Controlling Current Distribution Within Bath Patents (Class 205/96)
  • Publication number: 20100032304
    Abstract: A substantially uniform layer of a metal is electroplated onto a work piece having a seed layer thereon. This is accomplished by employing a “high resistance ionic current source,” which solves the terminal problem by placing a highly resistive membrane (e.g., a microporous ceramic or fretted glass element) in close proximity to the wafer, thereby swamping the system's resistance. The membrane thereby approximates a constant current source. By keeping the wafer close to the membrane surface, the ionic resistance from the top of the membrane to the surface is much less than the ionic path resistance to the wafer edge, substantially compensating for the sheet resistance in the thin metal film and directing additional current over the center and middle of the wafer.
    Type: Application
    Filed: October 13, 2009
    Publication date: February 11, 2010
    Applicant: NOVELLUS SYSTEMS, INC.
    Inventors: Steven T. Mayer, Jonathan D. Reid
  • Patent number: 7655118
    Abstract: This invention relates to an electrolytic processing apparatus and method useful for processing a conductive material formed in the surface of a substrate, or for removing impurities adhering to the surface of a substrate. An electrolytic processing apparatus, including, a processing electrode that can come close to a workpiece, a feeding electrode for feeding electricity to the workpiece, an ion exchanger disposed in the space between the workpiece and the processing and the feeding electrodes, a fluid supply section for supplying a fluid between the workpiece and the ion exchanger, and a power source. The processing electrode and/or the feeding electrode is electrically divided into a plurality of parts, and the power source applies a voltage to each of the divided electrode parts and can control voltage and/or electric current independently for each of the divided electrode parts.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: February 2, 2010
    Assignee: Ebara Corporation
    Inventors: Mitsuhiko Shirakashi, Masayuki Kumekawa, Hozumi Yasuda, Itsuki Kobata, Osamu Nabeya
  • Publication number: 20100006445
    Abstract: An apparatus and method is disclosed for simultaneously electroplating at least two parts in a series electrical configuration in an electroplating system using a shared electrolyte with excellent consistency in thickness profiles, coating weights and coating microstructure. Parts in high volume and at low capital and operating cost are produced as coatings or in free-standing form.
    Type: Application
    Filed: April 18, 2008
    Publication date: January 14, 2010
    Applicant: Integran Technologies Inc.
    Inventor: Klaus Tomantschger
  • Patent number: 7632382
    Abstract: A plating apparatus has a frame configured to be placed on a substrate so that a plating bath is formed by the frame and the substrate. The frame includes a conductive core and a seal member covering the conductive core. The plating apparatus also has a non-conductive porous member configured to be immersed in an electrolytic plating solution held in the plating bath, a counter electrode disposed on the non-conductive porous member so as to face the substrate with a predetermined distance from the substrate, and a feed contact configured to be brought into contact with a peripheral portion of the substrate outside of the frame. The plating apparatus includes a power source operable to apply a voltage between the counter electrode and the substrate and a potential adjuster operable to control a potential of the conductive core of the frame with respect to a potential of the substrate.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: December 15, 2009
    Assignees: Ebara Corporation, Rohm Co., Ltd., Kabushiki Kaisha Toshiba
    Inventors: Koji Saito, Katsumi Sameshima, Yuuichi Mikata
  • Publication number: 20090301887
    Abstract: A method of manufacturing a metal part in which a base material of an aluminum alloy as an anode is immersed in an electrolyte together with a cathode, and at least a portion of a surface of the base material is anodized and coated with an anodic oxide film, the method includes: increasing a current density provided to both the anode and the cathode from an initial current density of 0 A/dm2 at a rate that is lower than or equal to 0.35 A/dm2 per minute, wherein once the current density reaches a prescribed current density, the current density provided to the anode and the cathode is maintained at the prescribed current density.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 10, 2009
    Applicant: JTEKT CORPORATION
    Inventors: Toshiyuki SAITO, Takumi MIO, Koji NISHI, Hajime FUKAMI, Atsushi Eto, Hiroyuki Yao
  • Publication number: 20090301770
    Abstract: A method for forming a film on a conductive substrate, comprising immersing a substrate having a conductive portion in a solution comprising a metal ion ceramic precursor for the film and a peroxide; applying a voltage potential to the conductive portion with respect to a counter electrode in the solution, sufficient to protect the conductive portion from corrosion by the solution, and drive formation of a film on the substrate, controlling a pH of the solution while limiting a production of hydrogen by electrolysis of the solution proximate to the conductive portion; and maintaining the voltage potential for a sufficient duration to produce a film on the conductive portion. An electrode may be formed over the film to produce an electrical device. The film may be, for example, insulating, dielectric, resistive, semiconductive, magnetic, or ferromagnetic.
