Diffusing Or Passing Through Septum Selective As To Material Of A Component Of Liquid Patents (Class 210/649)
  • Patent number: 7410585
    Abstract: Disclosed is a fuel filter for removing sulfur containing compounds from an internal combustion fuel stream. In one embodiment, the fuel filter comprises at least one column comprising an adsorbent. In one exemplary embodiment the adsorbent is capable of removing sulfur containing compounds, especially sulfur containing aromatic compounds, from fuels used in internal combustion engines, especially diesel fuels. Also disclosed is an apparatus for extending the life cycle of a post combustion emission control device. In one exemplary embodiment, the apparatus comprises a fuel filter for removing sulfur containing compounds from an internal combustion fuel stream and an emission control device. Finally, a method for removing sulfur containing compounds from an internal combustion fuel stream is disclosed.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: August 12, 2008
    Assignee: Honeywell International Inc.
    Inventors: Ronald P. Rohrbach, Peter D. Unger, Gary B. Zulauf, Daniel E. Bause, Russ Johnson, David R. Rockwell
  • Patent number: 7402246
    Abstract: This invention is directed to systems and methods for removing lipids from a fluid or from lipid-containing organisms from a fluid, such as plasma. These systems combine a fluid with at least one extraction solvent, which causes the lipids to separate from the fluid or from the lipid-containing organisms. The separated lipids are removed from the fluid. The at least one extraction solvent is removed from the fluid or at least reduced to a concentration enabling the fluid to be administered to a patient without undesirable consequences. Once the fluid has been processed, the fluid may be administered to a patient who donated the fluid or to a different patient for therapy.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: July 22, 2008
    Assignee: Lipid Sciences, Inc.
    Inventors: David C. Bomberger, Bryan Chavez, Pablo E. Garcia, Eric Hegwer, Thomas P. Low, Ripudaman Malhotra, Jeffrey J. Shimon
  • Publication number: 20080164208
    Abstract: A membrane has a permeate channel including a 3D spacer fabric having an upper and a lower fabric surface (2,3) spaced apart by monofilament thread (4) at a predefined distance, the permeate channel being interposed between two membrane layers (12, 13), wherein the membrane layers are linked at a multitude of points with the upper and lower fabric surfaces to form an integral structure with a high bonding strength suitable for backflush operations. A method provides an integrated permeate channel membrane, including the steps of:—Providing a 3D spacer fabric having an upper and lower surface fabric (2,3) spaced apart by monofilament thread (4) at a predefined distance; and—Applying a membrane layer to both the upper and the lower surface fabric.
    Type: Application
    Filed: August 10, 2005
    Publication date: July 10, 2008
    Inventors: Wim Doyen, Herman Beckers, Walter Adriansens, Chris Dotremont
  • Patent number: 7390411
    Abstract: The invention concerns a method for preparing compounds for interaction of an active substance hardly soluble in an aqueous medium with a porous support. The invention is characterized in that it comprises the following steps: (a) mixing the active substance generated by supercritical fluid and the specific amount of porous support; (b) carrying out a molecular diffusion step by contacting in static mode a supercritical fluid with the mixture obtained at step (a) for the time required to improve the dissolution in the aqueous medium of the mixture obtained at step (a); (c) washing the interactive compound obtained at step (b) with a supercritical fluid flow; (d) recuperating the particles of the interactive compound thus formed. The invention also concerns a compound obtainable by said method.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: June 24, 2008
    Assignee: Pierre Fabre Medicament
    Inventors: Jacques Fages, Bernard Freiss, Christophe Joussot-Dubien, Jean-Jacques Letourneau, Hubert Lochard, Florence Marciacq, Martial Sauceau
  • Patent number: 7368056
    Abstract: Water-desalination and/or water purification devices. Alternatively, devices that are implantable in animal bodies, possibly configured as self-inflating spinal disc prostheses. The devices include specified types of water-absorbing solute encapsulated by non-porous, water-permeable polymer membranes having specified properties. Also, methods of using the devices in biomedical applications or water treatment.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: May 6, 2008
    Assignee: The Polymer Technology Group, Incorporated
    Inventors: Robert S. Ward, Sallie K. Coviello
  • Patent number: 7364658
    Abstract: This invention is directed to systems and methods for removing lipids from a fluid or from lipid-containing organisms from a fluid, such as plasma. These systems combine a fluid with at least one extraction solvent, which causes the lipids to separate from the fluid or from the lipid-containing organisms. The separated lipids are removed from the fluid. The at least one extraction solvent is removed from the fluid or at least reduced to a concentration enabling the fluid to be administered to a patient without undesirable consequences. Once the fluid has been processed, the fluid may be administered to a patient who donated the fluid or to a different patient for therapy.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: April 29, 2008
    Assignee: Lipid Sciences, Inc.
