Refining Patents (Class 208/88)
  • Patent number: 10723960
    Abstract: The present invention describes a process for hydrocracking at least one hydrocarbon feed in which at least 50% by weight of the compounds have an initial boiling point of more than 300° C. and a final boiling point of less than 540° C. using at least one catalyst comprising at least one metal from group VIB and/or at least one metal from group VIII of the periodic classification of the elements and a support comprising at least one zeolite containing at least one series of channels the opening of which is defined by a ring containing 12 oxygen atoms (12MR), and at least one binder, said support being prepared from a highly dispersible alumina gel, said hydrocracking process being operated at a temperature in the range 200° C. to 480° C.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: July 28, 2020
    Assignee: IFP Energies nouvelles
    Inventors: Malika Boualleg, Antoine Daudin, Emmanuelle Guillon
  • Patent number: 10487273
    Abstract: A process to produce olefinic products suitable for use as or conversion to oilfield hydrocarbons includes separating an olefins-containing Fischer-Tropsch condensate into a light fraction, an intermediate fraction and a heavy fraction, oligomerising at least a portion of the light fraction to produce a first olefinic product which includes branched internal olefins, and carrying out either one or both of the steps of (i) dehydrogenating at least a portion of the intermediate fraction to produce an intermediate product which includes internal olefins and alpha-olefins, and synthesising higher olefins from the intermediate product which includes internal olefins and alpha-olefins to produce a second olefinic product, and (ii) dimerising at least a portion of the intermediate fraction to produce a second olefinic product. At least a portion of the heavy fraction is dehydrogenated to produce a third olefinic product which includes internal olefins.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: November 26, 2019
    Assignee: Sasol Technology Proprietary Limited
    Inventor: Ewald Watermeyer De Wet
  • Patent number: 9994779
    Abstract: The present invention relates to a catalytic hydroconversion process in dispersed phase of extra-heavy and heavy crude oils for upgrading their transport properties, that operates at low severity conditions, in such a way that the obtained product can be transported by conventional pumping to the distribution and refining centers. The main technical contributions of the hydroconversion process in dispersed phase of this invention to upgrade the transport properties of heavy and extra-heavy crudes are: Compact size and can be localized next to the production facilities on ground or offshore Use of operating conditions at low severity Reduction of the viscosity and increase of the API gravity at values that allow the transportation by pipeline of heavy or extra-heavy crude Upgrading of the crude oil properties in a permanent way Hydrocarbon and gases from production centers are used as supplies Operation in dispersed phase avoiding plugging problems Use of low-cost disposable catalysts at low concentrations.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: June 12, 2018
    Assignee: Instituto Mexicano Del Petroleo
    Inventors: Jorge Ancheyta Juarez, Sergio Ramirez Amador, Zenaida Carolina Leyva Inzunza, Alexander Quitian Arciniegas
  • Patent number: 9776934
    Abstract: A method of producing monocyclic aromatic hydrocarbons includes bringing a light feedstock oil having a 10 vol % distillation temperature of 140° C. to 205° C. and a 90 vol % distillation temperature of 300° C. or lower, which has been prepared from a feedstock oil having a 10 vol % distillation temperature of 140° C. or higher and a 90 vol % distillation temperature of 380° C. or lower, into contact with a catalyst for monocyclic aromatic hydrocarbon production containing a crystalline aluminosilicate, in which a content ratio of monocyclic naphthenobenzenes in the light feedstock oil is adjusted by distillation of the feedstock oil such that the content ratio of monocyclic naphthenobenzenes in the light feedstock oil is higher than a content ratio of monocyclic naphthenobenzenes in the feedstock oil.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: October 3, 2017
    Assignee: JX Nippon Oil Energy Corporation
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Ryoji Ida, Yasuyuki Iwasa
  • Patent number: 9458390
    Abstract: A process, apparatus and system for forming light olefins, the process including heating a resid-containing hydrocarbon feedstock containing at least 10 ppmw of metals to vaporize at least 90 wt. % of said hydrocarbon feedstock; separating in a knockout drum a hydrocarbon vapor portion having less than 10 ppmw metals from a non-vaporized resid-containing portion; and feeding said hydrocarbon vapor to a catalytic cracking process to form light olefins.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: October 4, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Paul F. Keusenkothen
  • Patent number: 9028675
