Plural Stage Treatments With Hydrogen Patents (Class 208/210)
  • Patent number: 6569318
    Abstract: The invention relates to a process for conversion of hydrocarbons in the presence of at least one catalyst with controlled acidity, characterized in that the level of activity of said catalyst in isomerization of the cyclohexane is less than 0.10 and/or in that the ratio of toluene hydrogenation activity to the cyclohexane isomerization activity is greater than 10.
    Type: Grant
    Filed: February 23, 2001
    Date of Patent: May 27, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Virginie Harle, Stéphane Kressmann, Isabelle Guibard, Slavik Kasztelan, Frédéric Morel
  • Publication number: 20030094399
    Abstract: A process for concurrently fractionating and hydrotreating of a full range naphtha stream. The full boiling range naphtha stream is first subjected to simultaneous thioetherification and fractionation to remove the mercaptans the light fraction and then to simultaneous hydrodesulfurization and splitting of the remainder into an intermediate boiling range naphtha and a heavy boiling range naphtha. The three boiling range naphthas are treated separately according to the amount of sulfur in each cut and the end use of each fraction.
    Type: Application
    Filed: July 10, 2002
    Publication date: May 22, 2003
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventor: Gary G. Podrebarac
  • Patent number: 6554994
    Abstract: A reactor system and process for hydrotreating a heavy feedstock contaminated with metals sulfur and carbon residue using an upflow fixed bed reactor with at least two catalyst layers having different hydrogenation activity.
    Type: Grant
    Filed: April 13, 1999
    Date of Patent: April 29, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bruce E. Reynolds, Fred W. Lam, Julie Chabot, Fernando J. Antezana, Robert Bachtel, Kirk R. Gibson, Richard Threlkel, Pak C. Leung
  • Publication number: 20030070965
    Abstract: A process for the deep desulfurization of diesel range feedstock to produce low sulfur diesel fuels by contacting a sulfur containing diesel range feedstock with a cobalt molybdenum (CoMo) catalyst followed by a nickel containing catalyst, such as nickel molybdenum (NiMo), nickel tungsten (NiW), nickel tungsten molybdenum (NiWMo) and nickel cobalt molybdenum (NiCoMo), under a combination of elevated temperature and superatmospheric hydrogen pressure to convert the sulfur in the sulfur-containing feedstock to inorganic sulfur compounds and produce a desulfurized product having a sulfur content below SO ppm by weight. The process can include a dual catalyst system, wherein the sulfur containing diesel range feedstock is desulfurized with a cobalt molybdenum (CoMo) catalyst and then the sulfur compounds can optionally be stripped from the stream prior to contacting with the nickel containing catalyst. The preferred desulfurized product contains less than 11 wt.
    Type: Application
    Filed: September 4, 2002
    Publication date: April 17, 2003
    Inventors: Stuart S. Shih, Peter J. Owens, Jolie A. Rhinehart
  • Patent number: 6547956
    Abstract: The invention relates to a hydrotreating and hydrocracking process for various oils nominally boiling between 600 and 1500° F. to produce diesel oil and lighter materials. The process includes a first hydrogenation reaction in the presence of multiple hydrogenation catalyst beds which is limited to the hydrogenation level needed for the removal of sulfur and nitrogen and for aromatic saturation and to produce an effluent of both hydrocracked oil and uncracked heavy oil. The effluent is then flashed to produce hydrocracked oil vapors and liquid uncracked heavy oil. The hydrocracked oil fraction is further hydrotreated by catalytic distillation in a post-treatment reactor to give the final product quality while the liquid uncracked heavy oil bypasses the post-treatment reactor. The process significantly reduces hydrogen consumption and reduces the overall reactor and catalyst volumes for a given level of performance.
    Type: Grant
    Filed: April 20, 2000
    Date of Patent: April 15, 2003
    Assignee: ABB Lummus Global Inc.
    Inventors: Ujjal Kumar Mukherjee, Wai Seung Louie
  • Publication number: 20030062292
    Abstract: A four stage process for producing high quality white oils, particularly food or medicinal grade mineral oils from mineral oil distillates. The first reaction stage employs a sulfur resistant hydrotreating catalyst and produces a product suitable for use as a high quality lubricating oil base stock. The second reaction stage employs a hydrogenation/hydrodesulfurization catalyst. The third stage employs a reduced metal sulfur sorbent producing a product stream which is low in aromatics and which has substantially “nil” sulfur. The final reaction stage employs a selective hydrogenation catalyst that produces a product suitable as a food or medicinal grade white oil.