    Inventors: David C. Bomberger, Bryan Chavez, Pablo E. Garcia, Eric Hegwer, Thomas P. Low, Ripudaman Malhotra, Jeffrey J. Shimon
  • Patent number: 7361277
    Abstract: A filter device (100) comprising a filter (10) for producing a leukocyte-depleted plasma-rich fluid is disclosed.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: April 22, 2008
    Assignee: Pall Corporation
    Inventors: Thomas J. Bormann, Gerard DelGiacco, Byron Selman
  • Publication number: 20080053902
    Abstract: Methods are provided for separation of substances using non-crystalline, amorphous inorganic oxides having mesoporosity or combined meso- and microporosity. The amorphous inorganic oxide may have a separating agent, such as a chemical functional group, bonded or attached to the surfaces within the pores. The amorphous inorganic material is exposed to a fluid containing two or more materials to be separated. At least one material contained in the fluid is preferentially retained by the amorphous inorganic oxide either on the surface of the inorganic oxide within the pores or by interaction with a separating agent group attached to the pore surfaces.
    Type: Application
    Filed: August 31, 2006
    Publication date: March 6, 2008
    Inventors: Johannes Koegler, Zhiping Shan, Xingtao Gao, Philip Angevine, Jacobus Jansen
  • Patent number: 7316779
    Abstract: A filter assembly for separating and collecting a layer of particulate matter (e.g., cells) from a liquid containing the particulate matter (e.g., a biological fluid specimen). The filter assembly has a holder and contiguous inner and outer fluid pervious media. The outer fluid pervious medium is attached to the sidewall of the holder. The inner fluid pervious medium is of low fluidic impedance relative to the outer fluid pervious medium. The filter assembly is designed for use in a separation housing that defines two flow paths between inlet and outlet, one directly through the filter and the other around the periphery of the filter. The inlet portion of the housing has a central inlet in a radially sloped surface that faces the filter collection site. A movable suction head is adapted to cooperate with the housing and the filter assembly.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: January 8, 2008
    Assignee: Monogen, Inc.
    Inventors: Norman J. Pressman, William J. Mayer, Richard W. Corrigan, Jr.
  • Publication number: 20070284306
    Abstract: Provided is a process and apparatus for separating a multi-component feed stream wherein a porous separator is used to effectively create, via permeation and phase change, at least three fractions of differing compositions.
    Type: Application
    Filed: June 9, 2006
    Publication date: December 13, 2007
    Inventors: Wei Cao, Vladimir Yliy Gershtein
  • Patent number: 7297261
    Abstract: Systems and methods for removing lipids from a fluid, such as plasma, or from lipid-containing organisms. A fluid is combined with at least one extraction solvent, which causes the lipids to separate from the fluid or from lipid-containing organisms. The separated lipids are removed from the fluid. The extraction solvent is removed from the fluid or at least reduced to an acceptable concentration enabling the delipidated fluid to be administered to a patient without the patient experiencing undesirable consequences. Once the fluid has been processed, the fluid may be administered to a patient who donated the fluid, to a different patient, or stored for later use.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: November 20, 2007
    Assignee: Lipid Sciences, Inc.
    Inventors: David C. Bomberger, Bryan Chavez, Pablo E. Garcia, Eric Hegwer, Thomas P. Low, Ripudaman Malhotra, Jeffrey J. Shimon
  • Patent number: 7288199
    Abstract: A ceramic filter is provided including a substrate, a separation layer comprising titania and having an average pore size in a range of 0.08 to 1 ?m and a thickness in a range of 5 to 20 ?m, and an intermediate layer formed between the substrate and the separation layer. The intermediate layer includes aggregate particles that are bonded together with glass frits, and aggregate particles of the intermediate layer are smaller than aggregate particles of the substrate and larger than aggregate particles of the separation layer.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: October 30, 2007
    Assignee: NGK Insulators, Ltd.
