shown and described for correcting an analyte concentration.
    Type: Application
    Filed: August 31, 2012
    Publication date: August 21, 2014
    Applicant: LifeScan Scotland Limited
    Inventors: David McColl, Mandip Farmahan, Antony Smith
  • Patent number: 8808532
    Abstract: Embodiments of the invention provide amperometric analyte sensors having optimized elements such as electrodes formed from sputtered platinum compositions as well as layers of material selected to optimize the characteristics of a wide variety of sensor elements and sensors. While embodiments of the innovation can be used in a variety of contexts, typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: August 19, 2014
    Assignee: Medtronic Minimed, Inc
    Inventors: Qingling Yang, Rajiv Shah, Xiaolong Li, Barry Phong Pham, Yiwen Li
  • Patent number: 8808531
    Abstract: A sensor designed to determine the concentration of analyte in a sample having a volume of less than about 1 ?L. The sensor has a working electrode coated with a redox mediator that acts as an electron transfer agent between the analyte and the electrode. A second electron transfer agent, such as an enzyme, can be added to facilitate the electrooxidation or electroreduction of the analyte. Various electrochemical detection methods, such as amperometric, voltammetric, and potentiometric techniques, can be used to determine the analyte concentration. The sensor can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: August 19, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Benjamin J. Feldman, James Say, Mark S. Vreeke
  • Patent number: 8801918
    Abstract: Methods and devices for point of care determination of heparin concentration in blood are described. Cartridges including protamine ion sensitive electrodes (ISEs) and reference electrodes and systems for automatically determining heparin concentration in the cartridges are provided. Some systems add blood to a protamine bolus sufficient to bind all heparin, leaving excess protamine. The excess protamine concentration can be determined by measuring the initial slope of the electrode potential rate of change, and comparing the slope to known protamine concentration slope values In some cartridges, an oscillating pressure source moves the blood-protamine mixture back and forth across the protamine ISE. Some systems also use a second blood sample having the heparin removed or degraded to create a blank reference sample. Protamine ISEs can include polyurethane polymer, DNNS ionophore, and NPOE plasticizer.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: August 12, 2014
    Assignee: Medtronic, Inc.
    Inventors: Wei Qin, Daniel S. Cheek, Christopher Hobot, Kelvin Bonnema, Randy Meyer, Douglas Dean Nippoldt, Vitally G. Sitko, Qingshan (Sam) Ye, Narayanan Ramamurthy
  • Publication number: 20140216951
    Abstract: A modular analyte measurement system having a removable strip port module. In one embodiment, the analyte measurement system includes: an analyte meter; a removable strip port module; and a connector linking the removable strip port module to the analyte meter. The analyte meter includes: a meter housing; a receptacle formed in the meter housing; a processing circuit disposed within the housing; and an input interface within the receptacle and electrically coupled to the processing circuit. The removable strip port module includes: a module housing sized to at least partially fit within the receptacle of the analyte meter; an analyte test strip port disposed within the module housing to receive an analyte test strip via an aperture formed in the module housing; and an output interface coupled to the analyte test strip port. The connector links the output interface with the input interface.
    Type: Application
    Filed: April 9, 2014
    Publication date: August 7, 2014
    Applicant: Abbott Diabetes Care Inc.
    Inventors: Hila Ralston, Frederic Arbogast, Matthew Simmons
  • Patent number: 8795176
    Abstract: A region of skin, other than the fingertips, is stimulated. After stimulation, an opening is created in the skin (e.g., by lancing the skin) to cause a flow of body fluid from the region. At least a portion of this body fluid is transported to a testing device where the concentration of analyte (e.g., glucose) in the body fluid is then determined. It is found that the stimulation of the skin provides results that are generally closer to the results of measurements from the fingertips, the traditional site for obtaining body fluid for analyte testing.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: August 5, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: John Bernard Buse, Alan Charles Moses
  • Publication number: 20140209483
    Abstract: Methods and apparatus are provided for manufacturing an analyte detecting device. In one embodiment, the method comprises providing a substrate, applying a plurality of layer of materials on said substrate; applying a layer containing at least one mediator; and screen printing a hydrogel on the layer.