    Abstract: This invention relates to a method for increasing thermal stability of fuel, as well as in reducing nitrogen content and/or enhancing color quality of the fuel. According to the method, a fuel feedstock can be treated with a solid phosphoric acid catalyst under appropriate catalyst conditions, e.g., to increase the thermal stability of the fuel feedstock. Preferably, the fuel feedstock can be treated with the solid phosphoric acid catalyst at a ratio of catalyst mass within a contact zone to a mass flow rate of feedstock through the zone of at least about 18 minutes to increase the thermal stability of the fuel feedstock, along with reducing nitrogen content and/or enhancing color quality.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: May 12, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Sebastien Bergeron, Ashok Uppal, Robert J. Falkiner, Marc-André Poirier
  • Patent number: 8986537
    Abstract: Provided are multiple correlations for relationships between MI value for a brightstock extract and the distillation cut point temperature used for separation of the vacuum resid that is used to form the brightstock extract. Based on these correlations, a BSE having a desired MI value can be formed based on an adjustment of the distillation cut point temperature. A first correlation establishes a relationship between a fractional weight boiling temperature for a vacuum resid fraction and a distillation cut point temperature for separating the vacuum resid fraction from at least one distillate fraction in a feedstock. A second correlation establishes a relationship between a fractional weight boiling temperature for a brightstock extract derived from the vacuum resid fraction, and the fractional weight boiling temperature for the vacuum resid fraction. A third correlation has been established between the fractional weight boiling temperature for the brightstock extract and a mutagenicity index value.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 24, 2015
    Inventors: Cristina M. Sircar, Keith K. Aldous, James J. Freeman, Katy O. Goyak
  • Publication number: 20150065766
    Abstract: A process for treating a heavy oil by heating a feedstock comprising a heavy oil in order to separate from the heavy oil a first fraction. The first fraction contains no more than 25% of the total number of acid groups of the heavy oil. A second fraction contains at least 75% of the total number of acid groups of the heavy oil. The second fraction then is treated under conditions that provide a heavy oil that has a total acid number, or TAN, that does not exceed 1.0 mg KOH/g, or is at least 50% lower than the total acid number prior to treatment, an olefin content that does not exceed 1.0 wt. %, and a p-value of at least 50% of the p-value of the heavy oil prior to treatment, or a p-value that is at least 1.5.
    Type: Application
    Filed: August 5, 2014
    Publication date: March 5, 2015
    Inventors: Soumaine Dehkissia, Christos Chronopoulos, Michel Chornet, Jean Frechette
  • Patent number: 8936714
    Abstract: A process is disclosed for hydrocracking a primary hydrocarbon feed and a diesel co-feed in a hydrocracking unit and hydrotreating a diesel product from the hydrocracking unit in a hydrotreating unit. The diesel stream fed through the hydrocracking unit is pretreated to reduce sulfur and ammonia and can be upgraded with noble metal catalyst.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: January 20, 2015
    Assignee: UOP LLC
    Inventors: Peter Kokayeff, Paul R. Zimmerman
  • Publication number: 20140353208
    Abstract: A method of hydrocarbon conversion is described. The hydrocarbon feed is decontaminated using an ionic liquid and introduced into a conversion zone. The conversion of the decontaminated feed is increased compared to the conversion of the contaminated feed and the yield of the desired product made from the decontaminated hydrocarbon feed is increased compared to the yield of the desired product made from the contaminated hydrocarbon feed.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventors: Rajeswar R. Gattupalli, Beckay J. Mezza, Alakananda Bhattacharyya, Robert B. James, Massimo Sangalli, Peter Van Opdorp
  • Publication number: 20140332444
    Abstract: A process for the conversion of oil feeds for the production of low sulphur fuels comprises the following steps in succession: a step for fixed bed hydrodemetallization of the feed using an upstream system of fixed bed swing reactors; a step for fixed bed hydrocracking of the hydrodemetallized effluent in the presence of a hydrocracking catalyst; a step for separation in order to obtain a heavy fraction; a step for hydrodesulphurization of the heavy fraction in which hydrogen is reinjected.
    Type: Application
    Filed: November 8, 2012
    Publication date: November 13, 2014
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Wilfried Weiss, Isabelle Guibard, Rejane Dastillung
  • Publication number: 20140299509
    Abstract: Disclosed herein is an improved fluidized catalytic cracking process for converting normally liquid hydrocarbon feedstock with simultaneous reduction of sulfur content in the liquid products obtained therefrom which comprises carrying out the cracking process in the presence of carbon monoxide gas as a reducing agent. The process optionally includes a step of premixing the hydrocarbon feedstock with carbon monoxide gas causing major sulfur reduction before effecting the cracking. The premixing is done in a specified nozzle assembly linked to the FCC unit.
    Type: Application
    Filed: October 29, 2012
    Publication date: October 9, 2014
    Applicant: INDIAN OIL CORPORATION LTD.