    Inventors: Manabu Isomura, Tomonori Takahashi, Kenji Mutoh, Minoru Ohta, Makoto Itoh
  • Patent number: 7285225
    Abstract: The current invention provides improved methods and filter stacks for concentrating a slurry of titanium dioxide. The improved filter stack comprises a series of filter disks and diverter trays arranged in parallel. The present invention provides an improvement over prior art filter stacks by using a substantially complete weld to attach a diverter plate to the diverter trays. The current invention also provides an improved method for pre-conditioning a filter stack. The improved method is designed to pre-condition and gradually prepare the filter stack for production of the desired slurry of titanium dioxide. Further, the current invention provides an improved process for preparing and transporting a slurry of titanium dioxide. Finally, the current invention provides a method for enhancing the lifespan of a filter stack.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: October 23, 2007
    Assignee: Tronox, LLC
    Inventors: John W. Copeland, John A. Parker
  • Patent number: 7273554
    Abstract: The invention relates to a crossflow-filtration method for beverages, in particular beer, which comprises the following steps: a) the feed liquid is introduced into a filter module by means of a tangential flow through a filter membrane (6) in a first direction, whereby the filtrate flow on the filtrate side (19) of the filter module is maintained within predetermined threshold values; b) the entry pressure is reduced and the filter is backflushed by surges of filtrate initiated by a reversal of the flow direction transversally to the membrane; c) the feed liquid is optionally introduced in an inverse flow direction to that of step a) and the concentrate is evacuated on the non-filtrate (7) side of the module; d) the entry pressure is reduced and the filter is backflushed by surges of filtrate initiated by a reversal of the flow direction transversally to the membrane; e) steps a) to d) are repeated until the filtrate flow lies below the lower predetermined threshold value; f) to k) the filter is emptied by a
    Type: Grant
    Filed: June 14, 2003
    Date of Patent: September 25, 2007
    Assignee: Sartorius Biotech GmbH
    Inventors: Michael Rodenberg, Bernhard Diel, Matthias Grabosch, Dieter Armgart
  • Patent number: 7270796
    Abstract: In one embodiment, an ammonium removal method can comprise: removing a multivalent cation from a stream comprising ammonium to form a treated stream; converting the ammonium in the stream to ammonia by increasing the pH of the stream; and separating the ammonia from the treated stream to form a separated stream and gaseous ammonia. In another embodiment, an ammonium removal method can comprise: a multivalent cation from a stream comprising ammonium to form a treated stream comprising a total of less than or equal to about 50 ppm by weight of multivalent cations; increasing the pH of the stream to a conversion pH; converting the ammonium to ammonia; and separating the ammonia from the treated stream to form a separated stream and gaseous ammonia.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: September 18, 2007
    Assignee: CASTion Corporation
    Inventors: Philip Mason Kemp, Mark Matthew Simon, Stephen Howard Brown
  • Patent number: 7255792
    Abstract: There is provided a process for modifying a first organic composition comprising (i) at least one first solvent, (ii) at least one solute, and (iii) optionally, at least one second solvent to produce a modified organic composition in which the concentration of the at least one first solvent is reduced and the concentration of the at least one second solvent is increased, comprising the steps of: (a) providing a selectively permeable membrane having a first surface and a second surface; (b) transferring a portion of the first solvent and optionally a portion of the solute from the first surface to the second surface across the membrane by contacting the first organic composition with the first surface, wherein the pressure at the first surface is greater than the pressure at the second surface, and wherein the membrane is a selectively permeable membrane such that the membrane rejection (R) of the solute is greater than 0%; (c) adding a portion of the second solvent to the organic composition retained at the f
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: August 14, 2007
    Assignee: Membrane Extraction Technology Limited
    Inventor: Andrew Guy Livington
  • Patent number: 7217365
    Abstract: Methods wherein a blood cell concentration gradient is formed in a pooling unit in which blood is pooled before or after introducing the blood into a filter for eliminating leukocytes followed by the filtration are disclosed. By the first method comprising forming a blood cell concentration gradient in the pooling unit before introducing blood into the filter for eliminating leukocytes followed by the filtration, leukocytes can be efficiently eliminated from a whole blood preparation or a high platelet collection ratio can be established while maintaining a high leukocyte elimination ratio. By the second method comprising forming a blood cell concentration gradient in the pooling unit after introducing blood into the filter for eliminating leukocytes followed by the filtration, leukocytes can be efficiently eliminated from a whole blood preparation or a platelet preparation and platelets can be collected at a high ratio.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: May 15, 2007
    Assignee: Asahi Kasei Medical Co., Ltd.
    Inventors: Tatsuya Fukuda, Morikazu Miura
  • Patent number: 7166223
    Abstract: This invention is directed to systems and methods for removing lipids from a fluid, such as plasma, or from lipid-containing organisms. These systems contact a fluid with an extraction solvent, which causes the lipids in the fluid to separate from the fluid or causes lipids in the lipid-containing organisms to separate from the lipid-containing organism, using at least one hollow fiber contactor. The separated lipids are removed from the fluid. The extraction solvent is removed from the fluid or at least reduced to a level below a particular threshold enabling the fluid to be administered to a patient without the patient experiencing undesirable consequences. Once the fluid has been processed, the fluid may be administered to a patient who donated the fluid, to a different patient, or be stored.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: January 23, 2007
    Assignee: Lipid Sciences, Inc.