    Type: Application
    Filed: February 27, 2002
    Publication date: April 3, 2003
    Inventors: Sylvain S. Hantzer, Jean Willem Beeckman, Stephen J. McCarthy, Arthur Paul Werner
  • Publication number: 20030047491
    Abstract: A process for hydroprocessing a hydrocarbon feedstock, includes the steps of providing a hydrocarbon feed having an initial characteristic; providing a first hydrogen-containing gas; feeding the hydrocarbon feed and the first hydrogen-containing gas cocurrently to a first hydroprocessing zone so as to provide a first hydrocarbon product; providing a plurality of additional hydroprocessing zones including a final zone and an upstream zone; feeding the first hydrocarbon product cocurrently with a recycled gas to the upstream zone so as to provide an intermediate hydrocarbon product; and feeding the intermediate hydrocarbon product cocurrently with a second hydrogen-containing gas to the final zone so as to provide a final hydrocarbon product having a final characteristic which is improved as compared to the initial characteristic.
    Type: Application
    Filed: May 23, 2002
    Publication date: March 13, 2003
    Applicant: INTEVEP, S.A.
    Inventors: Carlos Gustavo Dassori, Nancy Fernandez, Rosa Arteca, Carlos Castillo
  • Patent number: 6531054
    Abstract: The invention pertains to a process for reducing the sulphur content of a hydrocarbon feedstock to a value of less than 500 ppm, which process comprises contacting a feedstock with a 95% boiling point of 450° C. or less and a sulphur content of 0.1 wt. % or more in the presence of hydrogen under conditions of elevated temperature and pressure with a first catalyst comprising a Group VI hydrogenation metal component and a Group VIII hydrogenation metal component on an oxidic carrier, after which at least part of the effluent from the first catalyst is led to a second catalyst comprising a Group VI hydrogenation metal component and a Group VIII hydrogenation metal component on an oxidic carrier which comprises 1 to 15 wt. % of silica, calculated on the weight of the catalyst.
    Type: Grant
    Filed: March 30, 1998
    Date of Patent: March 11, 2003
    Assignee: AKZO Nobel, N.V.
    Inventors: Leendert Arie Gerritsen, Seck Leong Lee
  • Publication number: 20030042175
    Abstract: The invention relates to a process for the production of gasoline with a low sulfur content that comprises at least one selective hydrogenation of diolefins, optionally at least one stage for transformation, preferably to increase their weight, for light sulfur-containing compounds that are present in the gasoline, at least one fractionation of the gasoline that is obtained into at least two fractions: light gasoline and heavy gasoline, then optionally a stage for transformation, preferably for alkylation or adsorption, of sulfur-containing compounds and a desulfurization treatment in a stage of at least a portion of the heavy fraction.
    Type: Application
    Filed: March 12, 2002
    Publication date: March 6, 2003
    Applicant: Institut Francais du Petrole
    Inventors: Quentin Debuisschert, Denis Uzio, Jean-Luc Nocca, Florent Picard
  • Publication number: 20020195375
    Abstract: A process for hydrotreating gas oils comprises:
    Type: Application
    Filed: April 9, 2002
    Publication date: December 26, 2002
    Applicant: Institut Francais du Petrole
    Inventors: Thierry Chapus, Frederic Morel
  • Patent number: 6497810
    Abstract: A process for upgrading a liquid petroleum or chemical stream wherein said stream flows countercurrent to the flow of a treat gas, such as a hydrogen-containing gas, in at least one reaction zone. Injecting feed into one or more downstream reaction zones controls the temperature of at least one reaction zone.
    Type: Grant
    Filed: December 7, 1999
    Date of Patent: December 24, 2002
    Inventors: Larry L. Laccino, James J. Schorfheide
  • Patent number: 6495030
    Abstract: A process for concurrently fractionating and hydrotreating of a full range naphtha stream. The full boiling range naphtha stream is first subjected to simultaneous thioetherification and fractionation to remove the mercaptans the light fraction and then to simultaneous hydrodesulfurization and splitting of the remainder into an intermediate boiling range naphtha and a heavy boiling range naphtha. The three boiling range naphthas are treated separately according to the amount of sulfur in each cut and the end use of each fraction.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: December 17, 2002
    Assignee: Catalytic Distillation Technologies
    Inventor: Gary G. Podrebarac
  • Publication number: 20020179497
    Abstract: A multi-stage process for removing heteroatoms particularly organic sulfur and nitrogen components, from liquid petroleum and chemical streams. The feedstream flows countercurrent to the flow of a hydrogen-containing treat gas and is reacted with a first catalyst which is relatively tolerant to sulfur and nitrogen, such as a CoMo supported catalyst. When the level of organic sulfur in the feedstream is less than about 3,000 wppm and the level of organic nitrogen is less than about 1,000 wppm, the feedstream is reacted with said counter flowing hydrogen-containing treat gas in the presence of a catalyst comprised of Ni and a Group VIA metal selected from Mo, W, or both, on a refractory support. The reaction vessel preferably contains vapor and optionally liquid by-pass means in one or more of the catalyst beds.