    Inventors: Pankaj Kumar Kasliwal, Brijesh Kumar Verma, Ganga Shanker Mishra, Arumugam Velayutham Karthkeyani, Latoor Lal Saroya, Mohan Prabhu Kuvettu, Brijesh Kumar, Santanam Rajagopal, Ravinder Kumar Malhotra
  • Publication number: 20140251869
    Abstract: A method for producing ILSAC GF5 or higher compatible oils from used oil, comprising separating material having a boiling point less than about 350° F. from recovered oil to produce de-volatized oil fraction and light oil fraction. Separating material with a boiling point greater than about 350° F. and less than about 650° F. from the de-volatized oil fraction to produce fuel oil fraction and heavy oil fraction. Separating material with a boiling point greater than about 1200° F. from the heavy oil fraction to produce partially purified oil fraction and residual fraction. Treating the partially purified oil fraction to separate it into purified oil fraction and contaminant fraction. Hydrogenating the contaminant fraction to remove predetermined compounds, further saturating the fraction and thereby creating a saturated oil fraction. Fractionating the saturated oil stream to produce one or more of naphtha fraction, diesel oil fraction and base oil fraction.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 11, 2014
    Applicant: VeroLube, Inc.
    Inventor: Martin R. MacDonald
  • Publication number: 20140209507
    Abstract: Herein disclosed is a method for catalytic cracking or reforming of hydrocarbons comprising: supersaturating a hydrocarbonaceous liquid or slurry stream in a high shear device with a gas stream comprising one or more C1-C6 hydrocarbons and optionally hydrogen to form a supersaturated dispersion; introducing the supersaturated dispersion into a catalytic cracking or reforming reactor in the presence of a cracking or reforming catalyst to generate a product stream. In some embodiments, the catalyst is present as a slurry or a fluidized or fixed bed of catalyst. In some embodiments, the cracking or reforming catalyst is mixed with the hydrocarbonaceous liquid or slurry stream and the gas stream in the high shear device. Herein also disclosed is a system for catalytic cracking or reforming of hydrocarbons.
    Type: Application
    Filed: March 8, 2013
    Publication date: July 31, 2014
    Applicant: H R D Corporation
    Inventors: Abbas HASSAN, Aziz Hassan, Rayford G. Anthony, Gregory G. Borsinger
  • Publication number: 20140209508
    Abstract: Herein disclosed is a method for thermal cracking or steam cracking of hydrocarbons comprising: supersaturating a hydrocarbonaceous liquid or slurry stream in a high shear device with a gas stream comprising steam or hydrogen and optionally one or more C1-C6 hydrocarbons to form a supersaturated dispersion; and introducing the supersaturated dispersion into a thermal cracking or steam cracking reactor to generate a product stream. In some embodiments, the method further comprises contacting the supersaturated dispersion with a cracking catalyst in a slurry, a fluidized catalyst bed, or a fixed catalyst bed. In some embodiments, the cracking catalyst is mixed with the hydrocarbonaceous liquid or slurry stream and the gas stream in the high shear device. Herein also disclosed is a system for thermal cracking or steam cracking of hydrocarbons.
    Type: Application
    Filed: March 8, 2013
    Publication date: July 31, 2014
    Applicant: H R D Corporation
    Inventors: Abbas HASSAN, Aziz HASSAN, Rayford G. ANTHONY, Gregory G. BORSINGER
  • Publication number: 20140158584
    Abstract: The physical and chemical properties of heavy and extra-heavy crudes are improved by a procedure that uses a homogeneous type catalyst and involves the stages: 1. separation and removal of the water fraction that is contained in the hydrocarbons, 2. catalyst injection and activation of the reaction system, 3. elimination of gaseous hydrocarbons and recovery of the partial pressure of hydrogen at different times, 4. reaction and 5. recovery of distillated products.