    Type: Application
    Filed: June 10, 2009
    Publication date: December 10, 2009
    Inventors: Junghyun Cho, Bahgat Sammakia, Mark D. Poliks, Roy Magnuson, Biplab Kumar Roy
  • Publication number: 20090301889
    Abstract: Disclosed is an electroplating method for filling cavities, through holes, blind holes, or micro blind holes of a work piece with metals. According to said method, the work piece containing cavities, through holes, blind holes, or micro blind holes is brought in contact with a metal deposition electrolyte, and a voltage is applied between the work piece and at least one anode such that a current flow is fed to the work piece. The invention method is characterized in that the electrolyte encompasses a redox system.
    Type: Application
    Filed: March 30, 2007
    Publication date: December 10, 2009
    Applicant: ATOTECH DEUTSCHLAND GMBH
    Inventors: Bert Reents, Bernd Roelfs, Tafadzwa Magaya, Markus Youkhanis, Rene Wenzel, Soungsoo Kim
  • Patent number: 7622024
    Abstract: A substantially uniform layer of a metal is electroplated onto a work piece having a seed layer thereon. This is accomplished by employing a “high resistance ionic current source,” which solves the terminal problem by placing a highly resistive membrane (e.g., a microporous ceramic or fretted glass element) in close proximity to the wafer, thereby swamping the system's resistance. The membrane thereby approximates a constant current source. By keeping the wafer close to the membrane surface, the ionic resistance from the top of the membrane to the surface is much less than the ionic path resistance to the wafer edge, substantially compensating for the sheet resistance in the thin metal film and directing additional current over the center and middle of the wafer.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: November 24, 2009
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Jonathan D. Reid
  • Publication number: 20090266411
    Abstract: A photovoltaic wire is presented where the active layers coat a metallic wire, preferably aluminum. The active layers are an array of doped silicon nanowires electrically attached to the metallic wire that extend from the surface of the wire into a layer of semiconducting polymer, preferably polyaniline. The surface of the polymer is coated with a transparent conductor to complete the photovoltaic circuit.
    Type: Application
    Filed: June 16, 2006
    Publication date: October 29, 2009
    Applicant: ILLUMINEX CORPORATION
    Inventors: Youssef Habib, John Steinbeck
  • Publication number: 20090242016
    Abstract: A method of fabricating nanowires or microwires employs a robust conductive surface whose edges define electrodes for promoting electrochemical deposition of nanowire material at those edges. Controlled deposition times and thin conductive layers allow extremely small diameter wires to be created and then removed without destruction of the pattern and the wires to be applied to a second substrate or used for composite materials.
    Type: Application
    Filed: January 23, 2009
    Publication date: October 1, 2009
    Inventor: Michael Zach
  • Publication number: 20090223826
    Abstract: Techniques for manufacturing carbon nanotube (CNT) ropes are provided. In some embodiments, a CNT rope manufacturing method optionally includes preparing a metal tip, preparing a CNT colloid solution, immersing the metal tip into the CNT colloid solution; and withdrawing the metal tip from the CNT colloid solution.
    Type: Application
    Filed: September 18, 2008
    Publication date: September 10, 2009
    Inventors: Yong Hyup Kim, Tae June Kang, Eui Yun Jang
  • Publication number: 20090218231
    Abstract: A plating apparatus according to the present invention has a plating tank for holding a plating solution, an anode disposed so as to be immersed in the plating solution in the plating tank, a regulation plate disposed between the anode and a plating workpiece disposed so as to face the anode, and a plating power supply for supply a current between the anode and the plating workpiece to carry out plating. The regulation plate is disposed so as to separate the plating solution held in the plating tank into a plating solution on the anode side and a plating solution on the plating workpiece side, and a through-hole group having a large number of through-holes is formed in the regulation plate.
    Type: Application
    Filed: May 7, 2009
    Publication date: September 3, 2009
    Inventors: Toshikazu Yajima, Takashi Takemura, Rei Kiumi, Nobutoshi Saito, Fumio Kuriyama, Masaaki Kimura
  • Publication number: 20090217812
    Abstract: An armor material and method of manufacturing utilize nano- and/or microlaminate materials. In one embodiment, the armor material comprises a layered composite material including a strike face, a core layer, and a spall liner. The strike face achieves hardness and toughness by the controlled placement of hard and tough constituent materials through the use of nano- and/or microlaminate materials. The core layer achieves energy absorption through the use of nano- or microlaminated coated compliant materials. The spall liner provides reinforcement through the use of nano- or microlaminated fiber reinforced panels. In one embodiment, nano- and/or microlaminated materials can be manufactured through the use of electrodeposition techniques.
    Type: Application
    Filed: December 8, 2008
    Publication date: September 3, 2009
    Applicant: Modumetal, LLC.
