Condition Responsive Patents (Class 219/121.62)
  • Patent number: 8642918
    Abstract: A laser processing system quickly and flexibly modifies a processing beam to determine and implement an improved or optimum beam profile for a particular application (or a subset of the application). The system reduces the sensitivity of beam shaping subsystems to variations in the laser processing system, including those due to manufacturing tolerances, thermal drift, variations in component performance, and other sources of system variation. Certain embodiments also manipulate lower quality laser beams (higher M2 values) to provide acceptable shaped beam profiles.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: February 4, 2014
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Mark A. Unrath, Peter Pirogovsky, Leo Baldwin
  • Publication number: 20130341310
    Abstract: A method is disclosed evaluating a silicon layer crystallized by irradiation with pulses form an excimer-laser. The crystallization produces periodic features on the crystalized layer dependent on the number of and energy density in the pulses to which the layer has been exposed. An area of the layer is illuminated with light. A detector is arranged to detect light diffracted from the illuminated area and to determine from the detected diffracted light the energy density in the pulses to which the layer has been exposed.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 26, 2013
    Inventor: Paul VAN DER WILT
  • Publication number: 20130334181
    Abstract: Laser processing machines and methods for adjusting focused laser beams. Laser processing heads have nozzle with openings admitting primary laser beam. An orientation device is included, as well as at least one sensor to mutually center primary beam and opening of nozzle. A first beam handling unit is arranged near the nozzle opening and may convert primary beam into a secondary wide-band heat beam, and then may emit this secondary beam towards a sensor; or may reflect/scatter at least a portion of the primary beam towards sensor. The sensor detecting the converted secondary beam is arranged within the laser processing head. In an adjustment process, a primary beam may be converted into a wide-band heat radiation as secondary radiation at the beam handling unit, and emitted and/or diverted into a scattered/reflex beam towards the sensor.
    Type: Application
    Filed: July 20, 2013
    Publication date: December 19, 2013
    Inventors: Andreas Luedi, Daniel Cathry
  • Patent number: 8610025
    Abstract: A coating removal apparatus utilizing a common optics path to provide laser pulses to a coated surface and to direct a light illumination reflected from the coated surface to a photosensitive detector and analyzer. The apparatus is an integrated device including a laser source, a beam splitter, scanning optics, a waste removal apparatus, one or more light illuminators, a photosensitive detector, a comparator, and a control logic circuit. Alternatively, the laser source is external to the integrated device and a fiber optic cable is used to connect the laser source to the integrated device.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: December 17, 2013
    Assignee: General Lasertronics Corporation
    Inventors: James W. Thomas, Mitchell R. Wool
  • Patent number: 8610030
    Abstract: A laser beam processing machine comprising a laser beam application means for applying a laser beam to a workpiece held on a chuck table, a processing-feed means, an indexing-feed means, a processing-feed amount detection means for detecting the amount of feed, an indexing-feed amount detection means, and a control means, wherein the condenser constituting the laser beam application means comprises an elliptic spot forming means for forming a focal spot into an elliptic shape and a focal spot turning means for turning the elliptic focal spot on an optical axis at the center thereof; and the control means comprises a storage means for storing the X, Y coordinate values of a processing line formed on the workpiece, obtains the X, Y coordinate values of the current position of a laser beam application position based on detection signals from the processing-feed amount detection means and the indexing-feed amount detection means, and controls the focal spot turning means to ensure that the long axis of the focal
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: December 17, 2013
    Assignee: Disco Corporation
    Inventors: Ryugo Oba, Hiroshi Morikazu
  • Publication number: 20130330844
    Abstract: Laser annealing systems and methods for annealing a semiconductor wafer with ultra-short dwell times are disclosed. The laser annealing systems can include one or two laser beams that at least partially overlap. One of the laser beams is a pre-heat laser beam and the other laser beam is the annealing laser beam. The annealing laser beam scans sufficiently fast so that the dwell time is in the range from about 1 ?s to about 100 ?s. These ultra-short dwell times are useful for annealing product wafers formed from thin device wafers because they prevent the device side of the device wafer from being damaged by heating during the annealing process. Embodiments of single-laser-beam annealing systems and methods are also disclosed.