    Type: Application
    Filed: April 1, 2014
    Publication date: July 31, 2014
    Applicant: Sanofi SA
    Inventor: Norbert Bartetzko
  • Patent number: 8778168
    Abstract: Methods for distinguishing between an aqueous non-blood sample (e.g., a control solution) and a blood sample are provided herein. In one aspect, the method includes using a test strip in which multiple current transients are measured by a meter electrically connected to an electrochemical test strip. The current transients are used to determine if a sample is a blood sample or an aqueous non-blood sample based on at least two characteristics (e.g., amount of interferent present and reaction kinetics). The method can also include calculating a discrimination criteria based upon at least two characteristics. Various aspects of a system for distinguishing between a blood sample and an aqueous non-blood sample are also provided herein.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: July 15, 2014
    Assignee: LifeScan, Inc.
    Inventors: Ronald C. Chatelier, Alastair M. Hodges
  • Patent number: 8771500
    Abstract: Disclosed herein is a device that functions as a glucose sensor. The device has a reference electrode; a counter electrode, a working electrode; an electrically conducting membrane; an enzyme layer; a semi-permeable membrane; a first layer of a first hydrogel in operative communication with the working electrode; the first layer of the first hydrogel being operative to store oxygen; wherein the amount of stored oxygen is proportional to the number of freeze-thaw cycles that the hydrogel is subjected to; and a second layer of the second hydrogel. Disclosed too is a method that comprises using periodically biased amperometry towards interrogation of implantable glucose sensors to improve both sensor's sensitivity and linearity while at the same time enable internal calibration against sensor drifts that originate from changes in either electrode activity or membrane permeability as a result of fouling, calcification and/or fibrosis.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: July 8, 2014
    Assignee: The University of Connecticut
    Inventors: Fotios Papadimitrakopoulos, Santhisagar Vaddiraju
  • Patent number: 8764968
    Abstract: A technique for nanodevice is provided. A reservoir is filled with an ionic fluid. A membrane separates the reservoir, and the membrane includes electrode layers separated by insulating layers in which the electrode layers have an organic coating. A nanopore is formed through the membrane, and the organic coating on the electrode layers forms transient bonds to a base of a molecule in the nanopore. When a first voltage is applied to the electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels through the transient bonds formed to the base to be measured as a current signature for distinguishing the base.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: July 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Glenn J. Martyna, Hongbo Peng, Stephen M. Rossnagel, Gustavo A. Stolovitzky, Philip S. Waggoner, George F. Walker
  • Patent number: 8758594
    Abstract: The presence of oxygen or red blood cells in a sample applied to an electrochemical test strip that makes use of a reduced mediator is corrected for by an additive correction factor that is determined as a function of the temperature of the sample and a measurement that reflects the oxygen carrying capacity of the sample. The measured oxygen carrying capacity can also be used to determine hematocrit and to distinguish between blood samples and control solutions applied to a test strip.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: June 24, 2014
    Assignee: AgaMatrix, Inc.
    Inventors: Ian Harding, Richard Williams, Sridhar Iyengar
  • Patent number: 8758591
    Abstract: The present invention relates to an electrode useful in electrochemical nanobiosensors for determining the presence or concentration of analytes in aqueous samples. In particular, the electrode comprises a biocatalyst or other bioreceptor entrapped in a conducting polymeric film deposited on a conducting material and a non-conducting or conducting coating. In particular embodiments, the conducting polymeric layer also comprises metallic nanoparticles. Electrochemical nanobiosensors containing the electrode, methods of making the electrode or sensor and methods of detecting analytes are other aspects of the invention.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: June 24, 2014
    Inventor: Samuel Bodunrin Olufemi Adeloju
  • Patent number: 8758593
    Abstract: An electrochemical sensor and a method for using an electrochemical sensor are described where the electrochemical sensor comprises a working electrode having thereon one or more redox species that are sensitive to an analyte to be measured and a polymer coating that provides for interaction between the redox species and the analyte.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: June 24, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Nathan Lawrence, Valerie Lafitte
  • Patent number: 8758592
    Abstract: An adhesive composition for use in devices and methods for measuring a presence or a concentration of a particular component, such as an antigen, in a sample, such as blood, are provided. In one exemplary embodiment of an adhesive composition, the composition includes an adhesive, water, a poloxamer, and an anticoagulant. The adhesive can include particular properties, such as being hydrophilic, pressure-sensitive, heat-activated, and/or water soluble. The adhesive is particularly useful because it can help improve the flow of sample a device. For example, when the device is an immunosensor, the adhesive can help prevent the blood from clotting in chambers of the immunosensor. This results in a more efficient and accurate determination of the concentration of the sample. Methods of making the composition and device in which the composition can be used are provided, as are methods of using the same.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: June 24, 2014
    Assignee: Cilag GmbH International