    Inventors: John D. Whitaker, Christina Lomasney
  • Publication number: 20090188803
    Abstract: The invention relates to a method for processing at least two workpieces by means of electrochemical treatment. During the method, the workpieces are provided as working electrodes in an electrolytic treatment solution inside of which a counter-electrode arrangement is assigned to each workpiece. One workpiece and the assigned counter-electrode arrangement form an electrolytic processing element. The electrolytic processing elements are connected in series.
    Type: Application
    Filed: July 4, 2006
    Publication date: July 30, 2009
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Jens Dahl Jensen, Ursus Krüger, Uwe Pyritz, Jan Steinbach, Gabriele Winkler
  • Patent number: 7560014
    Abstract: A method is provided for electroplating a high temperature coating onto an airfoil. The method includes providing a shield having a recess defining one or more walls conforming to the shape of at least a portion of a pressure side and a suction side of the airfoil to be electroplated, introducing the portions of the pressure side and the suction side of the airfoil to be electroplated into the recess of the shield, attaching an anode and cathode to the airfoil, submerging at least the shield and the portions of the pressure side and the suction side of the airfoil to be electroplated into an electroplating tank containing an electrolyte, and electroplating a coating of a high temperature resistant metal onto the portions of the pressure side and the suction side of the airfoil to be electroplated to a predetermined minimum thickness.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: July 14, 2009
    Assignee: General Electric Company
    Inventors: Michael Rucker, Bhupendra K. Gupta
  • Patent number: 7560015
    Abstract: Apparatus and method for electrolytic coating of a mould, the internal surfaces of which demarcate a mould cavity, with a coating material for the purpose of achieving or re-achieving intended mould cavity dimensions. The mould, as the cathode, and an anode positioned in the mould cavity and an electrolyte containing the coating material are used. The electrolyte serving as the carrier of the coating material flows through the mould cavity in a controlled manner. During the electrolytic coating, only the internal surfaces of the mould cavity come into contact with the electrolyte and the external surfaces of the s mould therefore do not have to be covered. The mechanical properties can be kept largely uniform over the entire region. The coating can be achieved more rapidly than with the conventional processes.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: July 14, 2009
    Assignee: Concast AG
    Inventor: Adrian Stilli
  • Patent number: 7560016
    Abstract: To make a metal feature, a non-plateable layer is applied to a workpiece surface and then patterned to form a first plating region and a first non-plating region. Then, metal is deposited on the workpiece to form a raised field region in said first plating region and a recessed region in said first non-plating region. Then, an accelerator film is applied globally on the workpiece. A portion of the accelerator film is selectively removed from the field region, and another portion of the accelerator film remains in the recessed acceleration region. Then, metal is deposited onto the workpiece, and the metal deposits at an accelerated rate in the acceleration region, resulting in a greater thickness of metal in the acceleration region compared to metal in the non-activated field region. Then, metal is completely removed from the field region, thereby forming the metal feature.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: July 14, 2009
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, John Stephen Drewery
  • Patent number: 7553401
    Abstract: A method and apparatus for establishing more uniform deposition across one or more faces of a workpiece in an electroplating process. The apparatus employs eductors in conjunction with a flow dampener member and other measures to provide a more uniform current distribution and a more uniform metal deposit distribution as reflected in a coefficient of variability that is lower than conventional processes.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: June 30, 2009
    Assignee: Faraday Technology, Inc.
    Inventors: Lawrence E. Gebhart, Jenny J. Sun, Phillip O. Miller, E. Jennings Taylor
  • Publication number: 20090164027
    Abstract: The invention provides a process for producing a metal body, which leads in a simple and reliable way to formation of a defined surface topography, if desired also combined, in the range from 10 nm to 500 ?m on a metal base body or blank which is to have, in particular, nanoscale pores. For this purpose, a pulsating current is applied to a metal base body in an electrolysis bath, with the electrolysis bath comprising salt former ions matched to the material of the metal base body. Furthermore, the invention provides a dental implant having particularly advantageous surface properties, in which a nanostructure is superimposed on a surface microstructure and nitrogen atoms and/or nitrogen compounds are attached and/or included in the region of the surface.
    Type: Application
    Filed: January 27, 2007
    Publication date: June 25, 2009
    Inventor: Holger Zipprich
  • Publication number: 20090159451
    Abstract: Variable property deposit, at least partially of fine-grained metallic material, optionally containing solid particulates dispersed therein, is disclosed. The electrodeposition conditions in a single plating cell are suitably adjusted to once or repeatedly vary at least one property in the deposit direction. In one embodiment denoted multidimension grading, property variation along the length and/or width of the deposit is also provided. Variable property metallic material deposits containing at least in part a fine-grained microstructure and variable property in the deposit direction and optionally multidimensionally, provide superior overall mechanical properties compared to monolithic fine-grained (average grain size: 2 nm-5 micron), entirely coarse-grained (average grain size: >20 micron) or entirely amorphous metallic material deposits.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Applicant: Integran Technologies Inc.