    Type: Application
    Filed: June 4, 2013
    Publication date: December 12, 2013
    Applicant: Ultratech, Inc.
    Inventors: Andrew M. Hawryluk, Serguei Anikitchev
  • Publication number: 20130319980
    Abstract: The present disclosure relates to a device for monitoring and for controlling a laser cutting process on a workpiece, and a method of using the same. The device includes an image capturing apparatus for capturing an image of a region of the workpiece to be monitored, in which the region of the workpiece to be monitored includes a region of interaction of a laser beam with the workpiece, and an evaluation apparatus for detecting material boundaries of the workpiece using the captured image. The evaluation apparatus is configured to determine at least one characteristic value of the laser cutting process based on a geometric relationship between at least two of the detected material boundaries, the region of interaction, or combinations thereof.
    Type: Application
    Filed: August 7, 2013
    Publication date: December 5, 2013
    Applicant: TRUMPF Werkzeugmaschinen GmbH + Co. KG
    Inventors: Tim Hesse, David Schindhelm
  • Publication number: 20130313232
    Abstract: An improved laser shock hardening method and apparatus which can eliminate spattering of a liquid and waving of the liquid surface upon laser irradiation, and can stably irradiate a workpiece with a laser beam. In a laser shock hardening method for carrying out surface processing of a workpiece in contact with a liquid by irradiating through the liquid the surface of the workpiece with a pulsed laser beam intermittently emitted from a laser irradiation device, the disclosed method provides a solid transparent to the wavelength of the laser, serving as an entrance window to the liquid surface; allowing the liquid to be present in the light path of the laser beam between the solid and the surface of the workpiece; and allowing the laser beam to enter through the solid and irradiating through the liquid the surface of the workpiece with the laser beam.
    Type: Application
    Filed: November 14, 2012
    Publication date: November 28, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: KABUSHIKI KAISHA TOSHIBA
  • Patent number: 8592714
    Abstract: A gripper device for laser welding and vision inspection is provided which includes a frame unit releasably mounted on a front end of an arm of a robot and a clamping unit mounted on the frame unit. Additionally, embodied in this single gripper device is a laser-vision exchange (first) module, a laser-vision sharing (second) module and a laser-vision target (third) module all embodied in a single gripper device to irradiate laser beam for welding a welding object and obtain a vision source of an inspection object.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: November 26, 2013
    Assignee: Hyundai Motor Company
    Inventor: Jung Whan Yeum
  • Patent number: 8586893
    Abstract: A system for thermal processing of a substrate includes a source of radiation, optics disposed between the source and the substrate to receive light from the source of radiation at the optics proximate end, and a housing holding the optics and having a void inside the housing isolated from light emitted from the source. A light detector is disposed within the void in the housing to detect light from the optics emitted into the housing and send a deterioration signal. The system further includes a power supply for the source of radiation, and a controller to control the power supply based on the deterioration signal from the light detector.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: November 19, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Bruce E. Adams, Dean Jennings, Aaron Muir Hunter, Abhilash J. Mayur, Vijay Parihar
  • Publication number: 20130299468
    Abstract: A laser processing system for micromachining a workpiece includes a laser source to generate laser pulses for processing a feature in a workpiece, a galvanometer-driven (galvo) subsystem to impart a first relative movement of a laser beam spot position along a processing trajectory with respect to the surface of the workpiece, and an acousto-optic deflector (AOD) subsystem to effectively widen a laser beam spot along a direction perpendicular to the processing trajectory. The AOD subsystem may include a combination of AODs and electro-optic deflectors. The AOD subsystem may vary an intensity profile of laser pulses as a function of deflection position along a dither direction to selectively shape the feature in the dither direction. The shaping may be used to intersect features on the workpiece. The AOD subsystem may also provide rastering, galvo error position correction, power modulation, and/or through-the-lens viewing of and alignment to the workpiece.