    Type: Application
    Filed: August 19, 2013
    Publication date: June 12, 2014
    Inventors: Persi SCHACHT HERNANDEZ, Felipe de Jesus ORTEGA GARCIA, Jose Manuel DOMINGUEZ ESQUIVEL, Elizabeth MAR JUAREZ, Jesus Ricardo RAMIREZ LOPEZ
  • Publication number: 20140054199
    Abstract: An improved hydrovisbreaking process for reducing the viscosity of a liquid hydrocarbon feedstock is provided. A substantially single-phase hydrogen-enriched liquid hydrocarbon feedstock is obtained by mixing the feedstock with hydrogen gas and flashing off the excess hydrogen gas. Comparatively smaller reactor vessels can be used without a gas recycle system, thus reducing the capital cost of hydrovisbreaking process. Further the need for cutter stocks can be minimized or eliminated.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 27, 2014
    Applicant: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Patent number: 8652321
    Abstract: Production of gasolines with low sulfur contents from a starting gasoline containing sulfur-containing compounds comprising a stage a) for selective hydrogenation of non-aromatic polyunsaturated compounds present in the starting gasoline, a stage b) for increasing the molecular weight of the light sulfur-containing products that are initially present in the gasoline that enters this stage, a stage c) for alkylation of at least a portion of the sulfur-containing compounds present in the product that originates from stage b), a stage d) for fractionation of the gasoline that originates from stage c) into at least two fractions, one fraction virtually lacking in sulfur-containing compounds, whereby the other contains a larger proportion of sulfur-containing compounds (heavy gasoline), a stage e) for catalytic treatment of the heavy gasoline for transformation of sulfur-containing compounds under conditions for the at least partial decomposition of hydrogenation of these sulfur-containing compounds.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: February 18, 2014
    Assignee: IFP Energies nouvelles
    Inventors: Quentin Debuisschert, Denis Uzio, Jean-Luc Nocca, Florent Picard
  • Publication number: 20140021094
    Abstract: Heavy hydrocarbons contained in FT off gas of a GTL process are removed by bringing the FT off gas into contact with absorption oil, by introducing the FT off gas into a distillation tower, by cooling the FT off gas or by driving the FT off gas into an adsorbent. A burner tip for heating a reformer tube, using FT off gas as fuel, is prevented from being plugged by the deposition of heavy hydrocarbons contained in the FT off gas.
    Type: Application
    Filed: March 31, 2011
    Publication date: January 23, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, CHIYODA CORPORATION, COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD.
    Inventors: Kenichi Kawazuishi, Fuyuki Yagi, Shuhei Wakamatsu, Tomoyuki Mikuriya
  • Publication number: 20140008268
    Abstract: This is a unique way to optimize an existing refinery to process heavy bitumen. The upgrade utilizes a diluent recovery unit (DRU) in front of a Resid Hydrocracker. The recovered bitumen from the Resid Hydrocracker is fed to an integrated atmospheric fractionator to convert the light sweet refinery to diluted bitumen.
    Type: Application
    Filed: July 8, 2013
    Publication date: January 9, 2014
    Applicant: Marathon Petroleum Company LP
    Inventors: Dennis W. Keppers, Gregory A. Cantley
  • Publication number: 20140001088
    Abstract: A process for removing a nitrogen compound and a sulfur compound from a hydroprocessed vacuum gas oil feed includes contacting the hydroprocessed vacuum gas oil feed comprising the nitrogen compound and the sulfur compound with a VGO-immiscible phosphonium ionic liquid to produce a hydroprocessed vacuum gas oil and VGO-immiscible phosphonium ionic liquid mixture, and separating the mixture to produce a hydroprocessed vacuum gas oil effluent having a reduced nitrogen compound and sulfur compound content relative to the vacuum gas oil feed. It was found that the amount of the sulfur compound being removed was significantly improved by first removing the nitrogen compounds, especially polar nitrogen compounds.
    Type: Application
    Filed: March 12, 2013
    Publication date: January 2, 2014
    Applicant: UOP LLC
    Inventors: Beckay J. Mezza, Alakananda Bhattacharyya, Christopher P. Nicholas, Haiyan Wang
  • Patent number: 8608943
    Abstract: A process for removing a nitrogen compound from a vacuum gas oil feed includes contacting the vacuum gas oil feed comprising the nitrogen compound with a VGO-immiscible phosphonium ionic liquid to produce a vacuum gas oil and VGO-immiscible phosphonium ionic liquid mixture, and separating the mixture to produce a vacuum gas oil effluent having a reduced nitrogen content relative to the vacuum gas oil feed.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: December 17, 2013
    Assignee: UOP LLC
    Inventors: Manuela Serban, Alakananda Bhattacharyya, Beckay J. Mezza, Kurt M. Vanden Bussche, Christopher P. Nicholas, Joseph A. Kocal, Warren K. Bennion
  • Publication number: 20130190545
    Abstract: The present invention relates to a method and to a plant for dehydration of a liquid or gaseous effluent, wherein the following stages are carried out: neutralizing the effluent with at least one of the following brines: soda brine, potash brine, or mixtures thereof, dehydrating the neutralized effluent on soda or potash briquettes, collecting the brine resulting from dehydration and using it in the neutralization stage (2).