    Type: Application
    Filed: July 6, 2001
    Publication date: December 5, 2002
    Inventors: Gerald E. Markley, Kenneth L. Riley, Ramesh Gupta
  • Publication number: 20020162772
    Abstract: A process for hydroprocessing a hydrocarbon feedstock, includes the steps of providing a hydrocarbon feed having an initial characteristic; providing a first hydrogen-containing gas; feeding the hydrocarbon feed and the first hydrogen-containing gas cocurrently to a first hydroprocessing zone so as to provide a first hydrocarbon product; providing a plurality of additional hydroprocessing zones including a final zone and an upstream zone; feeding the first hydrocarbon product cocurrently with a recycled gas to the upstream zone so as to provide an intermediate hydrocarbon product; and feeding the intermediate hydrocarbon product cocurrently with a second hydrogen-containing gas to the final zone so as to provide a final hydrocarbon product having a final characteristic which is improved as compared to the initial characteristic.
    Type: Application
    Filed: March 1, 2001
    Publication date: November 7, 2002
    Inventors: Carlos Gustavo Dassori, Nancy Fernandez, Rosa Arteca, Carlos Castillo
  • Publication number: 20020148757
    Abstract: Economical processes are disclosed for the production of components for refinery blending of transportation fuels by selective hydrogenation of sulfur-containing and/or nitrogen-containing organic compounds contained in mixtures of hydrocarbons which are liquid at ambient conditions. Integrated hydrotreating processes of this invention advantageously provide their own source of high-boiling hydrogenation feedstock derived, for example, by fractionation of hydrotreated petroleum distillates. The high-boiling hydrogenation feedstock consisting essentially of material boiling between about 200° C. and about 425° C.
    Type: Application
    Filed: February 8, 2001
    Publication date: October 17, 2002
    Inventors: George A. Huff, Larry W. Kruse, Ozie S. Owen, Monica Cristina Regalbuto, William H. Gong
  • Publication number: 20020139715
    Abstract: A process for hydrotreating gas oil comprises:
    Type: Application
    Filed: February 12, 2001
    Publication date: October 3, 2002
    Inventors: Thierry Chapus, Frederic Morel
  • Patent number: 6454934
    Abstract: A petroleum processing method comprising the steps of: performing an atmospheric distillation of crude oil; collectively hydrodesulfurizing the resultant distillates consisting of gas oil and fractions whose boiling point is lower than that of gas oil in a reactor in the presence of a hydrogenation catalyst at 310 to 370° C. under 30 to 70 kg/cm2G (first hydrogenation step); and further performing hydrodesulfurization at lower temperatures (second hydrogenation step). When the second hydrogenation step is carried out only for the heavy naphtha obtained by separating the distillates after the first hydrogenation step, the second hydrogenation temperature can be in the range of 250 to 400° C.
    Type: Grant
    Filed: September 10, 1998
    Date of Patent: September 24, 2002
    Assignee: JGC Corporation
    Inventors: Makoto Inomata, Toshiya Okumura, Shigeki Nagamatsu
  • Publication number: 20020130063
    Abstract: A process is described that can limit pressure drops during a catalytic hydrotreatment process carried out in a fixed bed reactor. The liquid feed and gaseous reactant are injected into the reactor either side of the bed and flow as a counter-current. Pressure drops are limited by homogeneously mixing solid catalytic and/or inert particles of different diameters in the bed.
    Type: Application
    Filed: December 20, 2001
    Publication date: September 19, 2002
    Applicant: Institut Francais du Petrole
    Inventors: Daniel Vuillemot, Laurence Carpot, Thierry Chapus, Philippe Rocher, Frederic Morel
  • Patent number: 6451198
    Abstract: A process for transforming a gas oil cut into a dearomatized fuel with a high cetane number comprises at least one first, deep desulphurization and deep denitrogenation step in which the gas oil cut and hydrogen are passed over a catalyst comprising a mineral support, at least one group VIB metal or metal compound, at least one group VIII metal or metal compound, and phosphorous or at least one phosphorous compound, and at least one subsequent second step, dearomatization, in which the desulphurized and denitrogenated product from the first step is passed with hydrogen over a catalyst comprising a mineral support and at least one group VIII noble metal or noble metal compound.
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: September 17, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Frédéric Morel, Henri Delhomme, Nathalie George-Marchal
  • Patent number: 6447671
    Abstract: The invention concerns a process for converting a hydrocarbon fraction with a sulphur content of at least 0.1% by weight, an initial boiling point of at least 340° C. and an end point of at least 440° C., characterized in that it comprises the following steps: a) treating the hydrocarbon feed in a treatment section in the presence of hydrogen, said section comprising at least one three-phase reactor, containing at least one ebullated bed hydroconversion catalyst and operating in liquid and gas upflow mode; b) sending at least a portion of the effluent from step a) to a section for eliminating catalyst particles contained in said effluent; c) sending at least a portion of the effluent from step b) to a treatment section, treatment being carried out in the presence of hydrogen and optionally a hydrocarbon fraction from a fixed bed hydrotreatment step.