    Type: Application
    Filed: March 25, 2013
    Publication date: November 14, 2013
    Inventors: Mark A. Unrath, William J. Jordens, James Ismail, Hisashi Matsumoto, Brian J. Lineburg
  • Publication number: 20130288487
    Abstract: Provided is a method and system for controlling a spike anneal process on a substrate, comprising selecting one or more objectives, one or more absorbance layers, a technique of modifying absorption of the selected one or more absorbance layers, one or more wavelengths used in a heating device. A substrate modified with the selected technique of modifying absorption is provided. The spike anneal process is performed on the substrate using the selected heating device and selected spike anneal process variables. One or more of the spike anneal process variables, the selected technique of the modifying absorption, the selected one or more wavelengths, and/or the selected heating device are adjusted in order to meet the one or more objectives of the spike anneal process.
    Type: Application
    Filed: October 28, 2012
    Publication date: October 31, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: STEVEN A. SCHEER, MICHAEL CARCASI
  • Patent number: 8571823
    Abstract: A system and a method for controlling the quality of an industrial process, of the type that comprises the steps of: providing one or more reference signals for the industrial process; acquiring one or more real signals that are indicative of the quality of said industrial process; and comparing said one or more reference signals with said one or more real signals in order to identify defects in said industrial process.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: October 29, 2013
    Assignee: CRF Societa Consortile per Azioni
    Inventors: Giuseppe D'Angelo, Giorgio Pasquettaz, Andrea Terreno
  • Patent number: 8563892
    Abstract: A method and apparatus for laser engraving a three-dimensional pattern on a surface. A moveable laser head having a plurality of laser beams is provided. Preferably, the number of laser beams is four. Each beam is capable of being individually adjustably controllable.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: October 22, 2013
    Assignee: Standex International Corporation
    Inventors: Flavio Maschera, Pedro Barrote
  • Patent number: 8563893
    Abstract: A laser processing apparatus comprises a converging lens 31 for converging processing laser light and rangefinding laser light L2 toward a wafer 1, an actuator for actuating the lens 31, a shaping optical system 49 for adding astigmatism to reflected light L3 of the rangefinding laser light, a quadrant photodiode 42 for receiving the reflected light L3 and outputting voltage values corresponding to its light quantities, and a controller for regulating the actuator, and positions a converging point P2 of the rangefinding laser light L2 between a focal point P0 of the lens and the lens 31, so as to make it possible to form a modified region at a position deeper from the front face 3, thereby suppressing adverse effects due to the reflected light L3. The control is based on an arithmetic value subjected to a division by a sum of the voltage values, so as to prevent the arithmetic value from being changed by the quantity of reflected light.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: October 22, 2013
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Koji Kuno, Kenichi Muramatsu, Kazuhiro Atsumi, Tetsuya Osajima
  • Patent number: 8558135
    Abstract: A method for monitoring the quality of laser-machining processes (500), in particular laser-cutting or laser-welding processes, including the operations of: acquiring via sensor means (540), in particular optical sensors, a machining-process signal (Xp) and calculating from said signal representing the process (Xp) parameters (E1, E2, DC) that represent the machining quality during the laser-machining process; and making available (130) corresponding reference parameters (E1r, E2r, DCr) representing a given machining quality, which are calculated from a process reference signal (Xr) acquired via said sensor means (540).
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: October 15, 2013
    Assignee: Prima Industrie S.p.A.
    Inventor: Paolo Calefati
  • Patent number: 8552336
    Abstract: The invention provides methods and systems for the application and reading of micro markings for coding of information for placement on the surfaces of individual very small devices. In preferred embodiments, a two dimensional micro matrix of markings or dots is realized on a scale of a 25 um cell size and smaller.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: October 8, 2013
    Assignee: Triune IP LLC
    Inventors: Eric Blackall, Ross Teggatz
  • Publication number: 20130256277
    Abstract: An apparatus for forming electrical solder connections in a disk drive unit includes: a nozzle device for carrying out soldering on two pre-welding surfaces; a solder ball feeding device for transferring a single solder ball to the nozzle device; a gas pump device for supplying pressurized gases to the nozzle device; a laser device for emitting laser beams to the solder ball,; and a control device including at least one sensor for at least detecting status of the solder ball or pressure in the nozzle device or distance between the nozzle device and the pre-welding surfaces, and a control unit connected with the at least one sensor. The present invention can easily control the solder ball, the pressurized gases and the laser beams, thereby keeping the pressure of the nozzle device and the laser energy stable and, in turn improving the soldering result.