    Inventors: Ronald C. Chatelier, Dennis Rylatt
  • Patent number: 8741124
    Abstract: A biosensor is disclosed comprising a support; a conductive layer composed of an electrical conductive material such as a noble metal, for example gold or palladium, and carbon; slits parallel to and perpendicular to the side of the support; working, counter, and detecting electrodes; a spacer which covers the working, counter, and detecting electrodes on the support; a rectangular cutout in the spacer forming a specimen supply path; an inlet to the specimen supply path; a reagent layer formed by applying a reagent containing an enzyme to the working, counter, and detecting electrodes, which are exposed through the cutout in the spacer; and a cover over the spacer. The biosensor can be formed by a simple method, and provides a uniform reagent layer on the electrodes regardless of the reagent composition.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: June 3, 2014
    Assignee: Panasonic Corporation
    Inventors: Shoji Miyazaki, Hiroyuki Tokunaga, Masaki Fujiwara, Eriko Yamanishi, Yoshinobu Tokuno
  • Publication number: 20140144791
    Abstract: A method of measuring a quantity of a substrate contained in sample liquid is provided. This method can reduce measurement errors caused by a biosensor. The biosensor includes at least a pair of electrodes on an insulating board and is inserted into a measuring device which includes a supporting section for supporting detachably the biosensor, plural connecting terminals to be coupled to the respective electrodes, and a driving power supply which applies a voltages to the respective electrodes via the connecting terminals. One of the electrodes of the biosensor is connected to the first and second connecting terminals of the measuring device only when the biosensor is inserted into the measuring device in a given direction and has a structure such that the electrode becomes conductive between the first and second connecting terminals due to a voltage application by the driving power supply.
    Type: Application
    Filed: January 29, 2014
    Publication date: May 29, 2014
    Applicant: Panasonic Corporation
    Inventors: Shoji Miyazaki, Hiroyuki Tokunaga, Yoshinobu Tokuno
  • Patent number: 8728299
    Abstract: The present invention relates to electrochemical sensor strips and methods of determining the concentration of an analyte in a sample or improving the performance of a concentration determination. The electrochemical sensor strips may include at most 8 ?g/mm2 of a mediator. The strips, the strip reagent layer, or the methods may provide for the determination of a concentration value having at least one of a stability bias of less than ±10% after storage at 50° C. for 4 weeks when compared to a comparison strip stored at ?20° C. for 4 weeks, a hematocrit bias of less than ±10% for whole blood samples including from 20 to 60% hematocrit, and an intercept to slope ratio of at most 20 mg/dL. A method of increasing the performance of a quantitative analyte determination also is provided.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: May 20, 2014
    Assignee: Bayer HealthCare LLC
    Inventors: Huan-Ping Wu, Christine D. Nelson, Hope Spradlin, Eric Maurer
  • Patent number: 8728289
    Abstract: The disclosure provides monolithic electrodes including a substrate defining a walled cavity having a floor, an electrically conductive cathode layer overlaying the cavity floor, an electrically conductive contact pad overlaying the substrate, an electrically conductive via in electrical communication with the cathode layer and the contact pad, and a porous membrane layer overlaying the cavity and defining a chamber formed by the porous membrane layer, the walled cavity, and the cavity floor. The disclosure also provides pH transducers including monolithic indicator and reference electrodes, and methods of making and using monolithic pH electrodes and transducers.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: May 20, 2014
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Michael F. Mattes, Rogier Receveur, Arun K. Gupta
  • Patent number: 8728297
    Abstract: A sensor utilizing a non-leachable or diffusible redox mediator is described. The sensor includes a sample chamber to hold a sample in electrolytic contact with a working electrode, and in at least some instances, the sensor also contains a non-leachable or a diffusible second electron transfer agent. The sensor and/or the methods used produce a sensor signal in response to the analyte that can be distinguished from a background signal caused by the mediator. The invention can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum, using techniques such as coulometry, amperometry, and potentiometry. An enzyme capable of catalyzing the electrooxidation or electroreduction of the biomolecule is typically provided as a second electron transfer agent.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: May 20, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Benjamin J. Feldman, Adam Heller, Ephraim Heller, Fei Mao, Joseph A. Vivolo, Jeffery V. Funderburk, Fredric C. Colman, Rajesh Krishnan
  • Patent number: 8728298
    Abstract: A test method for the ketone number of an animal specimen is characterized in that a test parameter datasheet is set up by data modeling. Then a specimen from tested animal body is obtained. Next, the specimen is dripped onto the sensing end of an electrochemical test specimen, and an electrochemical tester is prepared. A test value correction procedure is built into or input to the electrochemical tester. With a parameter adjustment mode, the operational parameters of test value correction procedure unique to the electrochemical tester could be adjusted for adapting to the test mode of the species of tested animals. The sensing end of the electrochemical test specimen is inserted into the measurement slot of the electrochemical tester, so the ketone number of the specimen is displayed by the electrochemical tester.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: May 20, 2014
    Assignee: Sand County Biotechnology, Inc.