    Type: Grant
    Filed: March 24, 2000
    Date of Patent: September 10, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Frédéric Morel, Stéphane Kressmann, Jean-Luc Duplan
  • Patent number: 6444118
    Abstract: A process for concurrently fractionating and treating of a full range naphtha stream. The full boiling range naphtha stream is first subjected to simultaneous thioetherification or selective hydrogenation and splitting into a light boiling range naphtha, an intermediate boiling range naphtha and a heavy boiling range naphtha. The intermediate boiling range naphtha containing thiophene and thiophene boiling range mercaptans, dienes or mixtures may be subjected to a second thioetherification or selective hydrogenation, depending on its make-up, and then passed on to a polishing hydrodesulfurization reactor or the entire intermediate stream may be passed directly to the polishing reactor. The bottoms are subjected to concurrent hydrodesulfurization and fractional distillation and the combined overheads and bottoms are fed to the polishing reactor.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: September 3, 2002
    Assignee: Catalytic Distillation Technologies
    Inventors: Gary G. Podrebarac, Gary R. Gildert
  • Publication number: 20020112990
    Abstract: A process for hydroprocessing liquid petroleum and chemical streams in two or more hydroprocessing stages wherein the liquid and vapor products from the first stage are sent to a separation zone wherein a liquid phase fraction is separated from a vapor phse fraction which contains vaporized heary hydrocarbon components. The vapor phase fraction is passed to a sorption zone wherein at least a portion of the heavy hydrocarbon components is removed. Both the liquid phase fraction and the sorbed heavy hydrocarbon components are sent to at least one additional hydroprocessing stage.
    Type: Application
    Filed: December 5, 2001
    Publication date: August 22, 2002
    Inventors: Larry L. Iaccino, Edward S. Ellis, William E. Lewis
  • Publication number: 20020084211
    Abstract: The invention relates to a process for forming a low-sulfur motor gasoline and the product made therefrom. In one embodiment, process involves separating a catalytically cracked naphtha into at least a light fraction boiling below about 165° F. and a heavy fraction boiling above about 165° F. The light fraction is treated to remove sulfur by a non-hydrotreating method, and the heavy fraction is hydrotreated to remove sulfur to a level of less than about 100 ppm.
    Type: Application
    Filed: October 12, 2001
    Publication date: July 4, 2002
    Inventors: Gordon F. Stuntz, Robert C. W. Welch, Thomas R. Halbert
  • Patent number: 6409912
    Abstract: During the hydrotreating process, hydrogen sulfide and short chain hydrocarbons such as methane, ethane, propane, butane and pentane are formed. The separation of gas from hydrotreated liquid hydrocarbons is achieved using a stripper and a flash drum. High pressure steam or nitrogen is contacted with the hydrotreated liquid hydrocarbon material. This high pressure steam strips the volatiles, i.e., hydrogen, the volatile hydrocarbons, hydrogen sulfide, and the like, from the oil. The gaseous stream is then separated and cooled to remove condensables, including primarily water, short chain hydrocarbons, and hydrogen sulfide in the water. The condensables are advantageously sent to the gasifier, where the hydrocarbons are gasified, the water moderates the gasifier temperature and increases the yield of hydrogen, and where hydrogen sulfide is routed with the produced synthesis gas to the acid gas removal process.
    Type: Grant
    Filed: January 11, 2000
    Date of Patent: June 25, 2002
    Assignee: Texaco, Inc.
    Inventors: Paul S. Wallace, Kay Anderson Johnson
  • Publication number: 20020074261
    Abstract: This invention relates to a two stage hydroprocessing process with stripping zones between the hydroprocessing zones and following the last hydroprocessing zone. The stripping occurs at high pressure and temperature with no disengagement between or following the hydroprocessing zones. There is recycle of high temperature gaseous effluent from the last stripping zone to the first stripping zone.
    Type: Application
    Filed: September 21, 2001
    Publication date: June 20, 2002
    Inventor: Alberto Ravella
  • Publication number: 20020074262
    Abstract: A diesel fraction is purified by a process having two reaction stages and a stripping stage in a single vessel. Heteroatoms are removed in the first stage, to permit the use of a sulfur sensitive aromatics saturation catalyst in the second stage, to produce a purified diesel stock. The first stage liquid effluent is stripped in a stripping stage and then passed into the second reaction stage, in which it reacts with fresh hydrogen for aromatics removal. The second reaction stage produces a hydrogen-rich vapor effluent, which may provide all or a portion of the first stage reaction hydrogen. A noble metal catalyst is employed in the second stage. The diesel feed for the process may be one that has been at least partially refined with respect to either or both heteroatom or aromatics removal.