    Type: Application
    Filed: May 14, 2012
    Publication date: October 3, 2013
    Applicant: SAE Magnetics (H.K.) Ltd.
    Inventors: Ning LI, Qin Ping Zhao
  • Patent number: 8546723
    Abstract: A method for generating via-hole interconnections by laser ablation, wherein the layers to be removed and ablated from the substrate are essentially transparent to the laser radiation, but the laser light is absorbed in an underlying absorbing layer with a sufficiently high optical density at the laser wavelength.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: October 1, 2013
    Assignee: Plastic Logic Limited
    Inventors: Thomas M. Brown, Carl Hayton
  • Patent number: 8546722
    Abstract: A laser processing apparatus 1 includes a processing light source 3 emitting processing light; an observation light emitting unit 4 emitting observation light; optical fibers 19 conducting light having a plurality of wavelengths generated at an electronic component 2; a detecting unit 5 detecting the light conducted by the optical fibers 19; and a control unit 31 controlling a light emitting state of the processing light emitting unit 3. The optical fibers 19 are categorized into four groups, and disposed so as to surround an optical fiber 18 conducting the processing light. The optical fibers 19 categorized into the four groups are capable of conducting the observation light to the electronic component 2 every group.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: October 1, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Eiichiro Yamada, Akira Inoue, Koji Nakazato, Hiroshi Kohda, Hitoshi Hatayama, Takemi Hasegawa
  • Patent number: 8541714
    Abstract: A method and system for laser processing targets of different types on a workpiece are provided. The method includes setting a laser pulse width of one or more laser pulses to selectively provide one or more laser output pulses having one or more set pulse widths based on a first type of target to be processed. The method further includes setting a pulse shape of the one or more output pulses to selectively provide the one or more output pulses having the set pulse shape based on the types of targets to be processed. The method still further includes delivering the one or more output pulses having the one or more set pulse widths and the set pulse shape to at least one target of the first type. The method finally includes resetting the laser pulse width of one or more laser pulses to selectively provide one or more laser output pulses having one or more reset pulse widths based on a second type of target to be processed.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: September 24, 2013
    Assignee: Electro Scientific Industries, Inc.
    Inventor: Bo Gu
  • Patent number: 8536485
    Abstract: Systems and methods for forming apertures in microfeature workpieces are disclosed herein. In one embodiment, a method includes directing a laser beam toward a microfeature workpiece to form an aperture and sensing the laser beam pass through the microfeature workpiece in real time. The method can further include determining a number of pulses of the laser beam and/or an elapsed time to form the aperture and controlling the laser beam based on the determined number of pulses and/or the determined elapsed time to form a second aperture in the microfeature workpiece.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: September 17, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Charles M. Watkins, William M. Hiatt
  • Patent number: 8524139
    Abstract: An improved method for laser processing that prevents material redeposition during laser ablation but allows material to be removed at a high rate. In a preferred embodiment, laser ablation is performed in a chamber filled with high pressure precursor (etchant) gas so that sample particles ejected during laser ablation will react with the precursor gas in the gas atmosphere of the sample chamber. When the ejected particles collide with precursor gas particles, the precursor is dissociated, forming a reactive component that binds the ablated material. In turn, the reaction between the reactive dissociation by-product and the ablated material forms a new, volatile compound that can be pumped away in a gaseous state rather than redepositing onto the sample.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: September 3, 2013
    Assignee: FEI Compay
    Inventors: Milos Toth, Marcus Straw
  • Publication number: 20130220981
    Abstract: In a laser processing machine 100 including a plurality of element units containing at least a laser blower unit 3, an optical-path purge unit 24, and a temperature controlling unit 8, a measurement unit and a control unit 10 are provided. The measurement unit measures an elapsed time from a final trigger at which a laser processing operation of the laser processing machine has stopped and no user operation is applied with respect to the laser processing machine. The control unit 10 stops the element units based on the elapsed time after the final trigger, when a condition specified for each of the element units is satisfied.