    Inventors: David C. Bomberger, Pablo E. Garcia, Eric Hegwer, Thomas P. Low, Ripudaman Malhotra
  • Patent number: 7122166
    Abstract: Methods for concentrating hydrogen peroxide solutions have been described. The methods utilize a polymeric membrane separating a hydrogen peroxide solution from a sweep gas or permeate. The membrane is selective to the permeability of water over the permeability of hydrogen peroxide, thereby facilitating the concentration of the hydrogen peroxide solution through the transport of water through the membrane to the permeate. By utilizing methods in accordance with the invention, hydrogen peroxide solutions of up to 85% by volume or higher may be generated at a point of use without storing substantial quantities of the highly-concentrated solutions and without requiring temperatures that would produce explosive mixtures of hydrogen peroxide vapors.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: October 17, 2006
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Clyde F. Parrish
  • Patent number: 7048846
    Abstract: A membrane process for the removal of sulfur species from a naphtha feed, in particular, a FCC light cat naphtha, without a substantial loss of olefin yield is disclosed. The process involves contacting a naphtha feed stream with a membrane having sufficient flux and selectivity to separate a sulfur deficient retentate fraction from a sulfur enriched permeate fraction, preferably, under pervaporation conditions. Sulfur deficient retentate fractions are useful directly into the gasoline pool. Sulfur-enriched permeate fractions are rich in sulfur containing aromatic and nonaromatic hydrocarbons and are further treated with conventional sulfur removal technologies, e.g. hydrotreating, to reduce sulfur content. The process of the invention provides high quality naphtha products having a reduced sulfur content and a high content of olefin compounds.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: May 23, 2006
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: Lloyd Steven White, Richard Franklin Wormsbecher, Markus Lesemann
  • Patent number: 7041212
    Abstract: A membrane process for the removal of sulfur species from a naphtha feed, in particular, a FCC light cat naphtha, without a substantial loss of olefin yield is disclosed. The process involves contacting a naphtha feed stream with a membrane having sufficient flux and selectivity to separate a sulfur deficient retentate fraction from a sulfur enriched permeate fraction, preferably, under pervaporation conditions. Sulfur deficient retentate fractions are useful directly into the gasoline pool. Sulfur-enriched permeate fractions are rich in sulfur containing aromatic and nonaromatic hydrocarbons and are further treated with conventional sulfur removal technologies, e.g. hydrotreating, to reduce sulfur content. The process of the invention provides high quality naphtha products having a reduced sulfur content and a high content of olefin compounds.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: May 9, 2006
    Assignee: W.R. Grace & Co. - Conn.
    Inventors: Lloyd Steven White, Richard Franklin Wormsbecher, Markus Lesemann
  • Patent number: 7033500
    Abstract: This invention is directed to systems and methods for removing lipids from a fluid or from lipid-containing organisms from a fluid, such as plasma. These systems combine a fluid with at least one extraction solvent, which causes the lipids to separate from the fluid or from the lipid-containing organisms. The separated lipids are removed from the fluid. The at least one extraction solvent is removed from the fluid or at least reduced to a concentration enabling the fluid to be administered to a patient without undesirable consequences. Once the fluid has been processed, the fluid may be administered to a patient who donated the fluid or to a different patient for therapy.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: April 25, 2006
    Assignee: Lipid Sciences, Inc.
    Inventors: David C. Bomberger, Bryan Chavez, Pablo E. Garcia, Eric Hegwer, Thomas P. Low, Ripudaman Malhotra, Jeffrey J. Shimon
  • Patent number: 7018527
    Abstract: A membrane process for the removal of sulfur species from a naphtha feed, in particular, a FCC light cat naphtha, without a substantial loss of olefin yield is disclosed. The process involves contacting a naphtha feed stream with a membrane having sufficient flux and selectivity to separate a sulfur deficient retentate fraction from a sulfur enriched permeate fraction, preferably, under pervaporation conditions. Sulfur deficient retentate fractions are useful directly into the gasoline pool. Sulfur-enriched permeate fractions are rich in sulfur containing aromatic and nonaromatic hydrocarbons and are further treated with conventional sulfur removal technologies, e.g. hydrotreating, to reduce sulfur content. The process of the invention provides high quality naphtha products having a reduced sulfur content and a high content of olefin compounds.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: March 28, 2006
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: Lloyd Steven White, Richard Franklin Wormsbecher, Markus Lesemann
  • Patent number: 6991727
    Abstract: This invention is directed to systems and methods for removing lipids from a fluid, such as plasma, or from lipid-containing organisms. These systems contact a fluid with an extraction solvent, which causes the lipids in the fluid to separate from the fluid or causes lipids in the lipid-containing organisms to separate from the lipid-containing organism, using at least one hollow fiber contactor. The separated lipids are removed from the fluid. The extraction solvent is removed from the fluid or at least reduced to a level below a particular threshold enabling the fluid to be administered to a patient without the patient experiencing undesirable consequences. Once the fluid has been processed, the fluid may be administered to a patient who donated the fluid, to a different patient, or be stored.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: January 31, 2006
    Assignee: Lipid Sciences, Inc.
