Metal Or Metal Oxide Catalyst Patents (Class 208/112)
  • Publication number: 20150104364
    Abstract: The present disclosure is directed to processes using a new crystalline molecular sieve designated SSZ-96, which is synthesized using a 1-butyl-1-methyl-octahydroindolium cation as a structure directing agent.
    Type: Application
    Filed: May 21, 2014
    Publication date: April 16, 2015
    Applicant: CHEVRON U.S.A. INC.
    Inventor: Saleh Ali ELOMARI
  • Publication number: 20150076034
    Abstract: Heavy gas oil components, coking process recycle, and heavier hydrocarbons in the delayed coking process are cracked in the coking vessel by injecting a catalytic additive into the vapors above the gas/liquid-solid interface in the coke drum during the coking cycle. The additive may comprise cracking catalyst(s) and quenching agent(s), alone or in combination with seeding agent(s), excess reactant(s), carrier fluid(s), or any combination thereof to modify reaction kinetics to preferentially crack these components. The quenching effect of the additive may be effectively used to condense the highest boiling point compounds of the traditional recycle onto the catalyst(s), thereby focusing the catalyst exposure to these target reactants. Exemplary embodiments of the present invention may also provide systems and methods to (1) reduce coke production, (2) reduce fuel gas production, and (3) increase liquids production.
    Type: Application
    Filed: November 25, 2014
    Publication date: March 19, 2015
    Inventor: Roger G. ETTER
  • Patent number: 8980081
    Abstract: A process of upgrading a highly aromatic hydrocarbon feedstream comprising (a) contacting a highly aromatic hydrocarbon feedstream, wherein, a major portion of the feedstream has a boiling range of from about 300° F. to about 800° F., under catalytic conditions with a catalyst system, containing a hydrotreating catalyst and a hydrogenation/hydrocracking catalyst in a single stage reactor system, wherein the active metals in the hydrogenation/hydrocracking catalyst comprises from about 5%-30% by weight of nickel and from about 5%-30% by weight tungsten; and (b) wherein at least a portion of the highly aromatic hydrocarbon feedstream is converted to a product stream having a boiling range within jet or diesel boiling ranges.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: March 17, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Jaime Lopez, Janine Lichtenberger
  • Publication number: 20150045600
    Abstract: The present invention relates to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprised of at least one chemical element selected from Groups 3-11 (including the lanthanides, atomic numbers 58 to 71), and at least one chemical element selected from Groups 13-15 from the IUPAC Periodic Table of Elements. These interstitial metal hydrides, their catalysts and processes using these interstitial metal hydrides and catalysts of the present invention improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 12, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Pallassana S. Venkataraman, Gordon F. Stuntz, Jonathan Martin McConnachie, Faiz Pourarian
  • Patent number: 8932455
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride containing catalyst comprising a surface, and a Group VI/Group VIII metal sulfide coated onto the surface of the interstitial metal hydride. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: January 13, 2015
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Chuansheng Bai, Adrienne J. Thornburg, Heather A. Elsen, Jean W. Beeckman, William G. Borghard
  • Patent number: 8858784
    Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feedstock comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and a catalyst to produce a vapor comprising a first hydrocarbon-containing product. The vapor comprising the first hydrocarbon-containing product is separated from the mixture, and, apart from the mixture, the first hydrocarbon-containing product is contacted with hydrogen and a catalyst containing a Column 6 metal to produce a second hydrocarbon-containing product.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: October 14, 2014
    Assignee: Shell Oil Company
    Inventors: Stanley Nemec Milam, Michael Anthony Reynolds, Scott Lee Wellington, Frederik Arnold Buhrman
  • Patent number: 8834708
    Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feedstock comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and a metal-containing non-acidic catalyst at a temperature of 375° C. to 500° C. to produce a vapor comprising a first hydrocarbon-containing product. The vapor comprising the first hydrocarbon-containing product is separated from the mixture, and, apart from the mixture, the first hydrocarbon-containing product is contacted with hydrogen and a catalyst containing a Column 6 metal at a temperature of 260° C.-425° C. to produce a second hydrocarbon-containing product.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: September 16, 2014
    Assignee: Shell Oil Company
    Inventors: Stanley Nemec Milam, Michael Anthony Reynolds, Scott Lee Wellington, Frederik Arnold Buhrman
  • Patent number: 8834707
    Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feedstock comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen, hydrogen sulfide and a metal-containing catalyst at a temperature of 375° C. to 500° C. and a pressure of from 6.9 MPa to 27.5 MPa to produce a vapor comprising a first hydrocarbon-containing product, where the hydrogen sulfide is mixed with the feedstock, metal-containing catalyst, and hydrogen at a mole ratio of hydrogen sulfide to hydrogen of at least 1:10. The vapor comprising the first hydrocarbon-containing product is separated from the mixture, and, apart from the mixture, the first hydrocarbon-containing product is contacted with hydrogen and a catalyst containing a Column 6 metal at a temperature of 260° C.-425° C. and a pressure of from 3.4 MPa to 27.5 MPa to produce a second hydrocarbon-containing product.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: September 16, 2014
    Assignee: Shell Oil Company
    Inventors: Stanley Nemec Milam, Michael Anthony Reynolds, Scott Lee Wellington, Frederik Arnold Buhrman
  • Publication number: 20140251870
    Abstract: The invention describes a process for start-up of a hydrotreatment or hydroconversion unit carried out in the presence of hydrogen, in at least 2 catalytic beds, process in which At least one bed contains at least one presulfurized and preactivated catalyst and at least one catalytic bed that contains a catalyst whose catalytic metals are in oxidized form, A so-called starting feedstock, which is a hydrocarbon fraction that contains at least 0.5% by weight of sulfur, lacking olefinic compounds and not containing an added sulfur-containing compound, passes through a first catalytic bed that contains said presulfurized and preactivated catalyst and then passes through at least one catalytic bed that contains a catalyst whose catalytic metals are in oxidized form, And the first presulfurized and preactivated catalyst bed reaches a temperature of at least 220° C.