    Inventors: Klaus Tomantschger, Glenn Hibbard, Gino Palumbo, Iain Brooks, Jonathan McCrea, Fred Smith
  • Patent number: 7544281
    Abstract: An electrochemical plating apparatus and method for facilitating uniform current distribution across a wafer during loading into an ECP (electrochemical plating) apparatus is disclosed. The apparatus includes a bath container for containing a bath solution, an anode provided in the bath container, a cathode ring for supporting a wafer in the bath container and a current source electrically connected to the anode and the cathode ring. According to the method, a voltage potential is applied to the cathode ring as it is immersed into the solution and prior to immersion of the wafer in the solution, thereby facilitating a substantially uniform plating current across the wafer upon immersion of the wafer.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: June 9, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Wei Lin, Ming-Hsing Tsai
  • Publication number: 20090065364
    Abstract: A plating method comprising: continuously electroplating a surface of a film having a surface resistivity of from 1 to 1,000 ?/D in a plurality of times, wherein the plurality of times are equally divided into a former half stage and a latter half stage, and wherein an average plating time of the former half stage of the electroplating step is shorter than an average plating time of the latter half stage of the electroplating step or an average plating voltage at the latter half stage of the electroplating step is 60% or less of an average plating voltage at the former half stage of the electroplating step.
    Type: Application
    Filed: June 6, 2006
    Publication date: March 12, 2009
    Applicant: FUJIFILM CORPORATION
    Inventor: Yoshihiro Fujita
  • Publication number: 20090047539
    Abstract: It is an object to provide a surface-treated electro-deposited copper foil which has a low profile at a level equal to or excellent than that of low-profile surface-treated electro-deposited copper foils that have conventionally been supplied to the market and in which waviness affecting the straight line performance of wiring is small, and a method for manufacturing the same. In order to achieve this object, in the surface-treated electro-deposited copper foil, the maximum waviness height (Wmax) of the bonding surface to be bonded with an insulation layer-constituting material to be 0.05 ?m to 0.7 ?m, the maximum peak to valley height (PV) to be 0.05 to 1.5 ?m, and the surface roughness (Rzjis) to be 0.1 ?m to 1.0 ?m.
    Type: Application
    Filed: March 9, 2007
    Publication date: February 19, 2009
    Applicant: MITSUI MINING & SMELTING CO., LTD
    Inventors: Makoto Dobashi, Mitsuyoshi Matsuda, Sakiko Tomonaga, Hisao Sakai, Tomohiro Sakata, Junshi Yoshioka, Jo Nishikawa, Takeo Taguchi
  • Publication number: 20080318079
    Abstract: Plumbing valves, fittings, and other water handling devices are manufactured of a metal, such as silicon bronze, having a lead content below 0.2%. Such devices are subsequently electroplated with a galvanizing solution including saline or alkaline solutions containing nickel and tin. The resultant plated products can be soldered to the remaining copper components of a plumbing system using conventional lead-free solder.
    Type: Application
    Filed: June 18, 2008
    Publication date: December 25, 2008
    Inventors: George J. Ballantyne, Benjamin L. Lawrence
  • Patent number: 7468124
    Abstract: A method and apparatus for cleaning a wafer with a metal exposed through an insulator, through the use of a wet cleaning tank in concert with a feedback system on the potential difference between two leads of the wet cleaning tank. The cleaning tank has a bath in which the wafer and the two leads are immersed. The potential difference between the two leads is regulated when the feedback system detects a change in the potential across the two leads.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: December 23, 2008
    Assignee: International Business Machines Corporation
    Inventors: Nancy A. Greco, Kimberly F. Hooper, Kevin S. Petrarca
  • Patent number: 7449099
    Abstract: To make a metal feature, a non-plateable layer is applied to a workpiece surface and then patterned to form a first plating region and a first non-plating region. Then, metal is deposited on the workpiece to form a raised field region in said first plating region and a recessed region in said first non-plating region. Then, an accelerator film is applied globally on the workpiece. A portion of the accelerator film is selectively removed from the field region, and another portion of the accelerator film remains in the recessed acceleration region. Then, metal is deposited onto the workpiece, and the metal deposits at an accelerated rate in the acceleration region, resulting in a greater thickness of metal in the acceleration region compared to metal in the non-activated field region. Then, metal is completely removed from the field region, thereby forming the metal feature.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: November 11, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, John Stephen Drewery
  • Publication number: 20080251385
    Abstract: A plating method and apparatus for a substrate fills a metal, e.g., copper, into a fine interconnection pattern formed in a semiconductor substrate. The apparatus has a substrate holding portion 36 horizontally holding and rotating a substrate with its surface to be plated facing upward. A seal material 90 contacts a peripheral edge portion of the surface, sealing the portion in a watertight manner. A cathode electrode 88 passes an electric current upon contact with the substrate. A cathode portion 38 rotates integrally with the substrate holding portion 36. An electrode arm portion 30 is above the cathode portion 38 and movable horizontally and vertically and has an anode 98 face-down. Plating liquid is poured into a space between the surface to be plated and the anode 98 brought close to the surface to be plated. Thus, plating treatment and treatments incidental thereto can be performed by a single unit.