    Inventors: David C. Bomberger, Pablo E. Garcia, Eric Hegwer, Thomas P. Low, Ripudaman Malhotra
  • Patent number: 6972093
    Abstract: An onboard fuel separation apparatus separates a material fuel (gasoline) into a high-octane fuel having a higher octane value than the material fuel and a low-octane fuel having a lower octane value than the material fuel using a separation membrane which selectively allows high-octane value components (such as aromatic components) permeate through the membrane. The apparatus increases the ratio of the amount of the high-octane value components permeating through the membrane to the amount of the high-octane value components contained in the material fuel by, (A) Controlling the temperature of the material fuel supplied to the membrane (B) Increasing partial pressure of the low-octane value components on the high-octane fuel side of the membrane and removing volatiles from the permeate, and (C) Bypassing volatiles in the material feed around the membrane.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: December 6, 2005
    Assignees: Exxonmobil Research and Engineering Company, Toyota Jidosha Kabushiki Kaisha
    Inventors: Randall D. Partridge, Walter Weissman, Takanori Ueda, Yoshihiro Iwashita
  • Patent number: 6936173
    Abstract: The invention provides methods for purifying carbohydrates, including oligosaccharides, nucleotide sugars, and related compounds, by use of ultrafiltration, nanofiltration and/or reverse osmosis. The carbohydrates are purified away from undesired contaminants such as compounds present in reaction mixtures following enzymatic synthesis or degradation of oligosaccharides.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: August 30, 2005
    Assignee: Neose Technologies, Inc.
    Inventor: Shawn DeFrees
  • Patent number: 6913697
    Abstract: The present invention provides a nanostructured device comprising a substrate including nanotroughs therein; and a lipid bilayer suspended on or supported in the substrate. A separation method is also provided comprising the steps of supporting or suspending a lipid bilayer on a substrate; wherein the substrate comprises nanostructures and wherein the lipid bilayer comprises at least one membrane associated biomolecule; and applying a driving force to the lipid bilayer to separate the membrane associated biomolecule from the lipid bilayer and to drive the membrane associated biomolecule into the nanostructures.
    Type: Grant
    Filed: January 9, 2003
    Date of Patent: July 5, 2005
    Assignee: Science & Technology Corporation @ UNM
    Inventors: Gabriel P. Lopez, Steven R. Brueck, Linnea K. Ista
  • Patent number: 6905612
    Abstract: A plasma concentrator for producing plasma concentrate from a plasma from which erythrocytes have been substantially removed. The device comprises a concentrating chamber having an inlet port and an concentrate outlet, the concentrating chamber containing hydrogel beads and at least one inert agitator; and a concentrate chamber having an inlet communicating with the concentrator outlet through a filter, and having an plasma concentrate outlet port. A process for producing plasma concentrate from plasma from which erythrocytes have been substantially removed, comprising the steps of a) moving the plasma into a concentrating chamber containing hydrogel beads and an agitator to form a hydrogel bead-plasma mixture; b) causing the agitator to stir the hydrogel bead-plasma mixture, facilitating absorption of water by the beads from the plasma, until a hydrogel bead-plasma concentrate is formed; and c) separating the plasma concentrate from the hydrogel beads by passing the plasma concentrate through a filter.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: June 14, 2005
    Assignee: Hanuman LLC
    Inventors: Randel Dorian, Richard Wood Storrs
  • Patent number: 6896796
    Abstract: A membrane process for the removal of sulfur species from a naphtha feed, in particular, a FCC light cat naphtha, without a substantial loss of olefin yield is disclosed. The process involves contacting a naphtha feed stream with a membrane having sufficient flux and selectivity to separate a sulfur deficient retentate fraction from a sulfur enriched permeate fraction, preferably, under pervaporation conditions. Sulfur deficient retentate fractions are useful directly into the gasoline pool. Sulfur-enriched permeate fractions are rich in sulfur containing aromatic and nonaromatic hydrocarbons and are further treated with conventional sulfur removal technologies, e.g. hydrotreating, to reduce sulfur content. The process of the invention provides high quality naphtha products having a reduced sulfur content and a high content of olefin compounds.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: May 24, 2005
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Lloyd Steven White, Richard Franklin Wormsbecher, Markus Lesemann
  • Patent number: 6890315
    Abstract: A method and apparatus for ultrafiltration of blood operating by removing blood from a peripheral blood vessel at a rate of less than two percent of total cardiac output of a patient, extracting fluid at a rate of 0.1 liter to 1.0 liters per hour while retaining cells and proteins in the blood, and returning the concentrated blood to a secondary blood vessel is disclosed. Blood is removed and returned using small gage needles. As a pump circulates blood from the patient, a filter removes ultrafiltrate from the blood using duty cycle or pump control, and a transparent container collects the removed fluid.