    Type: Application
    Filed: September 21, 2001
    Publication date: June 20, 2002
    Inventor: Ramesh Gupta
  • Publication number: 20020074264
    Abstract: A hydrocarbonaceous feed is hydroprocessed in a single vessel containing two reaction stages and a stripping stage. The feed is fed into the first reaction stage to produce a vapor and liquid effluent which are separated, and the liquid stripped. The stripped liquid is passed as feed into the second stage, in which it meets with fresh hydrogen to produce a hydroprocessed liquid product and a hydrogen-rich vapor. The vapor is passed into the first stage, to provide the hydrogen for that stage. The use of a single vessel provides an efficient and economical addition to, or replacement for, a vessel for an existing hydroprocessing facility.
    Type: Application
    Filed: September 21, 2001
    Publication date: June 20, 2002
    Inventor: Ramesh Gupta
  • Publication number: 20020070147
    Abstract: The present invention pertains to a process for reducing the sulfur content of a hydrocarbon feedstock to a value of less than about 200 ppm, comprising optionally subjecting a catalyst comprising a Group VIB metal component, a Group VIII metal component, and an S-containing organic additive to a sulfidation step and/or activation step, and contacting a feedstock with a 95% boiling point of about 450° C. or less with the optionally sulfided and/or activated catalyst under conditions of elevated temperature and pressure to form a product with a sulfur content of less than about 200 ppm, preferably less than about 50 ppm.
    Type: Application
    Filed: August 30, 2001
    Publication date: June 13, 2002
    Inventors: Johannes Wilhelmus Maria Sonnemans, Sonja Eijsbouts
  • Patent number: 6344136
    Abstract: A process is disclosed for the hydrotreatment of feedstocks for fluidic cat crackers comprising reacting such feedstocks over high-conversion catalyst contain grate nickel-tungsten.
    Type: Grant
    Filed: March 3, 1999
    Date of Patent: February 5, 2002
    Assignee: Fina Technology, Inc.
    Inventors: James R. Butler, Mark Kuchenmeister
  • Publication number: 20020008049
    Abstract: A petroleum processing method comprising the steps of: performing an atmospheric distillation of crude oil; collectively hydrodesulfurizing the resultant distillates consisting of gas oil and fractions whose boiling point is lower than that of gas oil in a reactor in the presence of a hydrogenation catalyst at 310 to 370° C. under 30 to 70 kg/cm2G (first hydrogenation step); and further performing hydrodesulfurization at lower temperatures (second hydrogenation step). When the second hydrogenation step is carried out only for the heavy naphtha obtained by separating the distillates after the first hydrogenation step, the second hydrogenation temperature can be in the range of 250 to 400° C. The hydrodesulfurization having been performed for each of gas oil, kerosene, heavy naphtha and light naphtha in the art can be collectively and efficiently carried out, so that the oil refinery plant can be simplified and so that the cost of oil refinery equipment and running cost can be reduced.
    Type: Application
    Filed: September 10, 1998
    Publication date: January 24, 2002
    Inventors: MAKOTO INOMATA, TOSHIYA OKUMURA, SHIGEKI NAGAMATSU
  • Publication number: 20020005373
    Abstract: The invention relates to a method and dual reactor system for hydrotreating a wide cut cat naphtha stream comprising heavy cat naphtha (HCN) and intermediate cat naphtha (ICN). Accordingly, a HCN fraction is hydrotreated under non-selective hydrotreating conditions and an ICN fraction is hydrotreated under selective hydrotreating conditions. The hydrotreated HCN and ICN effluents may be conducted to heat exchangers to pre-heat the ICN feed, obviating the need for a furnace.
    Type: Application
    Filed: March 23, 2001
    Publication date: January 17, 2002
    Inventors: Brij Gupta, John P. Greeley, Thomas R. Halbert
  • Publication number: 20010054572
    Abstract: Catalyst activation of a platinum reforming catalyst system contained in a multiple reactor system by simultaneously reducing the catalyst with hydrogen while introducing a nonmetallic chlorine-containing compound into a reactor of the multiple reactor system in an amount to provide from about 0.05 to about 0.3 weight percent chlorine on the catalyst and thereafter purging the system with about 100 to about 50,000 cubic feet of hydrogen per cubic foot of catalyst resulting in a reforming system having increased activity and providing enhanced RON values with reduced cracking of feedstock.
    Type: Application
    Filed: July 31, 2001
    Publication date: December 27, 2001
    Applicant: Phillips Petroleum Company
    Inventor: Fan-Nan Lin
  • Publication number: 20010047952
    Abstract: A process for the hydrodesulfurization of a cracked naphtha stream is disclosed where very little of the valuable olefins are saturated. The process is a two staged process wherein the H2S is removed between the stages to prevent recombinant mercaptans formation. Because the H2S is removed between the stages milder conditions can be used in the second stage polishing reactor to achieve the same desulfurization levels with less olefin loss.