    Type: Application
    Filed: July 21, 2011
    Publication date: July 25, 2013
    Inventors: Frédéric Augier, Maxime Vassieu
  • Patent number: 8444850
    Abstract: The present invention relates to a catalytic process for removing organonitrogen species from hydrocarbon mixtures such as refinery process feedstreams. More particularly, this invention relates to a new operating and catalyst loading strategies based on organonitrogen concentration, composition, and structure.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: May 21, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Teh C. Ho, Stuart L. Soled, Kuangnan Qian, Stephen J. McCarthy, Andrew C. Moreland
  • Publication number: 20130105362
    Abstract: Methods and systems for integrating bitumen extraction processes with bitumen upgrading processes are disclosed. The methods and systems can include recovering an emulsion of hydrocarbon and water from a Steam Assisted Gravity Drainage extraction process, breaking the emulsion, using the water from the emulsion to make steam, upgrading the hydrocarbon from the emulsion using the steam, separating diluent from the upgraded hydrocarbon, and using the diluent to break SAGD-produced emulsion.
    Type: Application
    Filed: November 1, 2012
    Publication date: May 2, 2013
    Applicant: MARATHON OIL CANADA CORPORATION
    Inventors: Jose Armando Salazar, Mahendra Joshi
  • Patent number: 8425762
    Abstract: An MCM-41 catalyst having a crystalline framework containing SiO2 and a Group IV metal oxide, such as TiO2 or ZrO2 is provided. The catalyst is low in acidity and is suitable for use in processes involving aromatic saturation of hydrocarbon feedstocks.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: April 23, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stephen J. McCarthy, Wenyih Frank Lai, Michel A. Daage
  • Publication number: 20130068660
    Abstract: This invention relates to a method for increasing thermal stability of fuel, as well as in reducing nitrogen content and/or enhancing color quality of the fuel. According to the method, a fuel feedstock can be treated with a solid phosphoric acid catalyst under appropriate catalyst conditions, e.g., to increase the thermal stability of the fuel feedstock. Preferably, the fuel feedstock can be treated with the solid phosphoric acid catalyst at a ratio of catalyst mass within a contact zone to a mass flow rate of feedstock through the zone of at least about 18 minutes to increase the thermal stability of the fuel feedstock, along with reducing nitrogen content and/or enhancing color quality.
    Type: Application
    Filed: June 28, 2012
    Publication date: March 21, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Sebastien Bergeron, Ashok Uppal, Robert J. Falkiner, Marc-André Poirier
  • Publication number: 20130056394
    Abstract: A process for hydroconversion-distillation of heavy and/or extra-heavy crude oils, which comprises four stages: 1) desalting and separation of the feedstock; 2) catalytic hydrotreating of light fraction (optional); 3) catalytic hydroconversion of heavy fraction, and 4) distillation of hydrotreated products to provide products that can be processed in conventional refining schemes designed to operate with light and intermediate crude oils.
    Type: Application
    Filed: August 30, 2012
    Publication date: March 7, 2013
    Applicant: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Jorge ANCHEYTA JUAREZ, Jose Antonio Domingo MUNOZ MOYA, Luis Carlos CASTANEDA LOPEZ, Sergio RAMIREZ AMADOR, Gustavo Jesus MARROQUIN SANCHEZ, Guillermo CENTENO NOLASCO, Fernando ALONSO MARTINEZ, Rodolfo Antonio AGUILAR ESCALANTE
  • Publication number: 20120312721
    Abstract: According to one embodiment, a method includes desulfurizing a hydrocarbon feedstock in the presence of a desulfurization catalyst. A hydrocarbon product is recovered. The color of the hydrocarbon product is improved and the sulfur content of the hydrocarbon product is reduced by flash distilling the product.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 13, 2012
    Applicant: LYONDELL CHEMICAL COMPANY
    Inventor: Farhad Fadakar
  • Publication number: 20120305449
    Abstract: A process for converting heavy sulfur-containing crude oil into lighter crude oil with lower sulfur content and lower molecular weight is provided. The process is a low-temperature process using controlled cavitation.
    Type: Application
    Filed: August 13, 2012
    Publication date: December 6, 2012
    Applicant: Saudi Arabian Oil Company
    Inventor: M. Rashid Khan
  • Patent number: 8263008
    Abstract: A process and apparatus for improving flow properties of crude may include processing a first crude stream, which may in turn include cracking the first crude stream with catalyst to form a cracked stream and spent catalyst, hydrotreating a portion of the cracked stream and then mixing the hydrotreated stream with an unprocessed second crude stream.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: September 11, 2012
    Assignee: UOP LLC
    Inventors: Brian W. Hedrick, Daniel B. Gillis
  • Publication number: 20120055845
    Abstract: A method and apparatus for upgrading a hydrocarbon feedstock is provided. The method includes the steps of (a) supplying a hydrocarbon feedstock to an oxidation reactor, wherein the hydrocarbon feedstock is oxidized in the presence of a catalyst under conditions sufficient to selectively oxidize sulfur compounds present in the hydrocarbon feedstock; (c) separating the hydrocarbons and the oxidized sulfur compounds by solvent extraction; (d) collecting a residue stream that includes the oxidized sulfur compounds; and (e) supplying the residue stream to a coker to produce coker gases and solid coke.