    Type: Grant
    Filed: July 18, 2000
    Date of Patent: May 10, 2005
    Assignee: CHF Solutions, Inc.
    Inventors: Howard R. Levin, Mark Gelfand, John O'Mahony, Hans-Dietrich Polaschegg
  • Patent number: 6866783
    Abstract: Membrane module for substance-specific treatment of fluids, such that the module has first and second membrane elements arranged with one end pointing toward a distribution space and the other end pointing toward a collection space. Each of the membrane elements have a cavity formed by a membrane wall. The first membrane elements have their ends embedded in sealing compounds such that their cavities open into the distribution space and collection space. The second membrane elements are also embedded in the sealing compound at the end pointing toward the collection space. The cavities of the second membrane elements open into the collection space, but are closed at the end pointing toward the distribution space. The fluid to be treated flows through the first membrane elements in cross-flow mode. In the process, part of the fluid passes through the membrane wall as a permeate, which then passes through the second membrane elements in dead-end mode.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: March 15, 2005
    Assignee: MAT Adsorption Technologies GmbH & Co. KG
    Inventors: Ulrich Baurmeister, Rudolf Wollbeck
  • Patent number: 6858146
    Abstract: Artificial liver devices and methods for using the devices to purify a biological fluid are disclosed. The methods include the use of living hepatocytes (23) which are either unattached or attached to inert carriers and suspended in a cell culture medium which circulates in the devices with the hepatocytes (23). Blood or plasma passes on one side (7?) of semi-permeable membranes, on the other side (7) of which is the cell culture medium and across which is a concentration and/or pressure gradient. Solutes diffusing across the membrane into the cell culture medium are metabolized by the hepatocytes (23) and/or captured by additional removal means (4). Those undesirable substances which do not diffuse out of the blood or plasma into the hepatocyte containing culture medium are captured by additional removal means (50).
    Type: Grant
    Filed: September 27, 1994
    Date of Patent: February 22, 2005
    Assignee: Xenogenics
    Inventors: Edward F. Myers, Albert P. Li, Achilles A. Demetriou
  • Patent number: 6849184
    Abstract: There is disclosed a process and device for Forward Osmosis (FO) Pressurized Device (FOPD) in general and one hydraulically coupled to a reverse osmosis (RO device for a FOPRO (Forward Osmosis Pressurized Reverse Osmosis). Specifically, there is disclosed a passive device (that is, not needed energy input) for using forward osmosis to generate significant hydraulic pressure that can be used to drive a reverse osmosis process, wherein the reverse osmosis process (not needed external energy to run pumps) can separate salt from salt water to generate potable water from water with high salt content (such as sea water, urine, sweat, brackish water and the like).
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: February 1, 2005
    Assignee: Hydration Technologies Inc.
    Inventors: Keith Lampi, Edward Beaudry, Jack Herron
  • Patent number: 6841074
    Abstract: A method of purifying an electrolyte by bringing the electrolyte into contact with a first effective surface of a separating unit that is permeable to contaminants to be removed from the electrolyte, and bringing a purifying liquid into contact with a second effective surface of the separating unit. A concentration level of contaminants in the purifying liquid is maintained to maintain a contaminant driving force gradient between the electrolyte and the purifying liquid so contaminants transfer from the electrolyte into the purifying liquid. An apparatus for purifying an electrolyte having a first volumetric region for holding the electrolyte, a second volumetric region for holding a purifying liquid, and a separating unit that is permeable to the contaminants to be removed from the electrolyte and which fluidically separates the first and second volumetric regions.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: January 11, 2005
    Assignee: Enthone-OMI (Deutschland) GmbH
    Inventors: Andreas Möbius, Axel König
  • Publication number: 20040262226
    Abstract: The present invention relates to a blood purification apparatus characterized by having a blood osmotic pressure changing means that changes periodically the difference of osmotic pressure between the patient's blood osmotic pressure and the intracellular osmotic pressure of the patient. By using this apparatus, the following effects can be obtained.
    Type: Application
    Filed: April 12, 2004
    Publication date: December 30, 2004
    Inventor: Atsushi Ikeda
  • Publication number: 20040256318
    Abstract: There is disclosed a separation device in which separation flow paths for allowing the passage of only molecules having a predetermined size and smaller sizes are disposed between two flow channels set apart by a partition; and a separation method using the device. According to the separation technique, substances having small sizes such as cells, nucleic acids and proteins can be separated by the use of a small amount of a sample in a short time with excellent resolution, and problems of clogging and the like can also be solved.