    Type: Application
    Filed: June 21, 2001
    Publication date: December 6, 2001
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Gary G. Podrebarac, Gary R. Gildert, Willibrord A. Groten
  • Publication number: 20010042704
    Abstract: The present invention relates to trioctahedral phyllosilicates 2:1 of a stevensite or kerolite type containing fluorine, fluorinated in synthesis in an acid medium in the presence of hydrofluoric acid and/or another source of fluoride anions. The invention also relates to a method of preparation to obtain said phyllosilicate. The existence of gaps enables adjustable quantities of cations to be incorporated in the gaps and hence the exchange capacity of said solids to be modulated. These phyllosilicates, raw from synthesis or after post-synthesis modification, may be incorporated in the composition of catalysts used to convert hydrocarbons, in particular for hydrocracking.
    Type: Application
    Filed: December 26, 2000
    Publication date: November 22, 2001
    Applicant: Institut Francois Du Petrole
    Inventors: Sylvie Lacombe, V?eacute;ronique Schlussel, Jacques Baron, Ronan Le Dred, Eric Benazzi
  • Patent number: 6306287
    Abstract: A hydrotreatment process is carried out in at least two steps to hydrotreat a heavy hydrocarbon fraction containing asphaltenes, sulphur-containing impurities and metallic impurities, comprising a first hydrodemetallization step and a subsequent second hydrodesulphurization step, in which the hydrodemetallization step comprises one or more hydrodemetallization zones with fixed beds preceded by at least two hydrodemetallization guard zones (A) and (B), also with fixed beds, disposed in series for cyclic use consisting of successive repetition of steps b) and c) defined below.
    Type: Grant
    Filed: October 14, 1999
    Date of Patent: October 23, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Alain Billon, Frédéric Morel, Stéphane Kressmann, Sun Dong Kim, Sung Ki Ha, Haen Heor
  • Patent number: 6303020
    Abstract: A process for the hydrodesulfurization of a cracked naphtha stream is disclosed where very little of the valuable olefins are saturated. The process is a two staged process wherein the H2S is removed between the stages to prevent recombinant mercaptans formation. Because the H2S is removed between the stages milder conditions can be used in the second stage polishing reactor to achieve the same desulfurization levels with less olefin loss.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: October 16, 2001
    Assignee: Catalytic Distillation Technologies
    Inventors: Gary G. Podrebarac, Gary R. Gildert, Willibrord A. Groten
  • Publication number: 20010027936
    Abstract: A process for converting a hydrocarbon fraction comprises a step a) for treating a hydrocarbon feed in the presence of hydrogen in at least one three-phase reactor (1), containing at least one ebullated bed hydroconversion catalyst, a step b) in which at least a portion of the effluent from step a) is sent to a separation zone (2) from which a fraction F1 normally containing at least a portion of the gas, gasoline and atmospheric gas oil contained in the effluent from step a) is recovered, and a fraction F2 is recovered normally principally containing compounds with boiling points of more than that of the atmospheric gas oil, a step c) for hydrodesulphurization of at least a portion of fraction F1 in at least on reactor (4) containing at least one fixed bed hydrotreatment catalyst under conditions for producing an effluent with a reduced sulphur content, and a step d) in which at least a portion of fraction F2 is sent to a catalytic cracking section (6).
    Type: Application
    Filed: January 11, 2001
    Publication date: October 11, 2001
    Inventors: Frederic Morel, Stephane Kressmann, James Colyar
  • Patent number: 6299759
    Abstract: A method and reactor system for catalytic hydrotreating and hydrocracking liquid hydrocarbon feedstock for producing a cracked liquid feedstock having a reduced contaminant level involves introducing the feedstock into the first reaction zone of a reactor system having a plurality of successive reaction zones, each reaction zone having a hydroprocessing catalyst bed therein, at least the first reaction zone comprising a hydrotreating reaction zone and at least one downstream reaction zone comprising a hydrocracking reaction zone, introducing hydrogen gas into the reactor system for flow through and over the catalyst beds in contact with the liquid in the reaction zones, the hydrogen exothermically reacting with the liquid in the reaction zones for producing an effluent for each reaction zone having a temperature greater than the temperature of the influent feedstock to that reaction zone, introducing liquid feedstock having the same composition as the liquid feedstock introduced into the first reaction zone i
    Type: Grant
    Filed: February 13, 1998
    Date of Patent: October 9, 2001
    Assignee: Mobil Oil Corporation
    Inventors: Robert A. Bradway, Yingyen P. Tsao
  • Publication number: 20010013484
    Abstract: A process for reducing content of sulphur compounds and polyaromatic hydrocarbons in a hydrocarbon feed having a boiling range between 200° C. and 600° C., which process comprises in combination contacting the feed and hydrogen over a hydrotreating catalyst and hydrotreating feed at hydrotreating conditions, cooling the hydrotreated effluent and hydrogen-rich gas from the hydrotreating reactor contacting said effluent and hydrogen gas over a hydrotreating catalyst in a post-pretreatment reactor at a temperature sufficient to lower the polyaromatic hydrocarbon content.