    Type: Application
    Filed: April 15, 2013
    Publication date: September 11, 2014
    Inventor: EURECAT S.A.
  • Patent number: 8795514
    Abstract: The present invention relates to a regenerated hydrotreatment catalyst regenerated from a hydrotreatment catalyst for treating a petroleum fraction, the hydrotreatment catalyst being prepared by supporting molybdenum and at least one species selected from metals of Groups 8 to 10 of the Periodic Table on an inorganic carrier containing an aluminum oxide, wherein a residual carbon content is in the range of 0.15 mass % to 3.0 mass %, a peak intensity of a molybdenum composite metal oxide with respect to an intensity of a base peak is in the range of 0.60 to 1.10 in an X-Ray diffraction spectrum, and a peak intensity of a Mo—S bond derived from a residual sulfur peak with respect to an intensity of a base peak is in the range of 0.10 to 0.60 in a radial distribution curve obtained from an extended X-ray absorption fine structure spectrum of an X-ray absorption fine structure analysis.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: August 5, 2014
    Assignees: JX Nippon Oil & Energy Corporation, Japan Petroleum Energy Center
    Inventors: Nobuharu Kimura, Yoshimu Iwanami, Wataru Sahara, Souichirou Konno
  • Publication number: 20140183099
    Abstract: A catalyst composition that is especially useful in the hydroconversion of pitch, micro carbon residue and sulfur contents of a heavy hydrocarbon feedstock without the excessive formation of sediment. The catalyst composition is a reasonably high surface area composition containing alumina and a low molybdenum content with a high ratio of nickel-to-molybdenum. The catalyst composition further has a unique pore distribution that in combination with the special metals loading provide for good conversion of pitch and micro carbon residue without an excessive yield of sediment.
    Type: Application
    Filed: March 5, 2014
    Publication date: July 3, 2014
    Applicant: SHELL OIL COMPANY
    Inventors: Josiane Marie-Rose GINESTRA, John George KESTER, David Andrew KOMAR, David Edward SHERWOOD, JR.
  • Patent number: 8758598
    Abstract: A hydrocarbon conversion catalyst comprising a modified beta zeolite, an amorphous inorganic oxide and a hydrogenation component wherein the said catalyst support has an NH3-AI of less than 3.5 and/or an IEC-AI of less than 3.7.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: June 24, 2014
    Assignee: Haldor Topsoe A/S
    Inventors: Jens A. Hansen, Niels J. Blom, Birgitte R. Byberg, John W. Ward
  • Publication number: 20140121425
    Abstract: A composition comprising at least one graphene-supported assembly, which comprises a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and at least one metal chalcogenide compound disposed on said graphene sheets, wherein the chalcogen of said metal chalcogenide compound is selected from S, Se and Te. Also disclosed are methods for making and using the graphene-supported assembly, including graphene-supported MoS2. Monoliths with high surface area and conductivity can be achieved. Lower operating temperatures in some applications can be achieved. Pore size and volume can be tuned. Electrochemical methods can be used to make the materials.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 1, 2014
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Marcus A. Worsley, Joshua Kuntz, Christine A. Orme
  • Patent number: 8702970
    Abstract: A method for hydroprocessing a hydrocarbon feedstock is provided. The method comprises contacting the feedstock with a catalyst under hydroprocessing conditions, wherein the catalyst is formed by sulfiding an unsupported catalyst precursor of the general formula Av[(MP) (OH)x (L)ny]z (MVIBO4), wherein MP is selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof; L is one or more oxygen-containing ligands, and L has a neutral or negative charge n<=0, MVIB is at least a Group VIB metal having an oxidation state of +6; MP:MVIB has an atomic ratio between 100:1 and 1:100; v?2+P*z?x*z+n*y*z=0; and 0?y??P/n; 0?x?P; 0?v?2; 0?z. In one embodiment, the catalyst precursor further comprises a cellulose-containing material. In another embodiment, the catalyst precursor further comprises at least a diluent (binder). In one embodiment, the diluent is a magnesium aluminosilicate clay.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: April 22, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Ludovicus Michael Maesen, Alexander E. Kuperman
  • Publication number: 20140102944
    Abstract: One exemplary embodiment can be a slurry hydrocracking process. The process can include providing one or more hydrocarbon compounds having an initial boiling point temperature of at least about 340° C., and a slurry catalyst to a slurry hydrocracking zone. The slurry catalyst may have about 32- about 50%, by weight, iron; about 3- about 14%, by weight, aluminum; no more than about 10%, by weight, sodium; and about 2- about 10%, by weight, calcium. Typically, all catalytic component percentages are as metal and based on the weight of the dried slurry catalyst.
