Refining Patents (Class 208/97)
  • Patent number: 6231749
    Abstract: Petroleum wax feeds are converted to high viscosity index lubricants by a two-step hydrocracking-hydroisomerization process in which the wax feed which exhibits branchingis initially subjected to hydrocracking under mild conditions with a conversion to non-lube range products of no more than about 30 weight percent of the feed. The hydrocracking is carried out at a hydrogen pressure of at least 1000 psig (7000 kPa) using an amorphous catalyst which preferentially removes the aromatic components present in the initial feed. The hydrocracked effluent is then subjected to hydroisomerization in a second step using a low acidity zeolite beta catalyst which effects a preferential isomerization on the paraffin components to less waxy, high VI isoparaffins. The second stage may be operated at high pressure by cascading the first stage product into the second stage or at a lower pressure, typically from 200 to 1000 psig.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: May 15, 2001
    Assignee: Mobil Oil Corporation
    Inventors: Thomas F. Degnan, Robert T. Hanlon, Grant G. Karsner, Dominick N. Mazzone
  • Patent number: 6224747
    Abstract: A VGO stream is hydrocracking in a hydrocracking reaction zone within an integrated hydroconversion process. Effluent from the hydrocracking reaction zone is combined with a light aromatic-containing feed stream, and the blended stream hydrotreated in a hydrotreating reaction zone. The hydrocracked effluent serves as a heat sink for the hydrotreating reaction zone. The integrated reaction system provides a single hydrogen supply and recirculation system for use in two reaction systems.
    Type: Grant
    Filed: January 8, 1999
    Date of Patent: May 1, 2001
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis R. Cash, Arthur J. Dahlberg
  • Patent number: 6190532
    Abstract: Petroleum waxes are converted to high viscosity index lubricants by a hydroisomerization process in which the wax feed is subjected to hydroisomerization over a low acidity molecular sieve isomerization catalyst (the molecular sieve being preferably a zeolite) which effects a preferential isomerization on the paraffin components in the feed to less waxy, high VI isoparaffins. The hydroisomerization is operated at high pressure, at least 1000 psig hydrogen partial pressure (reactor inlet) using a zeolite catalyst, preferably a noble metal containing zeolite beta catalyst which contains boron as a framework component of the zeolite to give a low alpha value, typically below 10. The hydroisomerization is carried out at with a 650° F.+ conversion in the range of 10 to 40 weight percent of the feed. A final dewaxing step to target pour point may be used with relatively low loss, typically no more than 15 weight percent, during this dewaxing.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: February 20, 2001
    Assignee: Mobil Oil Corporation
    Inventors: Thomas F. Degnan, Dominick N. Mazzone
  • Patent number: 6187173
    Abstract: A process and apparatus for treating raw gasoline from catalytic cracking to obtain gasoline with the qualities required for use as motor fuel comprises selective hydrogenation followed by stabilization and optional cooling of the effluent, then sweetening followed by degassing to obtain a dedienized, stabilized and sweetened gasoline. The hydrogenation catalyst preferably comprises 0.1-1% of palladium deposited on a support, sweetening is preferably carried out on a solid catalyst containing an aluminosilicate of an alkali metal (for example sodalite), a metal chelate and activated charcoal. The product from this process can be placed directly in the gasoline pool or, advantageously, fractionated to obtain one or more cuts which can be used as feeds for etherification.
    Type: Grant
    Filed: September 23, 1997
    Date of Patent: February 13, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Thierry Chapus, Blaise Didillon, Christian Marcilly, Charles Cameron
  • Patent number: 6187176
    Abstract: A three stage process for producing high quality white oils, particularly food grade mineral oils from mineral oil distillates. The first reaction stage preferably employs a sulfur resistant hydrotreating catalyst and produces a product suitable for use as a high quality lubricating oil base stock. The second reaction stage preferably employs a hydrogenation/hydrodesulfurization catalyst combined with a sulfur sorbent and produces a product stream which is low in aromatics and which has substantially “nil” sulfur. The final reaction stage employs a selective hydrogenation catalyst that produces a product suitable as a food grade white oil.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: February 13, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Sylvain Hantzer, Alberto Ravella, Ian A. Cody, Darryl P. Klein
  • Patent number: 6150577
    Abstract: The invention includes a process of making a lubricating oil composition including: a process for making a high VI lubricating oil composition including the steps of (1) contacting a waste plastics feed including mainly polyethylene in a pyrolysis zone at pyrolysis conditions, whereby at least a portion of the waste plastics feed is cracked, thereby forming a pyrolysis zone effluent including 1-olefins and n-paraffins; (2) passing the pyrolysis zone effluent, including a heavy fraction and a middle fraction, the pyrolysis effluent middle fraction including 1-olefins, to a separations zone; where the pyrolysis effluent heavy fraction portion is separated from the pyrolysis effluent middle fraction; (3) passing the pyrolysis effluent heavy fraction to a hydrogenation zone; and (4) passing at least a portion of the hydrogenation zone effluent to a catalytic isomerization dewaxing zone, where at least a portion of the hydrogenation zone effluent is contacted with a isomerization dewaxing catalyst at isomerization
    Type: Grant
    Filed: December 30, 1998
    Date of Patent: November 21, 2000
    Assignee: Chevron U.S.A., Inc.