    Type: Application
    Filed: May 7, 2008
    Publication date: October 16, 2008
    Inventors: Junji Kunisawa, Mitsuko Odagaki, Natsuki Makino, Koji Mishima, Kenji Nakamura, Hiroaki Inoue, Norio Kimura, Tetsuo Matsuda, Hisashi Kaneko, Nobuo Hayasaka, Katsuya Okumura, Manabu Tsujimura, Toshiyuki Morita
  • Patent number: 7435323
    Abstract: An apparatus which can control thickness uniformity during deposition of conductive material from an electrolyte onto a surface of a semiconductor substrate is provided. The apparatus has an anode which can be contacted by the electrolyte during deposition of the conductive material, a cathode assembly including a carrier adapted to carry the substrate for movement during deposition, and a conductive element permitting electrolyte flow therethrough. A mask lies over the conductive element and has openings permitting electrolyte flow. The openings define active regions of the conductive element by which a rate of conductive material deposition onto the surface can be varied. A power source can provide a potential between the anode and the cathode assembly so as to produce the deposition. A deposition process is also disclosed, and uniform electroetching of conductive material on the semiconductor substrate surface can additionally be performed.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: October 14, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Bulent M. Basol, Paul Lindquist
  • Publication number: 20080223724
    Abstract: Electrochemical plating (ECP) apparatuses with auxiliary cathodes to create uniform electric flux density. An ECP apparatus for electrochemical deposition includes an electrochemical cell with an electrolyte bath for electrochemically depositing a metal on a substrate. A main cathode and an anode are disposed in the electrolyte bath to provide a main electrical field. A substrate holder assembly holds a semiconductor wafer connecting the cathode. An auxiliary cathode is disposed outside the electrochemical cell to provide an auxiliary electrical field such that a flux line density at the center region of the substrate holder assembly substantially equals that at the circumference of the substrate holder assembly.
    Type: Application
    Filed: March 15, 2007
    Publication date: September 18, 2008
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kei-Wei Chen, Mu-Han Cheng, Jian-Sin Tsai, Ying-Lang Wang
  • Patent number: 7425256
    Abstract: An apparatus and method for plating a workpiece. The apparatus comprises, generally, an anode, a cathode, and a selective anode shield/material flow assembly. In use, both the anode and the cathode are immersed in a solution, and the cathode is used to support the workpiece. During an electroplating process, the anode and the cathode generate an electric field emanating from the anode towards the cathode, to generate a corresponding current to deposit an electroplating material on the workpiece. The selective shield/material flow assembly is located between the anode and the cathode, and forms a multitude of adjustable openings. These opening have sizes that are adjustable during the electroplating process for selectively and controllably adjusting the amount of electric flux passing through the selective shield/material flow assembly and the distribution of the electroplating material on the workpiece. The selective shield/material flow assembly can also be used with an electroless plating system.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: September 16, 2008
    Assignee: International Business Machines Corporation
    Inventors: Ralph A. Barrese, Gary Gajdorus, Allen H. Hopkins, John J. Konrad, Robert C. Schaffer, Timothy L. Wells
  • Publication number: 20080105362
    Abstract: A method for manufacturing a nano-particulate electrode for Dye Solar Cells including the steps of providing an electrically conductive substrate, formation of a nanoparticulate layer on the substrate, application of dye to the nanoparticulate layer and an additional step of electrolytic treatment of the nanoparticulate layer in an electrolyte.
    Type: Application
    Filed: December 17, 2004
    Publication date: May 8, 2008
    Applicant: DYESOL LTD.
    Inventors: Igor Lvovich Skryabin, Graeme Leslie Evans
  • Publication number: 20080047837
    Abstract: An anodization method includes steps of providing an object formed of an aluminum-copper alloy, providing an anodizing bath comprising a basic silicate solution, providing an AC power supply including a first electrode and a second electrode, placing the first electrode in contact with the anodizing bath, connecting the second electrode to the object, placing the object in the anodizing bath, applying a voltage to the first and second electrodes to maintain a current density of about 10 mA/cm2 or less to form an anodized coating on the object, removing the object from the bath, and sealing the anodized coating on the object.