    Type: Application
    Filed: October 15, 2012
    Publication date: April 17, 2014
    Applicant: UOP LLC
    Inventors: Lorenz J. Bauer, Maureen L. Bricker, Beckay J. Mezza, Alakananda Bhattacharyya
  • Patent number: 8679322
    Abstract: A hydroconversion process includes feeding a heavy feedstock containing vanadium and/or nickel, a catalyst emulsion containing at least one group 8-10 metal and at least one group 6 metal, hydrogen and an organic additive to a hydroconversion zone under hydroconversion conditions to produce an upgraded hydrocarbon product and a solid carbonaceous material containing the group 8-10 metal, the group 6 metal, and the vanadium and/or nickel.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: March 25, 2014
    Assignee: Intevep, S.A.
    Inventors: Roger Marzin, Bruno Solari, Luis Zacarias
  • Publication number: 20140076780
    Abstract: A catalyst which comprises an amorphous support based on alumina, a C1-C4 dialkyl succinate, citric acid and optionally acetic acid, phosphorus and a hydrodehydrogenating function comprising at least one element from group VIII and at least one element from group VIB; the most intense bands comprised in the Raman spectrum of the catalyst are characteristic of Keggin heteropolyanions (974 and/or 990 cm?1), C1-C4 dialkyl succinate and citric acid (in particular 785 and 956 cm?1). Also a process for preparing said catalyst in which a catalytic precursor in the dried, calcined or regenerated state containing the elements of the hydrodehydrogenating function, and optionally phosphorus, is impregnated with an impregnation solution comprising at least one C1-C4 dialkyl succinate, citric acid and optionally at least one compound of phosphorus and optionally acetic acid, and is then dried. Further, the use of said catalyst in any hydrotreatment process.
    Type: Application
    Filed: February 10, 2012
    Publication date: March 20, 2014
    Applicants: IFP ENERGIES NOUVELLES, TOTAL RAFFINAGE MARKETING
    Inventors: Bertrand Guichard, Laurent Simon, Valentina De Grandi, Delphine Minoux, Jean-Pierre Dath
  • Publication number: 20140081060
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride containing catalyst comprising a surface, and a Group VI/Group VIII metal sulfide coated onto the surface of the interstitial metal hydride. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Application
    Filed: November 5, 2013
    Publication date: March 20, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Chuansheng BAI, Adrienne J. THORNBURG, Heather A. ELSEN, Jean W. BEECKMAN, William G. BORGHARD
  • Patent number: 8673130
    Abstract: A hydroprocessing method and system involves introducing heavy oil and well-dispersed metal sulfide catalyst particles, or a catalyst precursor capable of forming the well-dispersed metal sulfide catalyst particles in situ within the heavy oil, into a hydroprocessing reactor. The well-dispersed or in situ metal sulfide catalyst particles are formed by 1) premixing a catalyst precursor with a hydrocarbon diluent to form a precursor mixture, 2) mixing the precursor mixture with heavy oil to form a conditioned feedstock, and 3) heating the conditioned feedstock to decompose the catalyst precursor and cause or allow metal from the precursor to react with sulfur in the heavy oil to form the well-dispersed or in situ metal sulfide catalyst particles. The well-dispersed or in situ metal sulfide catalyst particles catalyze beneficial upgrading reactions between the heavy oil and hydrogen and eliminates or reduces formation of coke precursors and sediment.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: March 18, 2014
    Assignee: Headwaters Heavy Oil, LLC
    Inventors: Roger K. Lott, Lap-Keung Lee
  • Patent number: 8637424
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprising a surface, with a metal oxide integrally synthesized and providing a coating on the surface of the interstitial metal hydride. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur and nitrogen reduction in hydrocarbon feedstreams.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: January 28, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Heather A. Elsen
  • Publication number: 20140005031
    Abstract: Inorganic material having at least two elementary spherical particles, each of said spherical metallic particles: a polyoxometallate with formula (XxMmOyHh)q?, where H is hydrogen, O is oxygen, X is phosphorus, silicon, boron, nickel or cobalt and M is one or more vanadium, niobium, tantalum, molybdenum, tungsten, iron, copper, zinc, cobalt and nickel, x is 0, 1, 2 or 4, m is 5, 6, 7, 8, 9, 10, 11, 12 or 18, y is 17 to 72, h is 0 to 12 and q is 1 to 20.