    Type: Application
    Filed: April 26, 2004
    Publication date: December 23, 2004
    Inventors: Kazuhiro Iida, Noriyuki Iguchi, Masakazu Baba, Hiroko Someya, Hisao Kawaura, Toru Sano, Toshitsugu Sakamoto
  • Patent number: 6824688
    Abstract: A filter for removing leukocytes from blood comprises a filter media enclosed in a housing. The filter media includes a main filter region comprising a porous membrane structure extending between first and second skin surfaces. The porous membrane structure is formed by intersecting cells having a range of diameters. The cells adjacent to the first skin surface have diameters generally smaller than the diameters of the cells adjacent to the second skin surface. The first skin surface includes an open area defined by pores, which are formed by the intersection of cells with the first skin surface. The majority of the open area is defined by pores having a diameter of between about 12 &mgr;m and 28 &mgr;m.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: November 30, 2004
    Assignee: Baxter International Inc.
    Inventors: Julian P. Breillatt, Jr., Shmuel Sternberg
  • Publication number: 20040226887
    Abstract: The invention is directed to purifying semi-synthetics, and may be conducted off-line or on line with a metal working process. In accordance with the invention, a tangential filter flow path for the microemulsions is provided to tangentially pass through a membrane filter sized to permit passage of microemulsions but inhibit passage of contaminants. The microemulsions are maintained in a tangential flow through the membrane filter with tangential flow velocity in the range of 1 m/s-7 m/s. A low filtering pressure is maintained in the range of 0.05-0.7 bar.
    Type: Application
    Filed: May 15, 2003
    Publication date: November 18, 2004
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Nandakishore Rajagopalan, Todd Rusk
  • Publication number: 20040226886
    Abstract: The present invention includes a membrane construction for selectively transferring a constituent to or from a fluid. The membrane construction includes a multi-layer fluid impermeable support sheet having a plurality of supports on at least one side of the support sheet that form a plurality of flow channels. At least one layer of the multi-layer support sheet is a bonding layer. A fluid permeable layer extends over the flow channels and is bonded to the plurality of the supports by the bonding layer.
    Type: Application
    Filed: May 14, 2003
    Publication date: November 18, 2004
    Applicant: 3M Innovative Properties Company
    Inventors: Jonathan F. Hester, Brian E. Spiewak, Philip D. Radovanovic, Stefan R. Reimann, Robert S. Kody
  • Patent number: 6814865
    Abstract: The invention includes novel anion exchange membranes formed by in situ polymerization of at least one monomer, polymer or copolymer on a woven support membrane and their methods of formation. The woven support membrane is preferably a woven PVC membrane. The invention also includes novel cation exchange membranes with or without woven support membranes and their methods of formation. The invention encompasses a process for using the membranes in electrodialysis of ionic solutions and in particular industrial effluents or brackish water or seawater. The electrodialysis process need not include a step to remove excess ions prior to electrodialysis and produces less waste by-product and/or by-products which can be recycled.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: November 9, 2004
    Assignee: Seventy-Seventh Meridian Corporation LLC
    Inventors: Tejraj Aminabhavi, Padmakar V. Kulkarni, Mahadevappa Y. Kariduraganavar
  • Publication number: 20040217059
    Abstract: Filtration cells capable of direct sampling of a fluid from a container and which may be used for microfiltration of both small and large microvolumes of a fluid to be filtered are provided. Also a process for directly transferring a fluid to be filtered from a container to a filtration cell is described. The filtration cells have one or more reservoirs and are in communication with fluid in a container to be filtered through a piercing instrument connected to a base and support for a reservoir that receives the fluid to be filtered after it passed across a filter membrane. The filtration cell may then be pressurized and vented to allow fluid to be filtered to reciprocally and tangentially pass across a filter membrane between either a container having a fluid to be filtered and a single reservoir for small volume filtrations or between two reservoirs after pressurizing a fluid to be filtered into the reservoirs from a container using a piercing instrument.
    Type: Application
    Filed: May 25, 2004
    Publication date: November 4, 2004
    Applicant: Bio/Data Corporation
    Inventors: William E. Coville, David M. St. Onge
  • Publication number: 20040217058
    Abstract: An apparatus for treating water has a contact zone, a separation zone and a collection zone. The contact zone and the separation zone are located adjacent to each other in a tank. Feed water containing pressurized dissolved air enters and releases bubbles into the separation zone. The bubbles contact the contaminants to form bubble-contaminant complexes that float upwards and spread over the surface of the tank. Bubble-contaminant complexes move to the collection zone. A filtered permeate is withdrawn from the water in the tank through an immersed membrane filtration module located within the separation zone of the tank.