    Type: Application
    Filed: September 7, 2010
    Publication date: March 8, 2012
    Applicant: Saudi Arabian Oil Company
    Inventors: Abdennour Bourane, Omer Refa Koseoglu, Stephane Cyrille Kressmann
  • Publication number: 20110315596
    Abstract: An integrated process for producing naphtha fuel, diesel fuel and/or lubricant base oils from feedstocks under sour conditions is provided. The ability to process feedstocks under higher sulfur and/or nitrogen conditions allows for reduced cost processing and increases the flexibility in selecting a suitable feedstock. The sour feed can be delivered to a catalytic dewaxing step without any separation of sulfur and nitrogen contaminants. The integrated process includes an initial dewaxing of a feed under sour conditions, optional hydrocracking of the dewaxed feed, and a separation to form a first diesel product and a bottoms fraction. The bottoms fraction is then exposed to additional hydrocracking and dewaxing to form a second diesel product and optionally a lubricant base oil product. Alternatively, a feedstock can be hydrotreated, fractionated, dewaxed, and then hydrocracked to form a diesel fuel and a dewaxed, hydrocracked bottoms fraction that is optionally suitable for use as a lubricant base oil.
    Type: Application
    Filed: June 27, 2011
    Publication date: December 29, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Krista Marie Prentice, Michel Daage, Ajit Bhaskar Dandekar, Christopher Gordon Oliveri, Rohit Vijay, Stephen J. McCarthy, Wenyih F. Lai, Bradley R. Fingland
  • Publication number: 20110203969
    Abstract: One exemplary embodiment can be a process for a hydrocarbon feed. The process can include passing a stream through a separation zone forming a void for separating one or more gases from one or more liquids and at least partially containing a catalyst. The catalyst may include at least one group VIII noble metal. Typically, the separation zone is downstream of a hydrocracking zone for reducing the operating pressure in the hydrocracking zone.
    Type: Application
    Filed: February 22, 2010
    Publication date: August 25, 2011
    Inventor: Vinod Ramaseshan
  • Publication number: 20110155637
    Abstract: A process for removing a nitrogen compound from a vacuum gas oil feed includes contacting the vacuum gas oil feed comprising the nitrogen compound with a VGO-immiscible phosphonium ionic liquid to produce a vacuum gas oil and VGO-immiscible phosphonium ionic liquid mixture, and separating the mixture to produce a vacuum gas oil effluent having a reduced nitrogen content relative to the vacuum gas oil feed.
    Type: Application
    Filed: November 12, 2010
    Publication date: June 30, 2011
    Applicant: UOP LLC
    Inventors: Manuela Serban, Alakananda Bhattacharyya, Beckay J. Mezza, Kurt Vanden Bussche, Christopehr P. Nicholas, Joseph A. Kocal, Warren K. Bennion
  • Publication number: 20110155636
    Abstract: A biocomponent feedstock can be hydroprocessed using a hydrogen-containing refinery as a source of hydrogen gas. A relatively low cost catalyst, such as a water gas shift catalyst and/or spent hydrotreating catalyst, can be used as a hydrogenation catalyst for the process. The hydroprocessing can allow for olefin saturation and/or deoxygenation of the biocomponent feed by using a relatively low value refinery stream, e.g., containing from about 20 mol % to about 60 mol % hydrogen.
    Type: Application
    Filed: July 15, 2010
    Publication date: June 30, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Patrick L. Hanks, Edward S. Ellis
  • Publication number: 20110155638
    Abstract: A process for removing a sulfur compound from a vacuum gas oil feed includes contacting the vacuum gas oil feed comprising the sulfur compound with a VGO-immiscible ionic liquid to produce a vacuum gas oil and VGO-immiscible ionic liquid mixture, and separating the mixture to produce a vacuum gas oil effluent having a reduced sulfur content relative to the vacuum gas oil feed.
    Type: Application
    Filed: November 12, 2010
    Publication date: June 30, 2011
    Applicant: UOP LLC
    Inventors: Alakananda Bhattacharyya, Manuela Serban, Beckay J. Mezza, Kurt Vanden Bussche, Christopher P. Nicholas, Joseph A. Kocal, Warren K. Bennion
  • Publication number: 20110147267
    Abstract: This invention relates to process for producing a reformate or gasoline product. The process involves a rapid cycle of reacting hydrocarbon feedstock to form the product and then regenerating the catalyst used in the reaction. The process can be carried out at relatively high liquid hourly space velocities and preferably at relatively low hydrogen to hydrocarbon ratios to produce a reformed product having relatively high liquid yield and hydrogen content.