    Type: Application
    Filed: December 15, 2011
    Publication date: January 2, 2014
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, IFP ENERGIES NOUVELLES, UNIVERSITE PIERRE ET MARIE CURIE
    Inventors: Alexandra Chaumonnot, Clement Sanchez, Cedric Boissiere, Frederic Colbeau-Justin, Karin Marchand, Elodie Devers, Audrey Bonduelle, Denis Uzio, Antoine Daudin, Bertrand Guichard, Denis Uzio, Antoine Daudin
  • Patent number: 8617386
    Abstract: A process is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising molybdenum supported on a base, such as boehmite or pseudo-boehmite alumina. Iron oxide may also be in the base. The base is preferably bauxite. The heavy hydrocarbon slurry is hydrocracked in the presence of the catalyst to produce lighter hydrocarbons.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: December 31, 2013
    Assignee: UOP LLC
    Inventors: Alakananda Bhattacharyya, Beckay J. Mezza, Maureen L. Bricker, Lorenz J. Bauer
  • Publication number: 20130334099
    Abstract: A process for the hydrocracking a hydrocarbon-containing feedstock in which at least 50% by weight of the compounds have an initial boiling point above 340° C. and a final boiling point below 540° C., using a catalyst having, in its oxide form, at least one metal selected from the metals of groups VIB, VIII and VB, said metals being present in the form of at least one polyoxometallate of formula (HhXxMmOy)q?, said polyoxometallates being present within a mesostructured matrix based on oxide of at least one element Y, said matrix having a pore size between 1.5 and 50 nm and having amorphous walls of thickness between 1 and 30 nm, said catalyst being sulphurized before used in said process.
    Type: Application
    Filed: December 15, 2011
    Publication date: December 19, 2013
    Applicants: IFP ENERGIES NOUVELLES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Karin Marchand, Alexandra Chaumonnot, Audrey Bonduelle, Veronique Dufaud, Frederic Lefebvre, Manuela Bader, Susana Lopes Silva
  • Patent number: 8608948
    Abstract: A composition that comprises a support material having incorporated therein a metal component and impregnated with both hydrocarbon oil and a polar additive. The composition that is impregnated with both hydrocarbon oil and polar additive is useful in the hydrotreating of hydrocarbon feedstocks, and it is especially useful in applications involving delayed feed introduction whereby the composition is first treated with hot hydrogen, and, optionally, with a sulfur compound, prior to contacting it with a hydrocarbon feedstock under hydrodesulfurization process conditions.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: December 17, 2013
    Assignee: Shell Oil Company
    Inventors: Alexei Grigorievich Gabrielov, John Anthony Smegal
  • Patent number: 8608945
    Abstract: A process is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising molybdenum supported on a base, such as boehmite or pseudo-boehmite alumina. Iron oxide may also be in the base. The base is preferably bauxite. The heavy hydrocarbon slurry is hydrocracked in the presence of the catalyst to produce lighter hydrocarbons.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: December 17, 2013
    Assignee: UOP LLC
    Inventors: Alakananda Bhattacharyya, Beckay J. Mezza, Maureen L. Bricker, Lorenz J. Bauer
  • Patent number: 8597498
    Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen, hydrogen sulfide, and a metal-containing catalyst to produce a hydrocarbon-containing product. The hydrocarbon-containing feedstock, the catalyst(s), the hydrogen sulfide, and the hydrogen are provided to a mixing zone and blended in the mixing zone at a temperature of from 375° C. to 500° C. and a total pressure of from 6.9 MPa to 27.5 MPa, where hydrogen sulfide is provided at a mole ratio of hydrogen sulfide to hydrogen of at least 0.5:9.5 and the combined hydrogen sulfide and hydrogen partial pressures provide at least 60% of the total pressure. A vapor comprised of hydrocarbons that are vaporizable at the temperature and pressure within the mixing zone is separated from the mixing zone, and, apart from the mixing zone, the vapor may be condensed to produce a liquid hydrocarbon-containing product.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: December 3, 2013
    Assignee: Shell Oil Company
    Inventors: Stanley Nemec Milam, Michael Anthony Reynolds, Scott Lee Wellington
  • Patent number: 8597499
    Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and at least one metal-containing catalyst to produce a hydrocarbon-containing product. The hydrocarbon-containing feedstock, the catalyst(s), and the hydrogen are provided to a mixing zone and blended in the mixing zone at a temperature of from 375° C. to 500° C. and a total pressure of from 6.9 MPa to 27.5 MPa. A vapor comprised of hydrocarbons that are vaporizable at the temperature and pressure within the mixing zone is separated from the mixing zone. Any metal-containing catalyst provided to the mixing zone has an acidity as measured by ammonia chemisorption of at most 200 ?mol ammonia per gram of catalyst.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: December 3, 2013
    Assignee: Shell Oil Company
    Inventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
  • Patent number: 8597497
    Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and at least one catalyst to produce a hydrocarbon-containing product. The hydrocarbon-containing feedstock, the catalyst(s), and the hydrogen are provided to a mixing zone and blended in the mixing zone at a temperature of from 375° C. to 500° C. A vapor comprised of hydrocarbons that are vaporizable at the temperature and pressure within the mixing zone is separated from the mixing zone, and, apart from the mixing zone, the vapor is condensed to produce a liquid hydrocarbon-containing product containing at least 85% of the atomic carbon initially present in the hydrocarbon-containing feedstock and containing at most 2 wt. % hydrocarbons having a boiling point of at least 538° C.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: December 3, 2013
    Assignee: Shell Oil Company
    Inventors: Stanley Nemec Milam, Michael Anthony Reynolds, Scott Lee Wellington
  • Patent number: 8597496
    Abstract: A process for treating a hydrocarbon-containing feedstock is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and at least one catalyst to produce a hydrocarbon-containing product. The hydrocarbon-containing feedstock, the catalyst(s), and the hydrogen are provided to a mixing zone and blended in the mixing zone at a temperature of from 375° C. to 500° C. A vapor comprised of hydrocarbons that are vaporizable at the temperature and pressure within the mixing zone is separated from the mixing zone, and, apart from the mixing zone, the vapor is condensed to produce a liquid hydrocarbon-containing product. The hydrocarbon-containing feedstock is continuously or intermittently provided to the mixing zone at a rate of at least 350 kg/hr per m3 of the mixture volume in the mixing zone.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: December 3, 2013
    Assignee: Shell Oil Company
    Inventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
  • Publication number: 20130284639
    Abstract: Specific embodiments of the present invention provide a hydrocracking process for converting low value-added heavy hydrocarbon distillates into high value-added hydrocarbon distillates using a supercritical solvent as a medium.
    Type: Application
    Filed: December 26, 2011
    Publication date: October 31, 2013
    Applicants: INDUSTRY-ACADEMIC COOPERATION FOUNDATION, YONSEI UNIVERSITY, SK INNOVATION CO., LTD.
    Inventors: Jae Wook Ryu, IL Yong Jeong, Gyung Rok Kim, Sung Bum Park, Do Woan Kim, Eun Kyoung Kim, Sun Choi, Chang Ha Lee, Jae Hyuk Lee, Yo Han Kim
  • Patent number: 8557105
    Abstract: Methods for hydrocracking a heavy hydrocarbon feedstock (e.g., heavy oil and/or coal resid) employ a catalyst composed of well dispersed metal sulfide catalyst particles (e.g., colloidally or molecularly dispersed catalyst particles, such as molybdenum sulfide), which provide an increased concentration of metal sulfide catalyst particles within lower quality materials requiring additional hydrocracking. In addition to increased metal sulfide catalyst concentration, the systems and methods provide increased reactor throughput, increased reaction rate, and higher conversion of asphaltenes and lower quality materials. Increased conversion of asphaltenes and lower quality materials also reduces equipment fouling, enables processing of a wider range of lower quality feedstocks, and leads to more efficient use of a supported catalyst if used in combination with the well dispersed metal sulfide catalyst particles.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: October 15, 2013
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Roger K. Lott, Yu-Hwa Chang
  • Publication number: 20130248422
    Abstract: Hydrocarbon-soluble molybdenum catalyst precursors include a plurality of molybdenum cations and a plurality of carboxylate anions having at least 8 carbon atoms. The carboxylate anions are alicyclic, aromatic, or branched, unsaturated and aliphatic, and can derived from carboxylic acids selected from 3-cyclopentylpropionic acid, cyclohexanebutyric acid, biphenyl-2-carboxylic acid, 4-heptylbenzoic acid, 5-phenylvaleric acid, geranic acid, 10-undecenoic acid, dodecanoic acid, and combinations thereof. The molybdenum salts have decomposition temperatures higher than 210° C. The catalyst precursors can form a hydroprocessing molybdenum sulfide catalyst in heavy oil feedstocks. Also disclosed are methods for making catalyst precursors and hydrocracking heavy oil using active catalysts.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 26, 2013