    Type: Application
    Filed: August 27, 2007
    Publication date: February 28, 2008
    Inventors: Viola I. Birss, Eric J. McLeod, Richard G. Rateick
  • Patent number: 7332066
    Abstract: A process for metallization of a workpiece, such as a semiconductor workpiece. In an embodiment, an alkaline electrolytic copper bath is used to electroplate copper onto a seed layer, electroplate copper directly onto a barrier layer material, or enhance an ultra-thin copper seed layer which has been deposited on the barrier layer using a deposition process such as PVD. The resulting copper layer provides an excellent conformal copper coating that fills trenches, vias, and other microstructures in the workpiece. When used for seed layer enhancement, the resulting copper seed layer provide an excellent conformal copper coating that allows the microstructures to be filled with a copper layer having good uniformity using electrochemical deposition techniques. Further, copper layers that are electroplated in the disclosed manner exhibit low sheet resistance and are readily annealed at low temperatures.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: February 19, 2008
    Assignee: Semitool, Inc.
    Inventors: Linlin Chen, Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
  • Publication number: 20080023335
    Abstract: A method of fabricating a semiconductor device of the invention includes a plating process of filling a plurality of recesses provided to an insulating film formed on a substrate with an electro-conductive material, wherein the plating process includes a process step (S104) of performing the plating with a first current density which was obtained by correcting a predetermined first reference current density based on ratio of surface area Sr?S1/S2 of a first surface area S1 over the entire surface of the substrate which includes the area of side walls of the plurality of recesses over the entire surface of the semiconductor substrate, and a second surface area S2 over the entire surface of the substrate which does not include the area of side walls of the plurality of recesses, when fine recesses not larger than a predetermined width, out of all of the plurality of recesses, are filled with the electro-conductive material.
    Type: Application
    Filed: July 27, 2007
    Publication date: January 31, 2008
    Applicant: NEC ELECTRONICS CORPORATION
    Inventors: Koji ARITA, Ryohei KITAO
  • Patent number: 7323094
    Abstract: An electroplating system (30) and process makes electrical current density across a semiconductor device substrate (20) surface more uniform during plating to allow for a more uniform or tailored deposition of a conductive material. The electrical current density modifiers (364 and 37) reduce the electrical current density near the edge of the substrate (20). By reducing the current density near the edge of the substrate (20), the plating becomes more uniform or can be tailored so that slightly more material is plated near the center of the substrate (20). The system can also be modified so that the material that plates on electrical current density modifier portions (364) of structures (36) can be removed without having to disassemble any portion of the head (35) or otherwise remove the structures (36) from the system. This in-situ cleaning reduces the amount of equipment downtime, increases equipment lifetime, and reduces particle counts.
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: January 29, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Cindy Reidsema Simpson, Matthew T. Herrick, Gregory S. Etherington, James Derek Legg
  • Patent number: 7288177
    Abstract: An apparatus and method for plating a workpiece. The apparatus comprises, generally, an anode, a cathode, and a selective anode shield/material flow assembly. In use, both the anode and the cathode are immersed in a solution, and the cathode is used to support the workpiece. During an electroplating process, the anode and the cathode generate an electric field emanating from the anode towards the cathode, to generate a corresponding current to deposit an electroplating material on the workpiece. The selective shield/material flow assembly is located between the anode and the cathode, and forms a multitude of adjustable openings. These opening have sizes that are adjustable during the electroplating process for selectively and controllably adjusting the amount of electric flux passing through the selective shield/material flow assembly and the distribution of the electroplating material on the workpiece. The selective shield/material flow assembly can also be used with an electroless plating system.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: October 30, 2007
    Assignee: International Business Machines Corporation
    Inventors: Ralph A. Barrese, Gary Gajdorus, Allen H. Hopkins, John J. Konrad, Robert C. Schaffer, Timothy L. Wells
  • Patent number: 7285195
    Abstract: A method and apparatus for an electrochemical processing cell that is configured to minimize bevel and backside deposition. The apparatus includes a contact ring assembly for supporting a substrate, a thrust plate movably positioned to engage a substrate positioned on the contact pins, and a lip seal member positioned to contact the thrust plate and the contact ring to prevent fluid flow therebetween. The lip seal includes at least one bubble release channel formed therethrough. The method includes positioning an electric field barrier between a backside substrate engaging member and a frontside substrate supporting member to prevent electric field from traveling to the bevel and backside of the substrate. The electric field barrier including at least one bubble release channel formed therethrough.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: October 23, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Harald Herchen, Dmitry Lubomirsky, Bo Zheng, Lily L. Pang
  • Patent number: 7279084