    Inventors: Stephen J. Miller, Gerald P. Huffman, Naresh Shah
  • Patent number: 6143940
    Abstract: The invention includes a process of making a wax composition including: a process for making a heavy wax composition including the steps of (1) contacting a waste plastics feed containing primarily polyethylene in a pyrolysis zone at sub-atmospheric pressure, whereby at least a portion of the waste plastics feed is cracked, thereby forming a pyrolysis zone effluent including 1-olefins and n-paraffins; and (2) passing the pyrolysis zone effluent to a hydrotreating zone, for contacting with a hydrotreating catalyst at catalytic conditions.
    Type: Grant
    Filed: December 30, 1998
    Date of Patent: November 7, 2000
    Assignees: Chevron U.S.A. Inc., University of Kentucky Research Foundation
    Inventors: Stephen J. Miller, Gerald P. Huffman, Naresh Shah
  • Patent number: 6099719
    Abstract: A process for producing a lubricating oil basestock having at least 90 wt. % saturates and a VI of at least 105 by solvent extracting a feedstock to produce a raffinate, solvent dewaxing the raffinate, selectively hydroconverting the solvent dewaxed raffinate in a two step hydroconversion zone followed by a hydrofinishing zone and a dewaxing zone.
    Type: Grant
    Filed: February 13, 1998
    Date of Patent: August 8, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Ian A. Cody, William J. Murphy, Thomas J. Ford
  • Patent number: 6090270
    Abstract: An integrated process for treating pyrolysis gasolines by depentanizing the pyrolysis gasoline in a first distillation column reactor which also subjects the C.sub.5 fraction to selective hydrogenation of acetylenes and diolefins. The bottoms or C.sub.6 + material is then subjected to further distillation in a second distillation column reactor to remove either a C.sub.6 and lighter or C.sub.8 and lighter overheads which contains a benzene/toluene/xylene (BTX) concentrate while at the same time removing mercaptans and selectively hydrogenating the diolefins. The BTX concentrate is then subjected to hydrodesulfurization prior to aromatics extraction and separation of the benzene from the toluene and xylene. Concurrently with the benzene separation any remaining olef ins are saturated to remove the color bodies. Finally the heavy gasoline fraction is subjected to the concurrent catalytic removal of mercaptans and separation to remove the heaviest material.
    Type: Grant
    Filed: January 22, 1999
    Date of Patent: July 18, 2000
    Assignee: Catalytic Distillation Technologies
    Inventor: Gary R. Gildert
  • Patent number: 6083379
    Abstract: A process for desulfurizing and enhancing the octane of cracked gasoline by first aromatizing the cracked gasoline and, second, hydrodesulfurizing the resulting intermediate product stream.
    Type: Grant
    Filed: July 14, 1998
    Date of Patent: July 4, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Charles A. Drake, Scott Douglas Love
  • Patent number: 6017443
    Abstract: A method and reactor for catalytic hydroprocessing liquid hydrocarbon feedstock at elevated temperatures and pressures for producing a liquid hydrocarbon product involves introducing the feedstock into a reactor having upper and lower reaction zones, each reaction zone having a hydroprocessing catalyst bed therein, the feedstock being introduced at the top of the lower reaction zone for downward flow through and reaction within the catalyst bed therein; collecting a partially reacted liquid effluent from the lower reaction zone; pumping the partially reacted liquid effluent to and introducing it at the top of the upper reaction zone for downward flow through and reaction within the catalyst bed therein; introducing hydrogen gas at the top of the upper reaction zone for flow downwardly and sequentially through and over the catalyst beds in the upper and lower reaction zones in co-current contact with the liquid in the reaction zones, the hydrogen reacting with the liquid in the reaction zones whereby the liqui
    Type: Grant
    Filed: February 5, 1998
    Date of Patent: January 25, 2000
    Assignee: Mobil Oil Corporation
    Inventor: John S. Buchanan
  • Patent number: 5993644
    Abstract: A process is provided for preparing high quality Group II and Group III lubricating base oils from a sulfur containing feedstock using mild hydrotreating followed by isomerization/dewaxing followed by hydrogenation over a sulfur resistant hydrogenation catalyst.
    Type: Grant
    Filed: June 26, 1997
    Date of Patent: November 30, 1999
    Assignee: Chevron U.S.A. Inc.
    Inventors: Jirong Xiao, Phil Winslow, James N. Ziemer
  • Patent number: 5980730
    Abstract: A process for converting a heavy hydrocarbon fraction comprises treating the hydrocarbon feed in a hydroconversion section in the presence of hydrogen, the section comprising at least one three-phase reactor containing at least one ebullated bed hydroconversion catalyst, operating in liquid and gas riser mode, said reactor comprising at least one means for removing catalyst from said reactor and at least one means for adding fresh catalyst to said reactor.