    Applicant: Headwaters Technology Innovation, LLC
    Inventors: He Qiu, Bing Zhou
  • Patent number: 8535515
    Abstract: The invention relates to a hydroconversion catalyst, which comprises a refractory oxide support, at least one metal selected from group VIII and at least one metal selected from group VIB and which is characterized in that it has at least one organic compound containing at least one oxime group of formula (I)>C?NOR1, in which R1 is selected among hydrogen and alkyl, allyl, aryl, alkylene or cycloaliphatic groups, and combinations thereof, these groups being able to be substituted by at least one electron donor group.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: September 17, 2013
    Assignee: Total France
    Inventors: Thierry Cholley, Jean-Pierre Dath
  • Patent number: 8500992
    Abstract: A process for treating a hydrocarbon-containing feed is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and a catalyst to produce a hydrocarbon-containing product. The catalyst is comprised of a material comprised of a first metal and a second metal, where the first metal is selected from the group consisting of Cu, Fe, Bi, Ag, Mn, Zn, Sn, Ru, La, Pr, Sm, Eu, Yb, Lu, Dy, Pb, and Sb and the second metal is Mo, W, V, Sn, and Sb.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: August 6, 2013
    Assignee: Shell Oil Company
    Inventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
  • Patent number: 8496803
    Abstract: A process for treating a hydrocarbon-containing feed is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen, hydrogen sulfide, and a catalyst to produce a hydrocarbon-containing product. The catalyst is comprised of a tetrathiometallate material comprised of a first metal and a second metal, where the first metal is selected from the group consisting of Cu, Fe, Ni, Co, Bi, Ag, Mn, Zn, Sn, Ru, La, Pr, Sm, Eu, Yb, Lu, Dy, Pb, and Sb and the second metal is Mo, W, V, Sn, and Sb.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: July 30, 2013
    Assignee: Shell Oil Company
    Inventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
  • Patent number: 8491784
    Abstract: A process for treating a hydrocarbon-containing feed is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and a catalyst to produce a hydrocarbon-containing product. The catalyst is prepared by mixing a first salt and a second salt in an aqueous mixture under anaerobic conditions at a temperature of from 15° C. to 150° C., where the first salt comprises a cationic component in any non-zero oxidation state selected from the group consisting of Cu, Fe, Ag, Co, Mn, Ru, La, Ce, Pr, Sm, Eu, Yb, Lu, Dy, Ni, Zn, Bi, Sn, Pb, and Sb, and where the second salt comprises an anionic component selected from the group consisting of MoS42?, WS42?, SnS44?, and SbS43.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: July 23, 2013
    Assignee: Shell Oil Company
    Inventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
  • Patent number: 8491783
    Abstract: A process for treating a hydrocarbon-containing feed in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen, hydrogen sulfide, and a catalyst to produce a hydrocarbon-containing product, where hydrogen sulfide is provided at a mole ratio relative to hydrogen of at least 0.5:9.5. The catalyst is comprised of a bimetallic tetrathiometallate material comprised of a first metal and a second metal, where the first metal is selected from the group consisting of Cu, Fe, Ni, Co, Bi, Ag, Mn, Zn, Sn, Ru, La, Ce, Pr, Sm, Eu, Yb, Lu, Dy, Ph, and Sb and the second metal is Mo, W, V, Sn, and Sb.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: July 23, 2013
    Assignee: Shell Oil Company
    Inventors: Stanley Nemec Milam, Michael Anthony Reynolds, Scott-Lee Wellington
  • Patent number: 8491782
    Abstract: A process for treating a hydrocarbon-containing feed is provided in which a hydrocarbon-containing feed comprising at least 20 wt. % of heavy hydrocarbons is mixed with hydrogen and a catalyst to produce a hydrocarbon-containing product.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: July 23, 2013
    Assignee: Shell Oil Company
    Inventors: Michael Anthony Reynolds, Stanley Nemec Milam, Scott Lee Wellington
  • Publication number: 20130172638
    Abstract: The invention concerns a process for upgrading lower quality carbonaceous feedstock using a slurry catalyst composition. The use of particular organometallic compounds as precursors for the dispersed active catalyst allows for reduced coke formation.