    Type: Application
    Filed: December 15, 2003
    Publication date: November 4, 2004
    Inventors: Jason Cadera, Nicholas Adams
  • Publication number: 20040211729
    Abstract: Processes for recovering oligomers and polymerization catalyst from aqueous waste streams generated during the production of polyalkylene ether glycols are provided. The processes utilize membranes, preferably reverse osmosis or nanofilter membranes. The processes can reduce waste and costs associated with the polymerization of polyalkylene ether glycols by recovery and recycling of glycols and catalysts.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 28, 2004
    Inventors: Hari Babu Sunkara, James Richard Cavall, William Wayne Goudie
  • Patent number: 6808634
    Abstract: The invention relates to a process for cross-flow filtration with membranes. It is mainly characterized by the membranes being moved relative to each other. The invention also relates to a device for carrying out the process, where at least two hollow membrane discs are provided, which rotate around one hollow shaft each.
    Type: Grant
    Filed: October 15, 2001
    Date of Patent: October 26, 2004
    Assignee: Andritz AG
    Inventor: Herbert Zegg
  • Publication number: 20040206704
    Abstract: A filter device having two flow paths. The first flow path having at least one cap and fluid port. The second flow path surrounding the first fluid flow path and having at least one cap that overlaps the cap of the first fluid flow path. The second flow path also having at least one fluid port. The filter device providing a simple arrangement that is easily disinfected or sterilized.
    Type: Application
    Filed: April 27, 2004
    Publication date: October 21, 2004
    Inventors: Uwe Hahmann, Klaus Heilmann, Michael Schonhofen, Gerhard Wiesen
  • Publication number: 20040200775
    Abstract: The present invention relates to a blood filtration method and a blood filtration apparatus.
    Type: Application
    Filed: April 14, 2004
    Publication date: October 14, 2004
    Inventors: Tatsuya Fukuda, Morikazu Miura
  • Patent number: 6796955
    Abstract: A method and apparatus are disclosed for controlling blood flow through an extracorporeal blood circuit having a controller comprising the steps of: withdrawing the blood from a withdrawal blood vessel in a patient into the extracorporeal circuit, treating the blood in the circuit and infusing the treated blood into the patient; detecting an occlusion which at least partially blocks the withdrawal or infusion of the blood; reducing the blood flow rate and the rate of filtration in response to the occlusion, and further prompting the patient to move his arm in an effort to alleviate the occlusion.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: September 28, 2004
    Assignee: CHF Solutions, Inc.
    Inventors: John J. O'Mahony, Andrew Halpert, Edward G. Rychlick, Mark Gelfand
  • Publication number: 20040182788
    Abstract: A plasma concentrator for producing plasma concentrate from a plasma from which erythrocytes have been substantially removed. The device comprises a concentrating chamber having an inlet port and an concentrate outlet, the concentrating chamber containing hydrogel beads and at least one inert agitator; and a concentrate chamber having an inlet communicating with the concentrator outlet through a filter, and having an plasma concentrate outlet port. A process for producing plasma concentrate from plasma from which erythrocytes have been substantially removed, comprising the steps of a) moving the plasma into a concentrating chamber containing hydrogel beads and an agitator to form a hydrogel bead-plasma mixture; b) causing the agitator to stir the hydrogel bead-plasma mixture, facilitating absorption of water by the beads from the plasma, until a hydrogel bead-plasma concentrate is formed; and c) separating the plasma concentrate from the hydrogel beads by passing the plasma concentrate through a filter.
    Type: Application
    Filed: March 21, 2003
    Publication date: September 23, 2004
    Inventors: Randel Dorian, Richard Wood Storrs
  • Publication number: 20040168982
    Abstract: A microvascular network device comprising: a substrate; at least one microchannel; at least one opening to the microchannel for sample entry; at least one opening to the microchannel for sample exit; and an aspirator which causes the sample to traverse the microchannel.
    Type: Application
    Filed: March 1, 2003
    Publication date: September 2, 2004
    Applicant: HEMANEXT, L.L.C.
    Inventors: Mark W. Bitensky, Tatsuro Yoshida, Sergey S. Shevkoplyas
  • Patent number: 6783929
    Abstract: Provided are affinity support materials having intermediate binding affinity for biological samples. Among the materials provided by the present invention are hydrophilic solid supports composed of hydrophilic ligands coupled to hydrophilic matrixes which are compatible with biological samples, for example, a cell line, a biological fluid such as blood, or a tissue cell lysate. The ligands may include affinity property groups and hydrophilic groups pendent from a backbone, and be configured to at least partially resolve components of a biological sample. Affinity supports in accordance with the present invention may be used in a variety of techniques and apparatuses to achieve improved separations of complex biological samples and thereby enhance the results of biological sample component fractionations, enrichments, purifications, expression product determinations and comparisons, and other biological sample processing techniques.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: August 31, 2004
    Assignee: Chiron Corporation
    Inventors: Ronald N. Zuckermann, Eric Beausoleil, Matthew Wachowicz, Srinivas Kothakota