    Type: Application
    Filed: September 13, 2011
    Publication date: August 29, 2013
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Mototoshi Kumaoka, Tomohiro Kyoto, Naoki Miyamoto
  • Patent number: 8519297
    Abstract: An apparatus for reducing resources for selecting seed to be produced in commercial quantities or for research is disclosed. Samples of seed which are candidates for selection are collected and given an identifier. Specific tissue or structure from candidate seed is removed. A test or analysis is performed on the candidate seed or the removed tissue or structure. Results of the test or analysis are recorded and correlated to the seed's identifier. The results are evaluated and a decision is made whether to select a candidate seed for commercial production or for research. Time, space, and labor associated with growing plants in an experimental plot or greenhouse and taking tissue samples from growing plants is saved.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: August 27, 2013
    Assignee: Pioneer Hi-Bred International, Inc.
    Inventor: Jason Cope
  • Publication number: 20130206736
    Abstract: A laser processing apparatus detects the wavelength of plasma light generated by applying a pulsed laser beam to a workpiece. A plasma detecting unit includes a first bandpass filter for passing only the wavelength of plasma light separated into a first optical path by a beam splitter, a first photodetector for detecting the light passed through the first bandpass filter, a second bandpass filter for passing only the wavelength of plasma light separated into a second optical path by the beam splitter, and a second photodetector for detecting the light passed through the second bandpass filter. In performing laser processing, the pulsed laser beam is stopped when the light intensity detected by the first photodetector is decreased and the light intensity detected by the second photodetector is increased to a peak value and then decreased to a given value slightly less than the peak value.
    Type: Application
    Filed: February 7, 2013
    Publication date: August 15, 2013
    Applicant: DISCO CORPORATION
    Inventor: Disco Corporation
  • Patent number: 8502110
    Abstract: A multi-beam laser device is used to make a microretarder plate, which comprises a plurality of first retardation state areas and second retardation state areas alternating with each other. The device comprises an infrared laser, a beam splitter, and a driving means. The beam splitter is used to split the laser beam into a plurality of equal intensity parallel beams and bring the parallel beams into focus. The driving mechanism is used to drive the beam splitter in one direction, and the beam splitter will scan a plurality of parallel scan lines by the direction on a surface.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: August 6, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Lang Chin Lin, Kuen Lee, Chao Hsu Tsai
  • Publication number: 20130193121
    Abstract: A method and to a corresponding device for continuously welding strips or sheets, guided into abutment, at their abutting edges, comprising at least two welding heads, and tension rollers which are arranged in pairs on both sides of the strips or sheets to be welded perpendicularly to the running direction thereof and which form a gap in the region of a joint of the strips or sheets, through which gap a first energy beam emanating from a first of the at least two welding heads impacts the strip edges or longitudinal edges to be welded, a second of the at least two welding heads being arranged on the opposite side of the strips or sheets a second energy beam of said second welding head impacting in this location the strip edges or longitudinal edges to be welded, characterised in that wherein the at least two welding heads are arranged offset relative to one another in the running direction of the strips or sheets so that the impact points of the energy beams on the strip edges or longitudinal edges to be weld
    Type: Application
    Filed: February 2, 2011
    Publication date: August 1, 2013
    Applicant: THYSSENKRUPP LASERTECHNIK GMBH
    Inventor: Gerhard Alber
  • Publication number: 20130193122
    Abstract: A laser processing apparatus includes a plasma detecting unit for detecting a wavelength of plasma light generated by applying a pulsed laser beam from a laser beam applying unit to a workpiece. The plasma detecting unit includes a bandpass filter for passing only the wavelength of plasma light generated from a first material and a photodetector for detecting the light passed through the bandpass filter. A light intensity signal is output to a controller. The controller controls the laser beam applying unit so that the amplitude of a light intensity is detected according to the light intensity signal output from the photodetector. The pulsed laser beam is stopped after the amplitude of the light intensity is decreased to a predetermined value and a predetermined number of shots of the pulsed laser beam has been applied.