    Inventor: Tong-Yuh Huang
  • Patent number: 8721851
    Abstract: A sensor chip includes two measuring units. The first measuring unit includes an electrode system having a portion of an electrode and a portion of an electrode, and a portion of a capillary containing the portion and the portion. The second measuring unit includes an electrode system having a portion of a sensor electrode and a portion of an electrode, and a portion of a capillary containing the portion and the portion in addition to a reaction reagent layer. Data related to the temperature of the blood sample is acquired based on the dimension of a current flowing through the temperature electrodes, and data related to a concentration of an analyte in the blood sample is acquired based on the dimension of a current flowing through the analysis electrodes.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: May 13, 2014
    Assignee: Panasonic Healthcare Co., Ltd.
    Inventor: Motonori Uchiyama
  • Publication number: 20140120559
    Abstract: The present invention generally relates to predicting the risk of developing diabetes in patients who currently do not have diabetes. The invention can involve obtaining a sample from a patient negative for diabetes, conducting an assay on the sample to obtain a level of a glycated albumin, and determining an elevated risk of developing a diabetic condition if the level exceeds a predetermined threshold.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 1, 2014
    Applicant: Boston Heart Diagnostics Corporation
    Inventor: Ernst J. Schaefer
  • Patent number: 8709223
    Abstract: The invention relates to electrodes for electrochemical analysis comprising: —an insulating surface; —carbon nanotubes situated on the insulating surface at a density of at least 0.1 ?mCNT Um?2; and —an electrically conducting material in electrical contact with the carbon nanotubes; wherein the carbon nanotubes cover an area of no more than about 5.0% of the insulating surface. Methods of making such electrodes and assay devices or kits with such electrodes, are also provided.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: April 29, 2014
    Assignee: The University of Warwick
    Inventors: Julie Victoria Macpherson, Patrick Robert Unwin
  • Patent number: 8709709
    Abstract: The present invention provides a method of evaluating a patient in a hospital prior to discharge to determine if the patient is or is not at risk of early readmission if the patient were to be discharged from the hospital. The invention also provides a method of evaluating and monitoring the condition of a patient after discharge from a hospital. Both methods comprise measuring the oxidation-reduction potential (ORP) of a body fluid of the patient, a tissue of the patient of both.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: April 29, 2014
    Assignee: Luoxis Diagnostics, Inc.
    Inventors: David Bar-Or, Raphael Bar-Or
  • Publication number: 20140110273
    Abstract: Methods and systems for measuring and using the oxidation-reduction characteristics of a biological sample are provided. The system generally includes a test strip and a readout device. A fluid sample is placed in the test strip, and the test strip is in turn operatively connected to the readout device. The readout device provides a controlled current that is sent across the fluid in the sample chamber. In addition, the readout device identifies an inflection point or transition time at which the voltage between contacts of the test strip is changing at the highest rate. The oxidation-reduction capacity of the sample is taken as the integral of the current profile from the time at which current begins to be supplied to the sample to the identified transition time.
    Type: Application
    Filed: October 23, 2013
    Publication date: April 24, 2014
    Applicant: Luoxis Diagnostics, Inc.