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: November 9, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Frederic Morel, Thierry Chapus, Stephane Kressman, Jean-Luc Duplan, Alain Billon, Gerard Heinrich
  • Patent number: 5976351
    Abstract: This invention discloses a process for producing a high Viscosity Index lubricant having a VI of at least 125 from a waxy hydrocarbon feed having a wax content of at least 40 wt %. The process comprises catalytically dewaxing waxy paraffins present in the feed by isomerization in the presence of hydrogen and in the presence of a low acidity large pore zeolite isomerization catalyst. This catalyst has a ratio of SiO.sub.2 /Al.sub.2 O.sub.3, as synthesized, of at least 50:1, and an alpha value of not greater than 20, wherein the catalyst is prepared in the absence of boron. The catalyst further comprises a noble metal hydrogenation component. The feed may be hydrocracked prior to dewaxing with the large pore zeolite. The feed may be solvent dewaxed prior to isomerization. The effluent of the isomerization step may also be further dewaxed by either solvent or catalytic means in order to achieve target pour point.
    Type: Grant
    Filed: March 28, 1996
    Date of Patent: November 2, 1999
    Assignee: Mobil Oil Corporation
    Inventors: Minas Robert Apelian, William S. Borghard, Thomas Francis Degnan, Jr., Robert Tryon Hanlon, Mae Koenig Rubin
  • Patent number: 5951848
    Abstract: This application discloses a process for catalytically dewaxing a feedstock whereby the aging of the dewaxing catalyst is minimized. A variety of feedstocks which possess moderate levels of nitrogen and sulfur may be dewaxed in this invention. The feed is treated by a catalyst system comprising two catalysts acting in synergistic combination, a hydrotreating catalyst and a dewaxing catalyst. The hydrotreating catalyst is preferably loaded with noble metals and is capable of operating at higher than usual space velocities. The dewaxing catalyst is downstream of the hydrotreating catalyst. The dewaxing catalyst further comprises a constrained intermediate pore crystalline material which is loaded with a noble metal.
    Type: Grant
    Filed: October 29, 1997
    Date of Patent: September 14, 1999
    Assignee: Mobil Oil Corporation
    Inventors: Charles L. Baker, Jr., Richard C. Dougherty
  • Patent number: 5935419
    Abstract: A process for the upgrading a heavy oil to a lighter oil having a higher API gravity than the heavy oil is disclosed. The process includes reacting an emulsion of the heavy oil with water in the presence of a catalyst and a hydrogen containing gas to give a reaction product from which the light oil is recovered. The process may also include the gasification of the heavy oil residue and the hydrocarbon containing water portions of the above reaction product for use in the upgrading process. The catalyst is preferably soluble in either oil or water portion of the emulsion and includes a transition metal containing compound, the metal being selected from Group V, Group VI, Group VIII of the Periodic Table or mixtures of these metals.
    Type: Grant
    Filed: September 15, 1997
    Date of Patent: August 10, 1999
    Assignee: Texaco Inc.
    Inventors: Motasimur Rashid Khan, Steven Jude DeCanio
  • Patent number: 5935417
    Abstract: A process for producing a lubricating oil basestock having at least 90 wt. % saturates and a VI of at least 105 by selectively hydroconverting a raffinate from a solvent extraction zone in a two step hydroconversion zone followed by a hydrofinishing zone and a dewaxing zone.
    Type: Grant
    Filed: February 13, 1998
    Date of Patent: August 10, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Ian A. Cody, Douglas R. Boate, William J. Murphy, Daniel P. Leta
  • Patent number: 5932090
    Abstract: The process for the conversion of heavy crude oils or distillation residues to distillates comprises the following steps:mixing the heavy crude oil or distillation residue with a suitable hydrogenation catalyst and sending the mixture obtained to a hydrotreating reactor introducing hydrogen or a mixture of hydrogen and H.sub.2 S;sending the stream containing the hydrotreating reaction product and the catalyst in slurry phase to a distillation zone where the most volatile fractions are separated;sending the high-boiling fraction obtained in the distillation step to a deasphaltation step obtaining two streams, one consisting of deasphalted oil (DAO), the other consisting of asphaltenes, catalyst in slurry phase, possibly coke and rich in metals coming from the initial charge;recycling at least 60%, preferably at least 80% of the stream consisting of asphaltenes, catalyst in slurry phase, optionally coke and rich in metals, to the hydrotreatment zone.
    Type: Grant
    Filed: May 1, 1996
    Date of Patent: August 3, 1999
    Assignee: Snamprogetti S.p.A.
    Inventors: Mario Marchionna, Alberto DelBianco, Nicoletta Panariti
  • Patent number: 5911874
    Abstract: A process for upgrading a wax-containing feedstock to produce a wax and a high VI/low volatility lubricating oil basestock. The process comprises subjecting the raffinate from a solvent extraction step to a two step, single stage hydroconversion process wherein the first step involves severe hydroconversion of the raffinate followed by a cold hydrofinishing step.
    Type: Grant
    Filed: December 17, 1996
    Date of Patent: June 15, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Ian A. Cody, Douglas R. Boate
  • Patent number: 5904836
    Abstract: High-vacuum oil refinery systems and process are disclosed in this invention. The systems and process enables to carry out vaporization and distillation of oils under the condition of 1-10.sup.-4 Torr of high vacuum and at the temperature of not higher than 360.degree. C. and thereby removing possibility of thermal cracking while heating to be vaporized and easily produces high quality oil. The vaporized gases are centrifugally separated and liquefied by specific gravity using high-vacuum gas specific gravity centrifugal separators and thereby producing high purity oil of uniform quality. The process also carries out vaporization and distillation of the oil at the temperature of not higher than 360.degree. C. so that the process prevents vaporization of sulfur components of the oil, but simply drains the sulfur components along with the concentrated sludge oil and thereby distilling and desulfurizing the crude or heavy oil at the same time without using expensive conventional desulfurizing process.
