With Group I Metal Or Metal Oxide (i.e., Alkali Metal, Ag, Au, Cu, Or Oxide Thereof) Patents (Class 208/111.15)
-
Patent number: 7625481Abstract: Contact of a crude feed with a hydrogen source in the presence of an inorganic salt catalyst produces a total product that includes a crude product. The crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed. The inorganic salt catalyst comprises alkali metals, alkaline earth metals, or mixtures thereof. The crude product is a liquid mixture at 25° C. and 0.101 MPa. One or more properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.Type: GrantFiled: July 9, 2008Date of Patent: December 1, 2009Assignee: Shell Oil CompanyInventors: Scott Lee Wellington, Thomas Fairchild Brownscombe
-
Publication number: 20090107883Abstract: A catalyst precursor composition and methods for making such catalyst precursor is disclosed. In one embodiment, the catalyst precursor is of the general formula Av[(MP)(OH)x(L)ny]z(MVIBO4), wherein MP is selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof; L is one or more oxygen-containing ligands, and L has a neutral or negative charge n<=0, MVIB is at least a Group VIB metal having an oxidation state of +6; MP:MVIB has an atomic ratio between 100:1 and 1:100; v?2+P*z?x*z+n*y*z=0; and 0?y??P/n; 0?x?P; 0?v?2; 0?z. In one embodiment, the catalyst precursor further comprises a cellulose-containing material. In another embodiment, the catalyst precursor further comprises at least a diluent (binder). In one embodiment, the diluent is a magnesium aluminosilicate clay.Type: ApplicationFiled: October 28, 2008Publication date: April 30, 2009Inventors: Theodorus Maesen, Alexander E. Kuperman
-
Patent number: 7510645Abstract: Increased yields of naphtha and increased catalyst activity are obtained in a hydrocracking process by the use of a catalyst containing a beta zeolite and a Y zeolite having a unit cell size from 24.38 to 24.50 angstrom. The catalyst has a relatively high amount of Y zeolite relative to beta zeolite.Type: GrantFiled: November 4, 2005Date of Patent: March 31, 2009Assignee: UOP LLCInventor: Li Wang
-
Patent number: 7413646Abstract: Contact of a crude feed with a hydrogen source in the presence of an inorganic salt catalyst produces a total product that includes a crude product. The crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed. The inorganic salt catalyst may include one or more alkali metals. The crude product is a liquid mixture at 25° C. and 0.101 MPa. One or more properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.Type: GrantFiled: December 16, 2004Date of Patent: August 19, 2008Assignee: Shell Oil CompanyInventors: Scott Lee Wellington, Thomas Fairchild Brownscombe
-
Patent number: 7381321Abstract: Process for transforming a gas-oil fraction that makes it possible to produce a fuel that has a quality according to stringent requirements in terms of sulfur content, aromatic compound content, cetane number, boiling point, T95, of 95% of the compounds and density, d15/4, at 15° C. This process comprises a hydrorefining stage and a hydrocracking stage, whereby the latter uses a catalyst that contains at least one zeolite. The conversion of products that have a boiling point of less than 150° C. is, throughout the two stages of hydrocracking and hydrorefining, less than 40% by weight and, for the hydrorefining stage, between 1 and 15% by weight. The temperature, TR2, of the hydrocracking stage is less than the temperature, TR1, of the hydrorefining stage, and the variation between temperatures TR1 and TR2 is between 0 and 80° C.Type: GrantFiled: February 19, 2003Date of Patent: June 3, 2008Assignee: Institut Francais du PetroleInventors: Eric Benazzi, Patrick Bourges, Christophe Gueret, Pierre Marion
-
Patent number: 7125817Abstract: A catalyst system and process for combined cracking and selective hydrogen combustion of hydrocarbons are disclosed. The catalyst comprises (1) at least one solid acid component, (2) at least one metal-based component comprised of one or more elements from Group 3 and one or more elements from Groups 4–15 of the Periodic Table of the Elements; and at least one of oxygen and sulfur, wherein the elements from Groups 3, Groups 4–15 and the at least one of oxygen and sulfur are chemically bound both within and between the groups and (3) at least one of at least one support, at least one filler and at least one binder. The process is such that the yield of hydrogen is less than the yield of hydrogen when contacting the hydrocarbons with the solid acid component alone.Type: GrantFiled: February 20, 2003Date of Patent: October 24, 2006Assignee: ExxonMobil Chemical Patents Inc.Inventors: John D. Y. Ou, Neeraj Sangar