    Inventors: Raphael Bar-Or, David Bar-Or, Leonard T. Rael
  • Patent number: 8702958
    Abstract: A method is provided for determining the presence or amount of an analyte in a sample and includes the steps of contacting a faradaic working electrode to a solution comprising the optionally pre-processed sample and an electrolyte, contacting a capacitive counter electrode to the solution, supplying electrical energy between the faradaic working electrode and the capacitive counter electrode sufficient to provide for faradaic charge transfer at the faradaic working electrode, and measuring at least one of (i) light, (ii) current, (iii) voltage, and (iv) charge to determine the presence or amount of the analyte in the sample.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: April 22, 2014
    Assignee: Board of Regents of the University of Texas System
    Inventors: Allen J. Bard, Chong-Yang Liu
  • Patent number: 8702931
    Abstract: Design of a disposable screen printed electrode (SPE) for sensing percentage glycated hemoglobin using electrochemistry is disclosed. SPE has four electrodes, one working electrode for the detection of glycated hemoglobin, one working electrode for the detection of hemoglobin and the other two electrodes are counter and reference electrodes that are common for both detection schemes. It also has a cellulose acetate membrane with lysis agents and surfactant embedded in it. Lysis agents lyse erythrocytes and release hemoglobin. Surfactants modify hemoglobin structure and enhance the rate the electron transfer and thereby the output signal during the electrochemical analysis. The SPE is low cost and user friendly. The only input from the user is a drop of blood.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: April 22, 2014
    Assignee: Indian Institute of Science
    Inventors: Siva Rama Krishna Vanjari, Navakanta Bhat, Sampath Srinivasan, Bharadwaj Amrutur, Chakrapani Kalapu, Amit Kumar Mandal
  • Patent number: 8702926
    Abstract: Testing of the performance of an electrochemical meter used to measure the presence of an analyte in a biological sample, particularly glucose in whole blood, includes introducing a control solution containing a predetermined amount of the analyte and a predetermined amount of an internal reference compound. The internal reference compound is selected such that it is oxidized at a potential greater than that used to oxidize the analyte, thereby making it possible to distinguish the control solution from a biological sample.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: April 22, 2014
    Assignee: Bayer Healthcare LLC
    Inventors: Greg P. Beer, Huan-Ping Wu
  • Patent number: 8702944
    Abstract: A method for wetting a nanopore device includes filling a first cavity of the nanopore device with a first buffer solution having a first potential hydrogen (pH) value, filling a second cavity of the nanopore device with a second buffer solution having a second pH value, wherein the nanopore device includes a transistor portion having a first surface, an opposing second surface, and an orifice communicative with the first surface and the second surface, the first surface partially defining the first cavity, the second surface partially defining the second cavity, applying a voltage in the nanopore device, and measuring a current in the nanopore device, the current having a current path partially defined by the first cavity, the second cavity, and the orifice.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: April 22, 2014
    Assignee: International Business Machines Corporation
    Inventor: Venkat K. Balagurusamy
  • Patent number: 8702929
    Abstract: A system that incorporates teachings of the present disclosure may include, for example, a solid-state selector having a vessel for carrying a liquid medium with one or more molecules surrounded by ions, a solid state conductive structure doped with impurities having one or more through-holes extending between two surfaces of the solid state conductive structure positioned within the liquid medium of the vessel, a voltage source coupled to the solid state conductive structure to selectively stimulate the ions surrounding the one or more molecules to pass through the one or more through-holes. Additional embodiments are disclosed.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: April 22, 2014
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Jean-Pierre Leburton, Gregory Timp, Maria E. Gracheva, Julien Vidal
  • Patent number: 8702923
    Abstract: Disclosed is a method of measuring sample reaction results on a biosensor having a working electrode and other electrodes, including: applying voltage between the working electrode and each of the other electrodes and detecting the amount of current flowing through the working electrode to determine whether or not a sample is injected; applying voltage between the working electrode and one of the other electrodes and re-detecting the amount of current flowing through the working electrode; and acquiring and displaying a concentration value as a sample reaction result corresponding to the amount of detected current.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: April 22, 2014
    Assignee: Infopia Co., Ltd.