    Type: Application
    Filed: July 5, 2011
    Publication date: July 4, 2013
    Applicant: TOTAL RAFFINAGE MARKETING
    Inventors: Didier Borremans, Jean-Pierre Dath, Kai Hortmann
  • Publication number: 20130153465
    Abstract: Systems and methods that include providing, e.g., obtaining or preparing, a material that includes a hydrocarbon carried by an inorganic substrate, and exposing the material to a plurality of energetic particles, such as accelerated charged particles, such as electrons or ions.
    Type: Application
    Filed: February 15, 2013
    Publication date: June 20, 2013
    Applicant: XYLECO, INC.
    Inventor: Marshall Medoff
  • Publication number: 20130140215
    Abstract: Hydrocracking a hydrocarbon feed in the presence of a catalyst comprising an acidic support and an active phase formed from at least one metal from group VIII and at least one metal from group VIB, said catalyst being prepared using a process comprising, in succession: contacting a pre-catalyst comprising said metal from group VIII, said metal from group VIB and said acidic support with a cyclic oligosaccharide of at least 6?-(1,4)-bonded glucopyranose subunits; contacting the acidic support with a solution containing a precursor of metal from group VIII, a precursor of said metal from group VIB and a cyclic oligosaccharide of at least 6?-(1,4)-bonded glucopyranose subunits; and contacting acidic support with a cyclic oligosaccharide of at least 6?-(1,4)-bonded glucopyranose subunits followed by a second contacting acidic solid with a precursor of metal from group VIII and a precursor of metal from group VIB; drying; heat treatment; sulphurization.
    Type: Application
    Filed: June 24, 2011
    Publication date: June 6, 2013
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Fabrice Diehl, Audrey Bonduelle
  • Publication number: 20130126393
    Abstract: A catalyst composition that is especially useful in the hydroconversion of pitch, micro carbon residue and sulfur contents of a heavy hydrocarbon feedstock without the excessive formation of sediment. The catalyst composition is a reasonably high surface area composition containing alumina and a low molybdenum content with a high ratio of nickel-to-molybdenum. The catalyst composition further has a unique pore distribution that in combination with the special metals loading provide for good conversion of pitch and micro carbon residue without an excessive yield of sediment.
    Type: Application
    Filed: December 18, 2012
    Publication date: May 23, 2013
    Applicant: SHELL OIL COMPANY
    Inventor: SHELL OIL COMPANY
  • Patent number: 8440071
    Abstract: A hydrocracking system involves introducing a heavy oil feedstock and a colloidal or molecular catalyst, or a catalyst precursor capable of forming the colloidal or molecular catalyst, into a hydrocracking reactor. The colloidal or molecular catalyst is formed in situ within the heavy oil feedstock by 1) premixing the catalyst precursor with a hydrocarbon diluents to form a catalyst precursor mixture, 2) mixing the catalyst precursor mixture with the heavy oil feedstock, and 3) raising the temperature of the feedstock to above the decomposition temperature of the catalyst precursor to form the colloidal or molecular catalyst. The colloidal or molecular catalyst catalyzes upgrading reactions between the heavy oil feedstock and hydrogen and eliminates or reduces formation of coke precursors and sediment.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: May 14, 2013
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Roger K. Lott, Lap Keung Lee
  • Patent number: 8435400
    Abstract: Systems and methods for hydroprocessing heavy oil feedstock is disclosed. The process employs a plurality of contacting zones and at least a separation zone to convert at least a portion of the heavy oil feedstock to lower boiling hydrocarbons, forming upgraded products. In one embodiment, water and/or steam being injected into at least a contacting zone. The contacting zones operate under hydrocracking conditions, employing at least a slurry catalyst. In one embodiment, at least a portion of the non-volatile fractions recovered from at least one of the separation zones is recycled back to at least a contacting zone (“recycled mode”). In one embodiment, the number of separation zones is less than the number of contacting zones in the system. In the separation zones, upgraded products are removed overhead and optionally treated in an in-line hydrotreater; and the bottom stream is optionally further treated in a fractionator.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: May 7, 2013
    Assignee: Chevron U.S.A.