    Type: Application
    Filed: November 15, 2010
    Publication date: June 23, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Bal K. Kaul, Abhash Nigam, Jasmina Poturovic, Mohsen N. Harandi, Stuart S. Goldstein
  • Patent number: 7951290
    Abstract: A process is provided to produce high cetane quality and low or preferably ultra low sulfur diesel and a fluid catalytic cracker (FCC) quality feedstock from a processing unit including at least a hydrotreating zone and a hydrocracking zone. In one aspect, the processing unit includes reactor severity requirements in both the hydrotreating zone and the hydrocracking zone effective to produce the FCC feed quality and the diesel sulfur quality to permit a high quality hydrocracked product to be formed at lower pressures and conversion rates without overtreating the FCC quality feedstock stream. In another aspect, a portion of the hydrotreated effluent is selected for conversion in the hydrocracking and the remaining portion of the hydrotreated effluent is directed to subsequent processing, such as fluid catalytic cracking.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: May 31, 2011
    Assignee: UOP LLC
    Inventors: Vasant P. Thakkar, Douglas W. Kocher-Cowan
  • Publication number: 20110083999
    Abstract: The present invention describes a method for hydrocracking and/or hydrotreating hydrocarbon-containing feeds using a catalyst comprising at least one hydro-dehydrogenizing metal selected from the group made up of group VIB and non-noble group VIII metals of the periodic table and a support comprising at least one zeolite having at least pore openings containing 12 oxygen atoms, modified by a) at least a stage of introducing at least one alkaline cation belonging to groups IA or IIA of the periodic table, b) a stage of treating said zeolite in the presence of at least one molecular compound containing at least one silicon atom, c) at least one stage of partial exchange of said alkaline cations by NH4+ cations in such a way that the proportion of alkaline cations remaining in the modified zeolite at the end of stage c) is such that the alkaline cation/aluminium molar ratio ranges between 0.2:1 and 0.01:1, and d) at least one thermal treatment stage.
    Type: Application
    Filed: October 13, 2010
    Publication date: April 14, 2011
    Applicant: IFP ENERGIES NOUVELLES
    Inventor: Laurent SIMON
  • Publication number: 20110049012
    Abstract: There is disclosed a method for conversion of crude tall oil into high-quality diesel fuels comprising the steps of: (a) removal of non-oil contaminants present in the crude tall oil and recovering valuable organic compounds present in the crude tall oil, thereby forming a refined tall oil stream; (b) removal of the volatile fraction of the refined tall oil stream from step a), thereby forming a volatiles free oil stream comprising organic components with boiling points, at atmospheric pressure, of 170 degrees C. or higher; (c) separation in a vacuum distillation column of the volatiles free oil stream of step b) into two process streams or phases wherein a first process stream or phase is substantially comprising components with boiling points, at atmospheric pressure, in the range of 170-400 degrees C. and a second process stream or phase is substantially comprising components with boiling points, at atmospheric pressure, over 400 degrees C.
    Type: Application
    Filed: March 31, 2009
    Publication date: March 3, 2011
    Inventors: Lars Stigsson, Valeri Naydenov
  • Publication number: 20110036753
    Abstract: An object of the invention is to provide a method of producing synthetic fuel from Fischer-Tropsch synthetic crude oil obtained by a Fischer-Tropsch synthesis method, the method comprising the steps of: (a) fractionating, in a fractionator, Fischer-Tropsch synthetic crude oil obtained by a Fischer-Tropsch synthesis method into at least two fractions of a middle fraction containing a component having a boiling range corresponding to diesel fuel oil, and a wax fraction containing a wax component heavier than the middle fraction; (b) separating and removing a magnetic particle contained in the wax fraction obtained in the step (a) at 100° C. to 450° C. by using a high gradient magnetic separator; and (c) hydrocracking the wax fraction obtained in the step (b) from which the magnetic particle is separated and removed.
    Type: Application
    Filed: March 11, 2009
    Publication date: February 17, 2011
    Inventor: Kazuhiko Tasaka
  • Publication number: 20110024328
    Abstract: A wax fraction from a hydrocarbon synthesis process is fractionated in a vacuum distillation column prior to any hydrocracking steps. A straight-run distillation fraction is isolated from the vacuum distillation. A heavy wax fraction from the vacuum distillation process is hydroprocessed, and a hydroprocessed distillate fraction is recovered. The straight-run distillate fraction and the hydroprocessed distillate fraction are combined to make a fraction that boils in the range of diesel fuel.