    Abstract: A method for an electroplating cell which includes providing an anode chamber with at least two concentric anodes including an inner anode and an outer anode; generating a computer generated model with a simulation computer program; and selecting at least one current ratio from the computer generated model, with the computer generated model having a plurality of current ratios from which the at least one current ratio is selected and the one current ratio being a ratio of an inner electrical current to an outer electrical current. The method further includes applying the inner electrical current to the inner anode and the outer electrical current to the outer anode and adjusting the inner and outer electrical currents to incorporate the one current ratio. The generating of the computer generated model with the simulation computer program includes using a first iterative loop to determine a potential field in the anode chamber.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: October 9, 2007
    Assignee: Intel Corporation
    Inventors: Radek P. Chalupa, Harsono Siem Simka, Sadasivan Shankar, Daniel J. Zierath, Iouri Lantassov, Terry T. Buckley, Anand Durairajan
  • Patent number: 7252750
    Abstract: A dual contact ring for contacting a patterned surface of a wafer and electrochemical plating of a metal on the patterned central region of the wafer and removing the metal from the outer, edge region of the wafer. The dual contact ring has an outer voltage ring in contact with the outer, edge region of the wafer and an inner voltage ring in contact with the inner, central region of the wafer. The outer voltage ring is connected to a positive voltage source and the inner voltage ring is connected to a negative voltage source. The inner voltage ring applies a negative voltage to the wafer to facilitate the plating of metal onto the patterned region of the wafer. A positive voltage is applied to the wafer through the outer voltage ring to remove the plated metal from the outer, edge region of the substrate.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: August 7, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Wen Liu, Jung-Chih Tsao, Ke-Wei Chen, Ying-Lang Wang
  • Patent number: 7200920
    Abstract: The substrate (2) containing the via-hole (3) is inserted into an electrophoretic cell (1) and an electrode (6) (the “first electrode”) is placed on top of a first orifice of the via-hole(s) (3), to be implemented with electrical component(s), so that the electrode (6) totally covers the first orifice. Electrically charged either conductive and/or non-conductive particles are provided by immersing the volume of the via-hole(s) (3) in a conductive medium (17) consisting of the electrically charged particles. An electric field is created between the first electrode (6) and a second electrode (4) through the via-hole(s) (3) and the conductive medium (17) and the electrically charged particles are precipitated on the inner surface of the first electrode (6) that is directed to the second orifice of the via-hole(s) (3), until a desired portion of the volume of the via-hole(s) (3) is filled with a first layer of the charged particles having a desired thickness.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: April 10, 2007
    Inventor: Israel Schuster
  • Patent number: 7169283
    Abstract: In an anodization apparatus and an anodization method for electrochemically treating a target substrate by irradiating the target substrate with light, treatment of a large target substrate can be made possible with smaller constituent elements. The electrical contact with the target substrate by a contact member is realized by a plurality of contact members or by the movement of a contact member to change the electrical contact position. The target substrate is manufactured in advance so as to have such a structure that portions thereof to be in contact with the plural contact members are connected to portions of a conductive layer on a treatment part thereof respectively.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: January 30, 2007
    Assignee: Tokyo Electron Limited
    Inventors: Yasushi Yagi, Kazutsugu Aoki, Mitsuru Ushijima
  • Patent number: 7160421
    Abstract: A facility for selecting and refining electrical parameters for processing a microelectronic workpiece in a processing chamber is described. The facility initially configures the electrical parameters in accordance with either a mathematical model of the processing chamber or experimental data derived from operating the actual processing chamber. After a workpiece is processed with the initial parameter configuration, the results are measured and a sensitivity matrix based upon the mathematical model of the processing chamber is used to select new parameters that correct for any deficiencies measured in the processing of the first workpiece. These parameters are then used in processing a second workpiece, which may be similarly measured, and the results used to further refine the parameters.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: January 9, 2007
    Assignee: Semitool, Inc.
    Inventors: Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
  • Patent number: 7115196
    Abstract: A process for metallization of a workpiece, such as a semiconductor workpiece. In an embodiment, an alkaline electrolytic copper bath is used to electroplate copper onto a seed layer, electroplate copper directly onto a barrier layer material, or enhance an ultra-thin copper seed layer which has been deposited on the barrier layer using a deposition process such as PVD. The resulting copper layer provides an excellent conformal copper coating that fills trenches, vias, and other microstructures in the workpiece. When used for seed layer enhancement, the resulting copper seed layer provide an excellent conformal copper coating that allows the microstructures to be filled with a copper layer having good uniformity using electrochemical deposition techniques. Further, copper layers that are electroplated in the disclosed manner exhibit low sheet resistance and are readily annealed at low temperatures.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: October 3, 2006
    Assignee: Semitool, Inc.