-
Patent number: 7122493Abstract: A catalyst system and process for combined cracking and selective hydrogen combustion of hydrocarbons are disclosed. The catalyst comprises: (1) at least one solid acid component, (2) at least one metal-based component comprised of (i) at least one of oxygen and sulfur (ii) one or more elements from Groups 5–15 of the Periodic Table of the Elements; and (iii) one or more elements from at least one of (a) Groups 1–2 and (b) Group 4; of the Periodic Table of the Elements; and (3) at least one of at least one support, at least one filler and at least one binder. The process is such that the yield of hydrogen is less than the yield of hydrogen when contacting the hydrocarbons with the solid acid component alone.Type: GrantFiled: February 5, 2003Date of Patent: October 17, 2006Assignee: ExxonMobil Chemical Patents Inc.Inventors: John D. Y. Ou, Neeraj Sangar
-
Patent number: 7122492Abstract: A catalyst system and process for combined cracking and selective hydrogen combustion of hydrocarbons are disclosed. The catalyst comprises (1) at least one solid acid component, (2) at least one metal-based component comprised of one or more elements from Groups 1 and 2; one or more elements from Group 3; one or more elements from Groups 4–15 of the Periodic Table of the Elements; and at least one of oxygen and sulfur and (3) at least one of at least one support, at least one filler and at least one binder. The process is such that the yield of hydrogen is less than the yield of hydrogen when contacting the hydrocarbons with the solid acid component alone.Type: GrantFiled: February 5, 2003Date of Patent: October 17, 2006Assignee: ExxonMobil Chemical Patents Inc.Inventors: John D. Y. Ou, Neeraj Sangar
-
Patent number: 7119245Abstract: Novel methods for synthesizing wholly un-supported, high-flow catalytic membranes consisting of 100% crystalline ZSM-22 crystals with no binder phase, having sufficient porosity to allow high Weight Hourly Space Velocities of feedstock to pass through without generating back pressure. The ZSM-22 membranes perform favorably to existing bulk ZSM-22 catalysts (e.g., via 1-butene conversion and selectivity). The method of membrane synthesis, based on Vapor Phase Transport, allows free-standing, binder-less membranes to be fabricated in varied geometries and sizes so that membranes can be tailor-made for particular geometries applications. The ZSM-22 precursor gel may be consolidated into a semi-cohesive body prior to vapor phase crystallization, for example, by uniaxial pressing. These crystalline membranes may be modified by ion exchange, pore ion exchange, framework exchange, synthesis modification techniques to incorporate other elements into the framework, such as K, H, Mg, Zn, V, Ga, and Pt.Type: GrantFiled: October 25, 2002Date of Patent: October 10, 2006Assignee: Sandia CorporationInventors: Steven G. Thoma, Tina M. Nenoff
-
Patent number: 6736959Abstract: The invention concerns a process for improving the pour point of a feed comprising paraffins containing more than 10 carbon atoms, in which the feed to be treated is brought into contact with a catalyst. The catalyst comprises at least one dioctahedral 2:1 phyllosilicate, preferably synthesised in a fluoride medium in the presence of the acid HF and/or a further source of fluoride anions, and preferably having an interplanar spacing of at least 20×10−10 m (2 nm) and comprising pillars based on at least one oxide of elements from groups IVB, VB, VIB, VIII, IB, IIB, IIA or IVA or any combination of these oxides, and preferably selected from the group SiO2, Al2O3, TiO2, ZrO2 and V2O5, or any combination of these latter. The catalyst further comprises at least one hydrodehydrogenating element in the metallic form. The process is carried out at a temperature in the range 170° C. to 500° C., a pressure in the range 1 to 250 bar and at an hourly space velocity in the range 0.Type: GrantFiled: July 23, 2001Date of Patent: May 18, 2004Assignee: Institut Francais du PetroleInventors: Eric Benazzi, Nathalie Marchal-George