    Inventors: Bo Kou, Shuwu Yang, Bruce Reynolds, Julie Chabot
  • Patent number: 8431016
    Abstract: A hydrocracking system involves introducing a heavy oil feedstock and a colloidal or molecular catalyst, or a precursor composition capable of forming the colloidal or molecular catalyst, into a hydrocracking reactor. The colloidal or molecular catalyst is formed in situ within the heavy oil feedstock by intimately mixing a catalyst precursor composition into a heavy oil feedstock and raising the temperature of the feedstock to above the decomposition temperature of the precursor composition to form the colloidal or molecular catalyst. The colloidal or molecular catalyst catalyzes upgrading reactions between the heavy oil feedstock and hydrogen and eliminates or reduces formation of coke precursors and sediment. At least a portion of a resid fraction containing residual colloidal or molecular catalyst is recycled back into the hydrocracking reactor to further upgrade the recycled resid fraction portion and provide recycled colloidal or molecular catalyst within the hydrocracking reactor.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: April 30, 2013
    Assignee: Headwaters Heavy Oil, LLC
    Inventors: Roger K. Lott, Lap-Keung Lee
  • Patent number: 8425760
    Abstract: The invention concerns a process for converting a stream of natural or associated gas into liquid fractions, comprising: a) a step for converting said stream of gas into a synthesis gas SG; b) a step FT for Fischer-Tropsch synthesis to convert the SG into liquid fractions; c) a step for fractionating the effluents from the Fischer-Tropsch synthesis into at least one relatively heavy fraction comprising waxes with a boiling point of 565° C. or more and at least one relatively light fraction; d) a step HCKI for isomerization hydrocracking of the relatively heavy fraction, in which at least 75% by weight of the fraction of the feed with a boiling point of more than 565° C. is converted into compounds boiling below 565° C.; e) at least one step for mixing at least the effluents from step HCKI (step d)), the light fraction from step c) and a crude oil P, to thereby produce an oil P*.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: April 23, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Eric Lenglet, Patrick Chaumette
  • Patent number: 8404103
    Abstract: Methods are disclosed for the hydrotreating and hydrocracking of highly aromatic distillate feeds such as light cycle oil (LCO) to produce ultra low sulfur gasoline and diesel fuel. Optimization of hydrotreater severity improves the octane quality of the gasoline or naphtha fraction. In particular, the operation of the hydrotreater at reduced severity to allow at least about 20 ppm by weight of organic nitrogen into the hydrocracker feed is shown to lead to these important benefits. Post-treating of the hydrocracker effluent over an additional hydrotreating catalyst bed may be desired to meet specifications for ultra low sulfur fuel components.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: March 26, 2013
    Assignee: UOP LLC
    Inventors: Bart Dziabala, Vasant P. Thakkar, Suheil F. Abdo
  • Publication number: 20130068662
    Abstract: A method for hydroprocessing a hydrocarbon feedstock is provided. The method comprises contacting the feedstock with a catalyst under hydroprocessing conditions, wherein the catalyst is formed by sulfiding an unsupported catalyst precursor of the general formula Av[(MP)(OH)x (L)ny]z(MVIBO4), wherein MP is selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof; L is one or more oxygen-containing ligands, and L has a neutral or negative charge n<=0, MVIB is at least a Group VIB metal having an oxidation state of +6; MP: MVIB has an atomic ratio between 100:1 and 1:100; v?2+P*z?x*z+n*y*z=0; and 0?y??P/n; 0?x?P; 0?v?2; 0?z. In one embodiment, the catalyst precursor further comprises a cellulose-containing material. In another embodiment, the catalyst precursor further comprises at least a diluent (binder). In one embodiment, the diluent is a magnesium aluminosilicate clay.
    Type: Application
    Filed: November 14, 2012
    Publication date: March 21, 2013
    Inventors: Theodorus Ludovicus Michael Maesen, Alexander E. Kuperman
  • Publication number: 20130048540
    Abstract: A catalyst composition comprising an emulsion of an aqueous phase in an oil phase, wherein the aqueous phase contains a group 6 metal, and wherein between about 55 and 100 wt % of the group 6 metal is sulfurated. A method for making a catalyst emulsion, comprising the steps of providing an aqueous phase comprising an aqueous solution of a group 6 metal, wherein between about 55 and 100 wt % of the group 6 metal is sulfurated; and mixing the aqueous phase into an oil phase to form an emulsion of the aqueous phase in the oil phase. A hydroconversion process, comprising the steps of contacting the catalyst of claim 1 with a feedstock in a hydroconversion zone under hydroconversion conditions.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 28, 2013
    Applicant: INTEVEP, S.A.
    Inventors: Gladys Esperanza Noguera Herrera, Solange Carolina Araujo Ferrer, Angel Benjamin Rivas Herrera, Javier Ramon Hernandez Polanco, Dietrich Alonso Mendoza Chacon, Omayra Zuleika Delgado Gonzalez
  • Patent number: 8372268
    Abstract: A catalyst composition that is especially useful in the hydroconversion of pitch, micro carbon residue and sulfur contents of a heavy hydrocarbon feedstock without the excessive formation of sediment. The catalyst composition is a reasonably high surface area composition containing alumina and a low molybdenum content with a high ratio of nickel-to-molybdenum. The catalyst composition further has a unique pore distribution that in combination with the special metals loading provide for good conversion of pitch and micro carbon residue without an excessive yield of sediment.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: February 12, 2013
    Assignee: Shell Oil Company
    Inventors: Josiane Marie-Rose Ginestra, John G. Kester, David Andrew Komar, David Edward Sherwood, Jr.