    Type: Application
    Filed: January 8, 2013
    Publication date: August 1, 2013
    Applicant: DISCO CORPORATION
    Inventor: Disco Corporation
  • Publication number: 20130180965
    Abstract: A laser welding method basically includes providing a robot that is moveably in accordance with predetermined movement data, and controlling the controlling a laser beam emitting section of the robot to emit a laser beam onto a predetermined irradiation position of a workpiece to conduct welding. The laser welding method further includes: measuring a current movement position of the robot with respect to a movement position specified in the predetermined movement data; operating of the robot to change the current movement position of the robot to a prescribed position based on the predetermined movement data; and adjusting a laser emission direction by controlling an emission changing section of the laser beam emitting section based on the current movement position of the robot and the predetermined movement data such that a laser beam is emitted from the laser beam emitting section and strikes the predetermined irradiation position of the workpiece.
    Type: Application
    Filed: March 5, 2013
    Publication date: July 18, 2013
    Applicant: NISSAN MOTOR CO., LTD.
    Inventor: NISSAN MOTOR CO., LTD.
  • Patent number: 8487208
    Abstract: A laser beam irradiation apparatus includes a laser beam oscillation unit including a pulse laser beam oscillator for oscillating a pulse laser beam and a cycle frequency setting unit for setting the cycle frequency, an acousto-optic deflection unit for deflecting the optical axis of the pulse laser beam oscillated from the laser beam oscillation section, and a control unit for controlling the acousto-optic deflection unit. The control unit outputs a driving pulse signal having a predetermined time width including a pulse width of the pulse laser beam oscillated from the pulse laser beam oscillator to the acousto-optic deflection unit based on the cycle frequency setting signal from the cycle frequency setting section.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: July 16, 2013
    Assignee: Disco Corporation
    Inventors: Yutaka Kobayashi, Kouichi Nehashi, Keiji Nomaru, Yasuomi Kaneuchi
  • Publication number: 20130168370
    Abstract: A laser-beam device for laser-soldering connection pads of a head-stack assembly (HSA) for a hard-disk drive (HDD). The laser-beam device includes a laser configured to provide a first beam of light, a rectangular flat-top beam-shaping (RFTBS) optic, and a focusing lens. The RFTBS optic is configured to shape the first beam of light into a second beam having a rectangular shape, and a substantially flat-top intensity profile in a far-field region. The focusing lens is configured to transform the second beam into a third beam aligned with connection pads of the HSA. The third beam of light has a substantially flat-top intensity profile and a rectangular beam shape matched to cover the connection pads, and is configured to generate heat about uniformly to reflow solder of the connection pads. A laser-soldering tool and a method, for laser-soldering connection pads of the HSA are also provided.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 4, 2013
    Inventor: Iraj Kavosh
  • Patent number: 8476553
    Abstract: A method of dividing a workpiece includes: forming a pre-machining alteration region in the inside of a region in which no device is formed; detecting the position of the pre-machining alteration region through infrared imaging by imaging means, to thereby recognize a deviation between the pre-machining alteration region and a planned dividing line as machining position correction information; and forming a main machining alteration region by utilizing the machining position correction information, whereby the workpiece can be accurately divided along the planned dividing lines into individual devices.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: July 2, 2013
    Assignee: Disco Corporation
    Inventors: Satoshi Usuda, Kiyoshi Ohsuga, Masaru Nakamura
  • Patent number: 8471174
    Abstract: A method of welding a noble metal tip of a spark plug to an electrode is provided. In the method of welding, in a waveform of a power of a laser beam according to a time of the laser welding, a power of a central portion thereof is smaller than those of both end portions thereof. In addition, the waveform of the power of the laser beam according to a time of the laser welding is a trapezoidal waveform which includes: a rising portion in which the power of the laser beam is gradually increased; a power maintaining portion in which the power of the laser beam after the rising portion is maintained uniform; and a falling portion in which the power of the laser beam after the power maintaining portion is gradually decreased.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: June 25, 2013
    Assignee: Yura Tech Co., Ltd.