-
Publication number: 20020170847Abstract: The invention concerns a process for improving the pour point of a feed comprising paraffins containing more than 10 carbon atoms, in which the feed to be treated is brought into contact with a catalyst comprising at least one dioctahedral 2:1 phyllosilicate, preferably synthesised in a fluoride medium in the presence of the acid HF and/or a further source of fluoride anions, and preferably wherein the interplanar spacing is at least 20×10−10 m (2 nm) and comprising pillars based on at least one oxide of elements from groups IVB, VB, VIB, VIII, IB, IIB, IIA or IVA or any combination of these oxides, preferably selected from the group formed by SiO2, Al2O3, TiO2, ZrO2 and V2O5, or any combination of these latter, and at least one hydrodehydrogenating element in the metallic form. The process is carried out at a temperature in the range 170° C. to 500° C., a pressure in the range 1 to 250 bar and at an hourly space velocity in the range 0.Type: ApplicationFiled: July 23, 2001Publication date: November 21, 2002Applicant: Institut Francais du PetroleInventors: Eric Benazzi, Nathalie Marchal-George
-
Patent number: 6294081Abstract: Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions, a method for their preparation and their use as catalysts for the hydroprocessing of hydrocarbon feedstocks. More particularly, the new SAPOs have a high silica:alumina ratio, and are prepared from microemulsions containing surfactants.Type: GrantFiled: May 20, 1999Date of Patent: September 25, 2001Assignee: ExxonMobil Chemical Patents, Inc.Inventors: Javier Agundez Rodriguez, Joaquin Perez Pariente, Antonio Chica Lara, Avelino Corma Canos, Ian A. Cody, William J. Murphy, Sandra J. Linek
-
Patent number: 6238550Abstract: Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions, a method for their preparation and their use as catalysts for the hydroprocessing of hydrocarbon feedstocks. More particularly, the new SAPOs have a high silica:alumina ratio, and may be prepared from single phase synthesis solutions or from microemulsions containing surfactants.Type: GrantFiled: May 20, 1999Date of Patent: May 29, 2001Assignee: Exxon Research and Engineering CompanyInventors: Karl G. Strohmaier, David E. W. Vaughan, William J. Murphy, Ian A. Cody, Sandra J. Linek
-
Publication number: 20010001449Abstract: A catalytic process is provided for converting a high boiling point range petroleum stream to distillate range product which includes contacting a petroleum feedstock having a boiling range from about 600° F. to about 1100° F. with a hydrocracking catalyst having a zeolite component with a framework silica to alumina ratio of at least 200:1, preferably 2000:1, and a hydrogenation component. The process is conducted under superatmospheric hydrogen partial pressure to effect at least 20% conversion, with at least 50% of the converted product remaining in the boiling range of about 330 to about 730° F.Type: ApplicationFiled: December 30, 1998Publication date: May 24, 2001Inventors: THOMAS R. KILIANY, W. THOMAS MO, GARRY W. KIRKER, GEORGE H. HATZIKOS
-
Patent number: 6171475Abstract: A method for converting a polymer or oligomer derived from an ethylenically unsaturated monomer into alkanes or into a hydrocarbon fraction or a lower oligomer fraction by controlled hydrocracking, wherein the polymer or oligomer is exposed to a catalyst based on a metal hydride or an organometallic complex supported on a mineral carrier, the complex having at least one hydrocarbon ligand and optionally at least one hydride ligand, and the resulting mixture is reacted with hydrogen to cause catalytic hydrocracking of the polymer or oligomer. The polymer or oligomer is broken down into reclaimable products with a lower molecular weight for use, e.g., in the field of polymers, particularly controlled molecular weight polymers, fuels or lubricants.Type: GrantFiled: January 12, 1998Date of Patent: January 9, 2001Assignee: CPE-Lyon-FCRInventors: V{acute over (e)}ronique Dufaud, Jean-Marie Basset