    Type: Grant
    Filed: February 1, 1996
    Date of Patent: May 18, 1999
    Assignee: Dae Sung Lee
    Inventors: Dae Sung Lee, Ho Keun Shin
  • Patent number: 5904838
    Abstract: A process for the simultaneous conversion of waste lubricating oil and pyrolysis oil derived from organic waste to produce a synthetic crude oil by means of contacting the combined feed with a hot hydrogen-rich gaseous stream to increase the temperature of the combined feed to vaporize at least a portion of the distillable organic compounds contained therein which is immediately hydrogenated in a hydrogenation reaction zone. The resulting effluent from the hydrogenation reaction zone is then introduced into a hydroprocessing zone to produce higher hydrogen-content hydrocarbons and to remove heterogeneous components such as sulfur, oxygen, nitrogen and halide, for example. The resulting effluent is cooled and partially condensed to produce a gaseous stream containing hydrogen and gaseous water-soluble inorganic compounds and a liquid stream containing hydrocarbon compounds.
    Type: Grant
    Filed: April 17, 1998
    Date of Patent: May 18, 1999
    Assignee: UOP LLC
    Inventors: Tom N. Kalnes, Robert B. James, Jr.
  • Patent number: 5885440
    Abstract: The invention is a hydrocracking process which employs a small reactor-containing hydrotreating catalyst to reduce the recombinant mercaptan content and/or smoke point of a product recovered from the effluent of the hydrocracking reactor. The entire effluent of the hydrocracking reactor is first cooled by indirect heat exchange and then passed through the hydrotreating catalyst. The effluent of the hydrotreating catalyst then continues throughout the customary cooling and separation steps employed in the product recovery system.
    Type: Grant
    Filed: August 26, 1997
    Date of Patent: March 23, 1999
    Assignee: UOP LLC
    Inventors: Richard K. Hoehn, Vasant P. Thakkar, Daniel L. Ellig
  • Patent number: 5885438
    Abstract: This invention discloses a process for producing a high Viscosity Index lubricant having a VI of at least 125 from a waxy hydrocarbon feed having a wax content of at least 40 wt %. The process comprises catalytically dewaxing waxy paraffins present in the feed by isomerization in the presence of hydrogen and in the presence of a low acidity large pore zeolite isomerization catalyst. This catalyst has a ratio of SiO.sub.2 /Al.sub.2 O.sub.3, as synthesized, of at least 50:1, wherein the catalyst is prepared in the absence of boron. The alpha value of the catalyst is no greater than 20. The catalyst comprises a noble metal hydroisomerization catalyst such as Pt. The feed may be hydrocracked prior to dewaxing with the large pore zeolite. The effluent of the process may also be further dewaxed by either solvent or catalytic means in order to achieve target pour point.
    Type: Grant
    Filed: March 28, 1996
    Date of Patent: March 23, 1999
    Assignee: Mobil Oil Corporation
    Inventors: Minas R. Apelian, William S. Borghard, Thomas F. Degnan, Jr., Robert T. Hanlon, Mae K. Rubin
  • Patent number: 5868921
    Abstract: A hydrocarbon distillate fraction is hydrotreated in a single stage by passing the distillate fraction downwardly over a stacked bed of two hydrotreating catalysts. The catalyst in the upper bed contains 0.1 to 15% by weight of platinum and/or palladium and also contains 2 to 40% by weight of at least one of tungsten, chromium, a Group VIIB metal, and an actinium series metal supported on an acidic refractory oxide carrier. The catalyst in the lower bed contains 1 to 15% by weight of a non-noble Group VIII metal and 1 to 25% by weight of a Group VIB metal on an amorphous, refractory oxide carrier. The liquid hydrocarbon product recovered has a reduced content of aromatics and a reduced heteroatom content.
    Type: Grant
    Filed: July 31, 1997
    Date of Patent: February 9, 1999
    Assignee: Shell Oil Company
    Inventors: Guy Barre, Johannes Petrus Van Den Berg, Pierre Grandvallet
  • Patent number: 5865988
    Abstract: Low sulfur gasoline is produced from an olefinic, cracked, sulfur-containing naphtha by treatment over an acidic catalyst, preferably an intermediate pore size zeolite such as ZSM-5 to crack low octane paraffins and olefins under relatively mild conditions, with limited aromatization of olefins and naphthenes. This is followed by hydrodesulfurization over a hydrotreating catalyst such as CoMo on alumina. The initial treatment over the acidic catalyst removes the olefins which would otherwise be saturated in the hydrodesulfurization, consuming hydrogen and lowering product octane, and converts them to compounds which make a positive contribution to octane. Overall liquid yield is high, typically at least 90 percent of higher. Product aromatics are typically increased by no more than 25 weight percent relative to the feed and may be lower than the feed.