    Inventors: Linlin Chen, Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
  • Patent number: 7070686
    Abstract: In an electrochemical reactor used for electrochemical treatment of a substrate, for example, for electroplating or electropolishing the substrate, one or more of the surface area of a field-shaping shield, the shield's distance between the anode and cathode, and the shield's angular orientation is varied during electrochemical treatment to screen the applied field and to compensate for potential drop along the radius of a wafer. The shield establishes an inverse potential drop in the electrolytic fluid to overcome the resistance of a thin film of conductive metal on the wafer.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: July 4, 2006
    Assignee: Novellus Systems, Inc.
    Inventors: Robert J. Contolini, Andrew J. McCutcheon, Steven T. Mayer
  • Patent number: 7001497
    Abstract: A spent anode is replaced with a new anode in an electrolysis cell having an anode bus bar and an anode rod contacting the bus bar. A desired distance (D4) from the bus bar to a reference point on or adjacent to an anode rod for the new anode is calculated, the spent anode is replaced with a new anode so that the reference point on the new anode rod is spaced from the bus bar by an actual distance (D5), and the actual distance (D5) is measured at least once by means of a vision system. The actual distance (D5) is preferably adjusted using a feedback control loop in a computer so that D5 approaches the desired distance (D4).
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: February 21, 2006
    Assignee: Alcoa,Inc.
    Inventors: Jean Pierre Gagné, Gilles Dufour, Bertrand St-Laurent, Claude Gauthier, Jacques Denis, Robin Boulianne, Pierre Bouchard, Jacques Pelletier
  • Patent number: 6974530
    Abstract: The flow of electrolyte and/or of ions is controlled by a diffuser element provided in a plating reactor, wherein, in one embodiment, the diffuser element comprises a mechanical adjustment mechanism to adjust the effective size of passages of the diffuser element. In another embodiment, the diffuser element comprises at least two patterns of passages that are movable relatively to each other so as to adjust an overlap and thus an effective size of the corresponding passages. Moreover, the path of ions within the plating reactor may be controlled by an electromagnetically driven diffuser element so that a required thickness profile on the workpiece surface may be obtained.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: December 13, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Matthias Bonkass, Axel Preusse
  • Patent number: 6953522
    Abstract: A contact is disposed to come into contact with a metal layer formed on a substrate being treated, the contact being in contact with a surface being treated from an opposite surface through a through hole present in a substrate. Alternatively, a contact is disposed to come into contact with a metal layer formed on a substrate, the contact coming into contact at an approximate center of the substrate. Alternatively, a plurality of needle bodies are disposed to be in electrical contact with a metal layer of a substrate being treated, thereby power supply for electrolytic polishing/plating to a substrate being treated being implemented, without restricting to a periphery of a substrate, from a plurality of points on a surface thereof. Due to any one of these, liquid treatment equipment enables to improve uniformity in plane of an electric current sent to a surface being treated and of liquid treatment.
    Type: Grant
    Filed: May 7, 2001
    Date of Patent: October 11, 2005
    Assignee: Tokyo Electron Limited
    Inventors: Kyungho Park, Wataru Okase, Takenobu Matsuo
  • Patent number: 6926813
    Abstract: To electrically contact and electrolytically treat, more specifically to electroplate, very thin, electrically conductive layers, especially with a high electrolytic current, a device comprising contact carriers, more specifically clamps, clips and like, with contact elements for supplying the current to the work is utilized, and at least the contact areas of the contact elements that may be brought to contact the work are made from an elastic, electrically conductive material.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: August 9, 2005
    Assignee: Atotech Deuschland GmbH
    Inventor: Egon Hubel
  • Patent number: 6919011
    Abstract: A method of electroplating an object includes providing a electroplating bath solution with one or more anodes therein, disposing an object to be electroplated in the bath, and passing a complex current waveform between the anode nodes and the object. The waveform is a cyclic alternating type having two portions, a positive triangular shaped portion including one or more spikes and a negative portion. The method further includes vibrating the object and/or agitating the bath solution.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: July 19, 2005
    Assignee: The Hong Kong Polytechnic University
    Inventors: Kang Cheung Chan, Kam Chuen Yung, Tai Men Yue
  • Patent number: RE40218
    Abstract: The invention provides an apparatus and a method for achieving reliable, consistent metal electroplating or electrochemical deposition onto semiconductor substrates. More particularly, the invention provides uniform and void-free deposition of metal onto metal seeded semiconductor substrates having sub-micron, high aspect ratio features. The invention provides an electrochemical deposition cell comprising a substrate holder, a cathode electrically contacting a substrate plating surface, an electrolyte container having an electrolyte inlet, an electrolyte outlet and an opening adapted to receive a substrate plating surface and an anode electrically connect to an electrolyte. Preferably, a vibrator is attached to the substrate holder to vibrate the substrate in at least one direction, and an auxiliary electrode is disposed adjacent the electrolyte outlet to provide uniform deposition across the substrate surface.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: April 8, 2008
    Inventor: Uziel Landau