    Inventors: Byeong-woo Bae, Sung-dong Lee, Hong-seong Suk, Jin-a Yoo
  • Patent number: 8702960
    Abstract: A method for operating a measurement for a sample on an electrochemical test strip including at least two electrodes is provided. The method includes steps of applying a first voltage between the two electrodes during an interference-removal period after an incubation period succeeding a moment when the sample is detected, and applying a second voltage between the two electrodes during a test period, wherein the first voltage is larger than the second voltage, the first voltage includes one of a first fixed voltage and a first set of plural pulse voltages, and the second voltage includes a second fixed voltage.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: April 22, 2014
    Assignee: Bionime Corporation
    Inventors: Cheng-Teng Hsu, Chun-Wei Su, Chieh-Hsing Chen
  • Patent number: 8702965
    Abstract: The present invention relates to electrochemical sensor strips and methods of determining the concentration of an analyte in a sample or improving the performance of a concentration determination. The electrochemical sensor strips may include at most 8 ?g/mm2 of a mediator. The strips, the strip reagent layer, or the methods may provide for the determination of a concentration value having at least one of a stability bias of less than ±10% after storage at 50° C. for 4 weeks when compared to a comparison strip stored at ?20° C. for 4 weeks, a hematocrit bias of less than ±10% for whole blood samples including from 20 to 60% hematocrit, and an intercept to slope ratio of at most 20 mg/dL. A method of increasing the performance of a quantitative analyte determination also is provided.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: April 22, 2014
    Assignee: Bayer HealthCare LLC
    Inventors: Huan-Ping Wu, Christine D. Nelson, Hope Spradlin, Eric Maurer
  • Patent number: 8702966
    Abstract: The present invention provides a biosensor having a code electrode, a method for manufacturing the same, and a method for obtaining sensor information on the same, in which a code electrode for providing sensor information such as correction information, the type of biosensor, etc. is provided in each biosensor such that a measuring device can obtain necessary information on each biosensor from the code electrode, thus solving a variety of conventional problems.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: April 22, 2014
    Assignee: All Medicus Co., Ltd.
    Inventors: Yon Chan Ahn, Mi Suk Park, Min Seok Cha, Hye Sook Jung
  • Patent number: 8702967
    Abstract: A test meter system for testing a characteristic of a fluid, the test meter system including a test meter having a housing with an opening adapted to accept a test strip, an interrogation coil within the housing, a pick-up coil within the housing, and a test strip including at least one magneto-elastic-resonance sensor. When the test strip is within the opening, the interrogation coil may utilize magneto-elastic-resonance technology to interrogate the magneto elastic-resonance sensor and the pick-up coil may be used to sense a resultant oscillation frequency of the magneto elastic-resonance sensor, the resultant oscillation frequency associated with the characteristic. The test strip may include a plurality of sensors. The sensors may be coated with a coating sensitive to a characteristic of the fluid, where the interrogation reveals information about the fluid characteristic.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: April 22, 2014
    Assignee: Bayer HealthCare LLC
    Inventors: Swetha Chinnayelka, Jiangfeng Fei, Yuan Wang, Narasinha Parasnis, Hoi-Cheong Steve Sun, Raeann Gifford, Steven Charlton
  • Patent number: 8702961
    Abstract: According to one embodiment of the present invention, an electrochemical sensor (10) for detecting the concentration of analyte in a fluid test sample is disclosed. The sensor (10) includes a counter electrode having a high-resistance portion for use in detecting whether a predetermined amount of sample has been received by the test sensor.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: April 22, 2014
    Assignee: Bayer HealthCare LLC
    Inventors: Dijia Huang, Steven C. Charlton, Suny J. George, Andrew J. Edelbrock
  • Publication number: 20140102915
    Abstract: The present disclosure includes an electrochemical proximity assay (ECPA) which leverages two aptamer or antibody-oligonucleotide probes and proximity-dependent DNA hybridization to move a redox active molecule near an electrically conductive base. The ECPA of the present disclosure produces rapid, quantitative results, enabling point-of-care use in the detection of biomarkers of disease.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 17, 2014
    Applicant: AUBURN UNIVERSITY
    Inventors: Jiaming Hu, Tanyu Wang, Christopher J. Easley, Curtis G. Shannon
  • Patent number: 8698615
    Abstract: Methods and apparatus for providing multi-stage signal amplification in a medical telemetry system are provided.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: April 15, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventor: Martin J. Fennell
  • Publication number: 20140097097
    Abstract: Methods for determining a concentration of an analyte in a sample, and the devices and systems used in conjunction with the same, are provided herein. In one exemplary embodiment of a method for determining a concentration of an analyte in a sample, the method includes detecting a presence of a sample in an electrochemical sensor including two electrodes. A fill time of the sample is determined with the two electrodes and a correction factor is calculated in view of at least the fill time. The method also includes reacting an analyte that causes a physical transformation of the analyte between the two electrodes. A concentration of the analyte can then be determined in view of the correction factor with the same two electrodes. Systems and devices that take advantage of the fill time to make analyte concentration determinations are also provided.
    Type: Application
    Filed: November 26, 2013
    Publication date: April 10, 2014
    Applicant: LifeScan, Inc.
    Inventors: Ronald C. Chatelier, Alastair M. Hodges