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: February 2, 1999
    Assignee: Mobil Oil Corporation
    Inventors: Nick A. Collins, Paul P. Durand, Timothy L. Hilbert, Gerald J. Teitman, Jeffrey C. Trewella
  • Patent number: 5865987
    Abstract: Low sulfur gasoline is produced from an olefinic, cracked, sulfur-containing naphtha by treatment over an acidic catalyst, preferably an intermediate pore size zeolite such as ZSM-5 to crack low octane paraffins and olefins under mild conditions with limited aromatization of olefins and naphthenes. A benzene-rich co-feed is co-processed with the naphtha to reduce the benzene levels in the co-feed by alkylation. This initial processing step is followed by hydrodesulfurization over a hydrotreating catalyst such as CoMo on alumina. In addition to reducing benzene levels in the combined feeds, the initial treatment over the acidic catalyst removes the olefins which would otherwise be saturated in the hydrodesulfurization, consuming hydrogen and lowering product octane, and converts them to compounds which make a positive contribution to octane. Overall liquid yield is high, typically at least 90 percent or higher.
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: February 2, 1999
    Inventors: William S. Borghard, Nick A. Collins, Paul P. Durand, Timothy L. Hilbert, Jeffrey C. Trewella
  • Patent number: 5853570
    Abstract: A catalytically cracked gasoline feedstock is desulfurized under reaction conditions of a hydrogen feed rate measured at the reactor inlet of from 1 to 5 mols per mol of the feedstock oil and of from 5 to 50 mols per mol of the olefin components contained in the feedstock oil, a reaction temperature of from 200.degree. to 300.degree. C., a total pressure inside the reactor of from 10 to 20 kg/cm.sup.2 G, and a liquid hourly space velocity of from 2 to 8 l/hr, and using a catalyst which comprises a support mainly comprising alumina and having a surface area of 200 m.sup.2 /g or larger, wherein MoO.sub.3 in an amount of from 10 to 20 wt % and CoO in an amount of from 3 to 6 wt % in terms of inner content are fixed to the support, and the weight ratio of MoO.sub.3 to CoO is from 2.5 to 4.5.
    Type: Grant
    Filed: August 23, 1996
    Date of Patent: December 29, 1998
    Assignee: Mitsubishi Oil Co., Ltd.
    Inventors: Shigeto Hatanaka, Osamu Sadakane, Satoru Hikita, Tadao Miyama
  • Patent number: 5620589
    Abstract: Acidic halides, especially chlorides, in two phase (vapor and hydrocarbon liquid) reactor effluent are separated and at least the halides in the vapor fraction neutralized in a vapor/liquid separator with an alkaline neutralization medium such as an alumina treater impregnated with NaOH. The treater may remove halides from both the vapor and liquid phase within the separator.
    Type: Grant
    Filed: December 30, 1994
    Date of Patent: April 15, 1997
    Assignee: Mobil Oil Corporation
    Inventor: Tsoung Y. Yan
  • Patent number: 5611913
    Abstract: Acidic halides, especially chlorides, are removed from dry process vapor and liquid hydrocarbon streams by contact with solid caustic, such as a bed of NaOH. Salt deposits from form on the solid caustic, which are periodically removed by passing a liquid hydrocarbon continuous phase containing a minor amount of dissolved or entrained water over the solid caustic. Salts may be removed from the liquid hydrocarbon by extraction with water, which also saturates the liquid hydrocarbon so that it may be used to remove additional salt deposits.
    Type: Grant
    Filed: December 30, 1994
    Date of Patent: March 18, 1997
    Assignee: Mobile Oil Corporation
    Inventor: Tsoung Y. Yan
  • Patent number: 5462650
    Abstract: A process for the production of a high viscosity index, low viscosity lubricating base oil having a kinematic viscosity of 3.0 to 5.0 mm.sup.2 /s at 100.degree. C., a viscosity index of 120 or more and a pour point of -10.degree. C. or less, while simultaneously producing a high quality fuel oil, which includes using at least one of a heavy gas oil fraction and a light vacuum gas oil fraction as a stock oil that contains about 60% by volmme or more of distillate components within a distillation temperature range of from about 370 to about 480.degree. C. and about 50% by mass or more of saturated hydrocarbons, subjecting the stock oil to hydrocracking in the presence of an amorphous silica alumina catalyst, separating the cracked product into a fuel oil fraction and a lubricating oil fraction by atmospheric distillation, and subsequently subjecting the lubricating oil fraction to dewaxing, optionally applying at least one of solvent refining and hydrofinishing.
    Type: Grant
    Filed: September 30, 1993
    Date of Patent: October 31, 1995
    Assignee: Mitsubishi Oil Co., Ltd
    Inventors: Tetsuo Takito, Kazuki Inaba, Yasuo Kinoshita, Teruhiko Sasaki
  • Patent number: 5460713
    Abstract: A process for the production of a high viscosity index, low viscosity lubricating base oil having a kinematic viscosity of 3.0 to 7.5 mm.sup.2 /s at 100.degree. C., a viscosity index of 120 or more and a pour point of -10.degree. C. or less, while simultaneously producing a high quality fuel oil, which includes subjecting a mixture stock oil of (a) at least one of a heavy gas oil fraction and a vacuum gas oil fraction and (b) a slack wax to hydrocracking in the presence of an amorphous silica alumina catalyst, separating the cracked product into a fuel oil fraction and a lubricating oil fraction by atmospheric distillation, and subsequently subjecting the lubricating oil fraction to dewaxing, optionally applying at least one of solvent refining and hydrofinishing.