    Type: Application
    Filed: January 24, 2001
    Publication date: August 16, 2001
    Applicant: Haldor Topsoe A/S
    Inventors: Per Zeuthen, Barry H. Cooper
  • Publication number: 20010009232
    Abstract: An object is to provide a reactor for hydrotreating which exhibits a total desulfurizing activity higher than that of the reactor according to the prior art, and which is reduced in the rate of lowering of the desulfurizing activity and therefore can keep the high desulfurizing activity over a long period, and to provide a process by the use of the reactor. A reactor for hydrotreating, which comprises at least four catalyst layers packed respectively with hydrotreating catalysts satisfying the relationship represented by the following formulae: Sn≦Sn+1, 1.15Vn≧Vn+1 wherein S represents the surface area per cubic meter of each hydrotreating catalyst; V represents the pore volume per cubic meter of catalyst; and wherein n is a natural number representing the order of each catalyst layer.
    Type: Application
    Filed: December 21, 2000
    Publication date: July 26, 2001
    Inventors: Shigeo Kure, Hajime Okazaki, Hisao Sakoda
  • Patent number: 6251262
    Abstract: Diesel gas oil feedstock with 1-3 wt % sulfur can be hydrodesulfurized to a diesel gas oil with 0.05 wt % or less sulfur and a Saybolt color of +20 or higher, by defining a hydrogenation region in a fixed bed reactor with a first hydrogenation zone for dibenzothiophene, 1-, 2- and 3-methyldibenzothiophenes, a second hydrogenation zone for 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene and a third hydrogenation zone for thiols, sulfides and other sulfur-containing substances.
    Type: Grant
    Filed: August 19, 1999
    Date of Patent: June 26, 2001
    Assignee: Nippon Mitsubishi Oil Corporation
    Inventors: Shigeto Hatanaka, Osamu Sadakane, Hideshi Iki
  • Patent number: 6251263
    Abstract: A hydrogenation region in a fixed bed reactor is defined with a first, a second and a third hydrogenation zones sequentially from the entrance of the reactor, and a sulfur-containing diesel gas oil feedstock is passed through the first, second and third hydrogenation zones sequentially under conditions of a temperature of 320 to 420° C., a pressure of 5 to 15 MPa, an LHSV of 0.
    Type: Grant
    Filed: August 19, 1999
    Date of Patent: June 26, 2001
    Assignee: Nippon Mitsubishi Oil Corporation
    Inventors: Shigeto Hatanaka, Osamu Sadakane, Hideshi Iki
  • Publication number: 20010001450
    Abstract: A multi-stage process for removing heteroatoms, particularly organic sulfur and nitrogen components, from liquid petroleum and chemical streams. The feedstream flows countercurrent to the flow of a hydrogen-containing treat gas and is reacted with a first catalyst which is relatively tolerant to sulfur and nitrogen, such as a CoMo supported catalyst. When the level of organic sulfur in the feedstream is less than about 3,000 wppm and the level of organic nitrogen is less than about 1,000 wppm, the feedstream is reacted with said counter flowing hydrogen-containing treat gas in the presence of a catalyst comprised of Ni and a Group VIA metal selected from Mo, W, or both, on a refractory support. The reaction vessel preferably contains vapor and optionally liquid by-pass means in one or more of the catalyst beds.
    Type: Application
    Filed: January 15, 1998
    Publication date: May 24, 2001
    Inventors: GERALD E. MARKLEY, KENNETH L. RILEY, RAMESH GUPTA
  • Patent number: 6231752
    Abstract: A process for treating a full boiling range naphtha is disclosed in which the mercaptans and diolefins are removed simultaneously in a debutanizer distillation column reactor. The mercaptans are reacted with the diolefins to form sulfides which are higher boiling than the C4 and lighter portion of the naphtha which is taken as overheads. The higher boiling sulfides are removed as bottoms along with any C5 and heavier materials. The bottoms are preferably taken to a splitter where a portion is taken as overheads and a heavier portion is recovered with the sulfides. This reduced volume of naphtha may be hydrogenated to convert the sulfides to H2S and diolefins, which may be hydrogenated to olefins and alkanes.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: May 15, 2001
    Assignee: Catalytic Distillation Technologies
    Inventor: Hugh M. Putman
  • Patent number: 6231753
    Abstract: Selective and deep desulfurization of a high sulfur content mogas naphtha, with reduced product mercaptans and olefin loss, is achieved by a two stage, vapor phase hydrodesulfurization process with interstage separation of at least 80 vol. % of the H2S formed in the first stage from the first stage, partially desulfurized naphtha vapor effluent fed into the second stage. At least 70 wt. % of the sulfur is removed in the first stage and at least 80 wt. % of the remaining sulfur is removed in the second stage, to achieve a total at least 95 wt. % feed desulfurization, with no more than a 60 vol. % feed olefin loss. The second stage temperature and space velocity are preferably greater than in the first. The hydrodesulfurization catalyst preferably contains a low metal loading of Co and Mo metal catalytic components on an alumina support.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: May 15, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Craig A. McKnight, Thomas R. Halbert, John P. Greeley, Garland B. Brignac, Richard A. Demmin, William E. Winter, Jr., Bruce R. Cook
  • Patent number: 6224749
    Abstract: A three stage hydroprocessing process includes two liquid and one vapor reaction stages, both of which produce an effluent comprising liquid and vapor. Both vapor effluents comprise vaporized hydrocarbonaceous material. Fresh hydrogen is used for the hydroprocessing in both liquid stages. The second stage liquid effluent comprises the product liquid. The first stage liquid effluent is the feed for the second stage. The first stage vapor effluent is hydroprocessed in the vapor stage and then cooled to condense and recover at least a portion of the processed vapor as additional product liquid.