    Type: Application
    Filed: June 15, 2010
    Publication date: February 3, 2011
    Inventors: Harjeet Virdi, Taryn Roos
  • Patent number: 7871510
    Abstract: This invention relates to a high-pressure ultrafiltration process to produce an improved coker feed for producing a substantially free-flowing coke, preferably free-flowing shot coke from an atmospheric and/or vacuum resid feedstock. The process of this invention utilizes a high-pressure ultrafiltration process to produce an intermediate product stream with improved the Conradson Carbon Residue (CCR) content which is utilized in either an improved delayed coking or a fluid coking process.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: January 18, 2011
    Assignee: ExxonMobil Research & Engineering Co.
    Inventors: Daniel P. Leta, Leo D. Brown, Michael Siskin
  • Patent number: 7833409
    Abstract: A method for treating fuel containing vanadium including extracting vanadium from the fuel with an adsorption material and fractionating the fuel into a light oil fraction and a heavy fuel fraction. The light fuel fraction has a reduced amount of vanadium. Systems for fuel preparation are also provided.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: November 16, 2010
    Assignee: General Electric Company
    Inventors: Parag Prakash Kulkarni, Gregg Anthony Deluga, Arnaldo Frydman, Gregory Ronald Gillette, Narendra Joshi, Ke Liu, Vladimir Zamansky
  • Patent number: 7622034
    Abstract: A process is provided to produce high cetane quality and low or preferably ultra low sulfur diesel and a fluid catalytic cracker (FCC) quality feedstock from a processing unit including at least a hydrotreating zone and a hydrocracking zone. In one aspect, the processing unit includes reactor severity requirements in both the hydrotreating zone and the hydrocracking zone effective to produce the FCC feed quality and the diesel sulfur quality to permit a high quality hydrocracked product to be formed at lower pressures and conversion rates without overtreating the FCC quality feedstock stream. In another aspect, a portion of the hydrotreated effluent is selected for conversion in the hydrocracking and the remaining portion of the hydrotreated effluent is directed to subsequent processing, such as fluid catalytic cracking.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: November 24, 2009
    Assignee: UOP LLC
    Inventors: Vasant P. Thakkar, Douglas W. Kocher-Cowan
  • Patent number: 7597795
    Abstract: A process for producing lube oil basestocks involving solvent extracting a waxy feed to produce at least a lube oil boiling range raffinate, hydrotreating the lube oil raffinate to produce a hydrotreated raffinate, and dewaxing the hydrotreated raffinate.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: October 6, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gary P. Schleicher, Kenneth L. Riley, Elizabeth Stavens, Sylvain Hantzer
  • Publication number: 20090206005
    Abstract: Contact of a crude feed with one or more catalysts produces a total product that includes a crude product. The crude product is a liquid mixture at 25° C. and 0.101 MPa. The one or more catalysts may include a catalyst that has a median pore diameter of at least 90 ?. One or more properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
    Type: Application
    Filed: March 25, 2009
    Publication date: August 20, 2009
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Patent number: 7390394
    Abstract: The invention is directed to a method of making a catalyst comprising an intermediate pore size molecular sieve, preferably a zeolite of the MTT or TON type. SSZ-32 and ZSM-22 are examples of such molecular sieves. This catalyst is modified with a metal or metals selected from the group consisting of Ca, Cr, Mg, La, Ba, Pr, Sr, K and Nd. The catalyst is additionally loaded with a Group VIII metal or metals for hydrogenation purposes. The catalyst is suitable for use in a process whereby a feed including straight chain and slightly branched paraffins having 10 or more carbon atoms is isomerized.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: June 24, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph A. Biscardi, Darren P. Fong, Paul Marcantonio
  • Patent number: 7384538
    Abstract: A process for the hydroisomerization of a waxy feed having a major portion boiling above 650° F. to produce a lubricating base oil having a lower pour point, said process comprising (a) passing the waxy feed along with hydrogen gas through a hydroisomerization zone maintained at a hydrogen partial pressure of between about 100 psia and about 400 psia, said hydroisomerization zone comprising a catalyst bed containing at least two active wax hydroisomerization catalysts, said catalysts comprising at least (i) a first catalyst comprising an active hydrogenation component and a 1-D, 10-ring molecular sieve having a maximum crystallographic free diameter of the channels equal to 6.2 ? units or greater and (ii) a second catalyst comprising an active hydrogenation component and a 1-D, 10-ring molecular sieve having a maximum crystallographic free diameter of the channels equal to 5.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: June 10, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventor: Stephen J. Miller