    Type: Grant
    Filed: September 30, 1993
    Date of Patent: October 24, 1995
    Assignee: Mitsubishi Oil Co., Ltd.
    Inventors: Tetsuo Takito, Motohiko Iwata, Yuji Yoshizumi, Yasuo Kinoshita
  • Patent number: 5456820
    Abstract: A process for making a lubricant oil of low pour point which comprises a) catalytically dewaxing a lube boiling range feedstock in the presence of hydrogen over a dewaxing catalyst comprising an intermediate pore size zeolite in the hydrogen or decationized form during a dewaxing cycle in which the temperature is progressively increased to maintain a substantially constant product pour point to produce a lubricant oil product of improved oxidation stability. The feedstock is sequenced during a dewaxing cycle from a heavy feed to a lighter feed in order to avoid contacting the lighter feed with the catalyst in its most active conditions.
    Type: Grant
    Filed: December 23, 1991
    Date of Patent: October 10, 1995
    Assignee: Mobil Oil Corporation
    Inventors: Thomas R. Forbus, Jr., David S. Shihabi, Chwan P. Kyan, Robert W. Bortz, Rene B. LaPierre
  • Patent number: 5453176
    Abstract: A process is disclosed for producing an isoparaffin white oil by contacting a refinery stream, in the presence of hydrogen, with a catalyst comprising an intermediate pore size silicoaluminophosphate molecular sieve and a hydrogenation component to form a dewaxed oil product. The dewaxed oil product is then contacted with a hydrogenation catalyst to produce a hydrogenated oil product which is then treated to remove aromatics to produce an isoparaffin white oil.
    Type: Grant
    Filed: October 13, 1993
    Date of Patent: September 26, 1995
    Inventors: Bruce A. Narloch, Michael A. Shippey, Malcolm W. Wilson
  • Patent number: 5413702
    Abstract: The present invention provides a process which involves visbreaking of residual oil to produce fuel oil or distillate. The visbreaking is conducted at high severity in a liquid phase, fluidized bed reactor with an H.sub.2 quench in the settling zone. The visbreaker effluent and H.sub.2 are then hydrotreated to stabilize the product by saturating the unstable species, such as olefins, radicals and other fragments from cracking.
    Type: Grant
    Filed: February 21, 1992
    Date of Patent: May 9, 1995
    Assignee: Mobil Oil Corporation
    Inventor: Tsoung Y. Yan
  • Patent number: 5382349
    Abstract: A method of hydrotreatment of heavy hydrocarbon oil in the presence of catalysts which comprises hydrodemetallizing and hydrocracking the heavy hydrocarbon oil successively and thereafter hydrodesulfurizing and hydrodenitrogenating the treated heavy hydrocarbon oil. The hydrocracking is carried out in the presence of a catalyst comprising at least one metal or metal compound of the group VIA or the group VIII of the Periodic Table supported on a carrier comprising 10 to 90 weight % of an iron-containing aluminosilicate and 90 to 10 weight % of an inorganic oxide. Other methods of treatment of heavy hydrocarbon oil comprise the hydrotreatment in conjunction with fluid catalytic cracking and/or thermal hydrocracking. The methods provide a naphtha fraction, a kerosene fraction and a gas oil fraction which can be obtained from the heavy hydrocarbon oil efficiently with high yield.
    Type: Grant
    Filed: September 14, 1992
    Date of Patent: January 17, 1995
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Mitsuru Yoshita, Kenichi Ii, Kazuhiro Kashima, Eiichiro Kanda, Takanori Ohno, Naotake Takeuchi
  • Patent number: 5376258
    Abstract: There is disclosed a process for hydrogenating treatment of a heavy hydrocarbon oil comprising the successive steps of (1) hydrogenating-demetalizing treatment, (2) hydrocracking treatment and (3) hydrodesulfurizing-hydrodenitrifying treatment in the presence of respective catalysts which process comprises employing in the hydrodesulfurizing-hydrodenitrifying treatment, a catalyst having a pore size distribution restricted to a specific range as measured by nitrogen release method. According to the above-mentioned process, a product oil with a low sulfur content can be obtained in high cracking efficiency from a heavy hydrocarbon oil without equipment trouble due to sludge formation.
    Type: Grant
    Filed: September 16, 1993
    Date of Patent: December 27, 1994
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventor: Yukihiro Sakoda
  • Patent number: 5376260
    Abstract: Heavy waxy oil is dewaxed by a mild cracking and isomerization process using a catalyst comprising SSZ-32 and at least one Group VIII metal. The heavy oil contains naphthenic wax, which includes only a relatively small amount of normal alkanes. Naphthenic wax containing a minor amount of oil may also be dewaxed using the process.