    Type: Grant
    Filed: May 6, 1998
    Date of Patent: May 1, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Ramesh Gupta, Henry Jung, Edward S. Ellis, Gerald E. Markley
  • Patent number: 6221239
    Abstract: A process for transforming a gas oil cut into a dearomatised fuel with a high cetane number comprises at least one first, deep desulphurisation and deep denitrogenation step in which the gas oil cut and hydrogen are passed over a catalyst comprising a mineral support, at least one group VIB metal or metal compound, at least one group VIII metal or metal compound, and phosphorous or at least one phosphorous compound, and at least one subsequent second step, dearomatisation, in which the desulphurised and denitrogenated product from the first step is passed with hydrogen over a catalyst comprising a mineral support and at least one group VIII noble metal or noble metal compound.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: April 24, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Frédéric Morel, Henri Delhomme, Nathalie George-Marchal
  • Patent number: 6217748
    Abstract: A process for hydrodesulfurization of a sulfur-containing petroleum hydrocarbon diesel gas oil comprising; hydrodesulfurizing a sulfur-containing petroleum hydrocarbon diesel gas oil feedstock, separating the hydrodesulfurized diesel gas oil feedstock into light and heavy fractions by distillation, hydrodesulfurizing further the separated heavy fraction, and mixing the further hydrodesulfurized heavy fraction and the separated light fraction into the hydrocarbon diesel gas oil.
    Type: Grant
    Filed: August 19, 1999
    Date of Patent: April 17, 2001
    Assignee: Nippon Mitsubishi Oil Corp.
    Inventors: Shigeto Hatanaka, Osamu Sadakane, Hideshi Iki
  • Patent number: 6207041
    Abstract: A process for converting a hydrocarbon fraction includes a step a) for treating a hydrocarbon feed in the presence of hydrogen in at least on three-phase reactor, containing at least one hydroconversion catalyst in an ebullated bed, operating in riser mode of liquid and of gas, the reactor including at least one means located close to the bottom of the reactor for extracting catalyst from the reactor and at least one means located close to the top of the reactor for adding fresh catalyst to the reactor, a step b) for treating at least a portion of the effluent from step a) in the presence of hydrogen in at least one reactor containing at least one hydrotreatment catalyst in a fixed bed under conditions for producing an effluent with a reduced sulphur content, and a step c) in which at least a portion of the product from step b) is sent to a distillation zone from which a gaseous fraction, a gasoline type engine fuel fraction, a diesel type engine fuel fraction and a liquid fraction which is heavier than the d
    Type: Grant
    Filed: October 14, 1998
    Date of Patent: March 27, 2001
    Assignee: Institut Francais Du Petrole
    Inventors: Frédéric Morel, Pierre-Henri Bigeard, Stéphane Kressmann, Didier Duee, Jean-Luc Duplan
  • Patent number: 6171477
    Abstract: A process for the conversion of a hydrocarbon fraction comprising a step a) for treating a hydrocarbon charge in the presence of hydrogen in at least one reactor containing at least one hydrodesulphurisation catalyst in a fixed bed under conditions that make it possible to obtain a liquid effluent with a reduced sulphur content, a step b) for treating at least a part of the liquid effluent originating from step a) in the presence of hydrogen in at least one three-phase reactor, containing at least one hydrotreatment catalyst in a boiling bed, operating with an ascending stream of liquid and gas, said reactor comprising at least one means of withdrawing the catalyst from said reactor situated near the bottom of the reactor and at least one means of making up fresh catalyst in said reactor situated near the top of said reactor, and a step c) in which at least part of the product obtained in step b) is passed to a distillation zone from which are recovered a gas fraction, a motor fuel fraction of the petrol type
    Type: Grant
    Filed: June 9, 1998
    Date of Patent: January 9, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Fr{acute over (e)}d{acute over (e)}ric Morel, Jean-Luc Duplan, Alain Billon, St{acute over (e)}phane Kressmann