    Type: Grant
    Filed: April 5, 1993
    Date of Patent: December 27, 1994
    Assignee: Chevron Research and Technology Company
    Inventors: Donald S. Santilli, Stacey I. Zones
  • Patent number: 5372703
    Abstract: Lubricant base oils are made up essentially of 2-15% by weight of a total aromatics content, greater than 60% by weight of isoparaffins and monocyclic naphthenes in total, more than 30% by weight of alkylbenzenes in the total aromatics content and smaller than 4% by weight of tricyclic and tetracyclic aromatics in the total aromatics content. The base oil has great viscosity index, small pour point, high oxidative stability and heat stability and sufficient capability to dissolve sludge.
    Type: Grant
    Filed: April 12, 1993
    Date of Patent: December 13, 1994
    Assignee: Nippon Oil Co., Ltd.
    Inventors: Kouzou Kamiya, Isao Honjo, Toshio Yoshida, Masaru Ushio, Jinichi Igarashi, Masakuni Hirata, Mitsuo Okada, Yuji Ikemoto, Kouichi Oshima, Hiroyuki Takashima
  • Patent number: 5370786
    Abstract: A method of operating a continuous process employing solid catalyst particles by means of charging a feedstock to a reactor and contacting the feedstock with a dense-phase moving bed of catalyst particles at conversion conditions in a reactor. A hydrogen-rich gas containing unsaturated hydrocarbon compounds is recovered from the reactor effluent and at least a portion is contacted with a hydrogenation catalyst to hydrogenate the olefins. The resulting hydrogenated hydrogen-rich gaseous stream is heated and used to supply heat to a vessel containing solid catalyst particles which are preheated and subsequently introduced into the reactor.
    Type: Grant
    Filed: March 23, 1993
    Date of Patent: December 6, 1994
    Assignee: UOP
    Inventors: Paul R. Cottrell, Charles P. Luebke
  • Patent number: 5368774
    Abstract: The present invention provides compositions and methods which are effective to prevent corrosion of metal surfaces involved in refining solutions having relatively high partial pressures of carbon dioxide. The compositions of the present invention comprise mixtures of a pyridinium quaternary salt and an organic compound, such as thiourea, which contains at least one sulfur atom double bonded to a carbon atom. The compositions are added substantially continuously to the solution to be treated to result in a final concentration of at least about 30 ppm of pyridinium quaternary salt, preferably between about 56-70 ppm, and at least about 5 ppm double bonded sulfur containing compound, preferably between about 10-13 ppm.
    Type: Grant
    Filed: July 30, 1993
    Date of Patent: November 29, 1994
    Assignee: Baker Hughes Incorporated
    Inventors: Bradley G. Borgard, Jack B. Harrell, Jr., John Link
  • Patent number: 5308470
    Abstract: Non-carcinogenic asphalts and asphalt blending stocks are produced from reduced hydrocarbon feedstocks. Such non-carcinogenic products are produced by establishing a functional relationship between mutagenicity index and a physical property correlative of hydrocarbon type for the asphalt or asphalt blending stock and determining a critical physical property level which, when achieved, results in a product having a mutagenicity index of less than about 1.0. Process conditions are established so that a product stream achieving the desired physical property level can be produced. Non-carcinogenic asphalts and asphalt blending stocks are then processed utilizing the conditions so established.
    Type: Grant
    Filed: December 23, 1992
    Date of Patent: May 3, 1994
    Assignee: Mobil Oil Corp.
    Inventors: Gary R. Blackburn, Carl R. Mackerer, Timothy A. Roy
  • Patent number: 5294327
    Abstract: The production of food grade quality white mineral oils from predominantly naphthenic or cycloparaffinic crude distillates heretofore have required acid treating using sulfuric acid followed by neutralization, water wash and possibly finishing step. Herein, however, three stages of hydroprocessing without any solvent extraction or acid treatment prior step are employed to produce the desired food grade quality white mineral oil having a trace of aromatic constituents therewithin. Specific steps are defined in the application in terms of the severity of the hydrogenation in the hydrotreatiang operation at each respective step; as well as the steps of separating gaseous constituents of the hydroprocessing product.
    Type: Grant
    Filed: September 15, 1992
    Date of Patent: March 15, 1994
    Assignee: Atlantic Richfield Company
    Inventor: Gary L. Everett
  • Patent number: 5282958
    Abstract: A process is disclosed for dewaxing a hydrocarbon feed to produce a dewaxed lube oil. The feed includes straight chain and slightly branched chain paraffins having 10 or more carbon atoms. In the process the feed is contacted under isomerization conditions with an intermediate pore size molecular sieve having a crystallite size of no more than about 0.5.mu. and pores with a minimum diameter of at least 4.8.ANG. and with a maximum diameter of 7.1.ANG. or less. The catalyst has sufficient acidity so that 0.5 g thereof when positioned in a tube reactor converts at least 50% of hexadecane at 370.degree. C., a pressure of 1200 psig, a hydrogen flow of 160 ml/min, and a feed rate of 1 ml/hr. It also exhibits 40 or greater isomerization selectivity when used under conditions leading to 96% conversion of hexadecane to other chemicals. The catalyst includes at least one Group VIII metal. The contacting is carried out at a pressure from about 15 psig to about 3000 psig.
    Type: Grant
    Filed: July 20, 1990
    Date of Patent: February 1, 1994
    Assignee: Chevron Research and Technology Company
    Inventors: Donald S. Santilli, Mohammad M. Habib, Thomas V. Harris, Stacey I. Zones
  • Patent number: 5273645
    Abstract: A method for reducing the pour point of a hydrocarbon feedstock that contains aromatic compounds, sulfur-containing compounds and nitrogen-containing compounds is provided. The method involves solvent extraction and utilizes a catalytic hydrodewaxing zone with a first section having a shape-selective molecular sieve-containing catalyst composition which is substantially free of Group VIII metals and a second section having a Group VIII metal-containing hydrogenation catalyst composition with a porous support material substantially free of acidic crystalline molecular sieve material.
    Type: Grant
    Filed: September 17, 1991
    Date of Patent: December 28, 1993
    Assignee: Amoco Corporation
    Inventors: Frederick T. Clark, Muin S. Haddad
  • Patent number: 5246566
    Abstract: The present invention relates to a process for producing a lube oil having a low pour point and excellent viscosity and viscosity index comprising isomerizing a waxy feed over a catalyst comprising a molecular sieve having generally oval 1-D pores having a minor axis between about 4.2 .ANG. and about 4.8 .ANG. and a major axis between about 5.4 .ANG. and about 7.0 .ANG. and at least one group VIII metal. SAPO-11, SAPO-31, SAPO-41, ZSM-22, ZSM-23 and ZSM-35 are examples of useful catalysts.
    Type: Grant
    Filed: June 29, 1992
    Date of Patent: September 21, 1993
    Assignee: Chevron Research and Technology Company
    Inventor: Stephen J. Miller
  • Patent number: 5228978
    Abstract: The inventive solvent extraction process uses hydrotreated (HTR) and low sulfur (LSR) resids feedstreams in a single deasphalter unit and in a way that optimizes the disposition of the oils, resins, and asphaltene fractions of each resid for downstream processing. After the refractory asphaltenes are separated from the HTR feedstream, the LSR resid is introduced into the deasphalter so that its resin and asphaltene fractions are combined with the HTR resins. The oils fractions from the two resids are combined and then used as a feedstock for catalytic cracking.
    Type: Grant
    Filed: January 23, 1992
    Date of Patent: July 20, 1993
    Assignee: Amoco Corporation
    Inventors: James L. Taylor, William I. Beaton, Jeffrey J. Kolstad
  • Patent number: 5158671
    Abstract: A method is described for rendering total liquid product hydroisomerates daylight stable and improving their oxidation stability, which method involves treating the hydroisomerate total liquid product with a Group VIII metal on refractory metal oxide catalyst or Group VIII metal on halogenated refractory metal oxide catalyst under mild conditions, which conditions are a temperature in the range of 170.degree. to 270.degree. C., a pressure in the range of 300 to 1500 psi H.sub.2, 0.25 to 10 v/v/hr and 500 to 10,000 SCF/B,H.sub.2.
    Type: Grant
    Filed: December 13, 1988
    Date of Patent: October 27, 1992
    Assignee: Exxon Research and Engineering Company
    Inventors: Ian A. Cody, Donald T. Eadie, John M. MacDonald, Glen P. Hamner
  • Patent number: 5143596
    Abstract: Process for upgrading a sulphur-containing feedstock consisting of a hydrocarbon mixture substantially boiling in the gasoline range which process consists of subjecting the feedstock to a reforming step and subsequently to a hydrotreating step, and recovering from the hydrotreating step a product substantially boiling in the gasoline range and having increased aromaticity and decreased sulphur content.
    Type: Grant
    Filed: November 23, 1990
    Date of Patent: September 1, 1992
    Assignee: Shell Oil Company
    Inventors: Ian E. Maxwell, Frederik Muller, Frank H. H. Khouw, Kim H. Khor, Jacques Lucien
  • Patent number: 5139647
    Abstract: The present invention relates to a hydrocracking and isomerization process for preparing low pour point middle distillate hydrocarbons and lube oil from a hydrocarbonaceous feedstock boiling above about 600.degree. F. by contacting the feedstock with a catalyst containing an intermediate pore size silicoaluminophosphate molecular sieve and a hydrogenation component.
    Type: Grant
    Filed: August 14, 1989
    Date of Patent: August 18, 1992
    Assignee: Chevron Research and Technology Company
    Inventor: Stephen J. Miller
  • Patent number: 5135638
    Abstract: The present invention relates to a process for producing a lube oil having a low pour point and excellent viscosity and viscosity index comprising isomerizing a waxy feed over a catalyst comprising a molecular sieve having generally oval 1-D pores having a minor axis between about 4.2 .ANG. and about 4.8 .ANG. and a major axis between about 5.4 .ANG. and about 7.0 .ANG. and at least one group VIII metal. SAPO-11, SAPO-31, SAPO-41, ZSM-22, ZSM-23 and ZSM-35 are examples of useful catalysts.
    Type: Grant
    Filed: July 20, 1990
    Date of Patent: August 4, 1992
    Assignee: Chevron Research and Technology Company
    Inventor: Stephen J. Miller