    Inventors: Dae Yeol Ohm, Seok Ki Song, Hyun Joong Kim, Byung Heon Shin, Young Tae Yoo
  • Patent number: 8461479
    Abstract: An apparatus and method for processing a plurality of semiconductor parts in a laser-based system adjusts a default recipe to account for work to be performed on at least one part of the plurality of parts. The work to be performed on a part is analyzed using the default recipe and a part-specific recipe including a modified parameter of the default recipe. The default or part-specific recipe is selected based on a desired processing result, and the selected recipe replaces the default recipe to perform the work using the laser-based system.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: June 11, 2013
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Daniel J. Watson, Muir R. Cohen
  • Publication number: 20130140283
    Abstract: A modulation device for directing a mobile tracking device away from an asset is provided. The modulation device includes a continuous wave laser source whose output is directed at a seeker head of the mobile tracking device. The modulation device causes the generation of localized sources within the mobile tracking device and confuses the mobile tracking device as to the true location of the asset. A portable cutting device is disclosed. The portable cutting device may include a portable power supply and a laser source. The portable power supply and laser source of the portable cutting device may be positioned within a backpack and carried by a user. A handheld unit which is coupled to the laser source may be supported by the hands of the operator. The handheld unit provides power generated by the laser source to a barrier to be cut.
    Type: Application
    Filed: January 4, 2013
    Publication date: June 6, 2013
    Inventors: Timothy Bradley, Eric Hillenbrand
  • Publication number: 20130140282
    Abstract: A switchable compound laser working machine comprises a machine body, a first output module, a second output module, a switch module, and a control module. The first and second output modules are respectively provided with a laser tube. The switch module has at least one lens. It is able to change the output direction of laser beams by moving the lens. The control module is used for controlling the laser tubes of the first and second output modules to perform output operation respectively and used for moving the lens of the switch module into output pathway of the laser beams from the first or the second output module to alter the output direction of the laser beams.
    Type: Application
    Filed: December 1, 2011
    Publication date: June 6, 2013
    Inventor: Che-Min Kung
  • Patent number: 8450638
    Abstract: To form a deeper scribed groove with less energy or to improve the scribing speed, without making the apparatus configuration complicated is intended. The present invention relates to a laser scribing method which includes: forming on a workpiece a plurality of beam spots arranged in a state being separated from one another along the scribing direction, and forming a linear scribed groove on the workpiece by moving the plurality of beam spots in the scribing direction. The plurality of beam spots are obtained from a laser beam of a single ray bundle.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: May 28, 2013
    Assignee: Seishin Trading Co., Ltd.
    Inventor: Toshikazu Kajikawa
  • Patent number: 8440933
    Abstract: Systems and methods are provided for monitoring and/or controlling laser drilling processes based on atomic emission spectral emissions that are collected in real time during laser drilling. The systems and methods may be used to monitor and control laser drilling operations across a range of materials, e.g., metals (including alloys) and ceramics, and may be used to identify spectral characteristics that signify hole completion and to manage/discontinue laser drilling operations based thereon. The ability to precisely monitor for hole completion provides the important advantage of reducing unnecessary laser pulses, which otherwise could reduce manufacturing efficiency and/or increase thermal or mechanical damage to the component material. The systems and methods may also be employed to control laser drilling operations so as to enhance hole quality and/or to implement corrective action when/if necessary to ensure that laser drilling operations yield high quality drilled holes.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: May 14, 2013
    Assignee: University of Connecticut
    Inventors: Harris L. Marcus, Robin Bright
  • Patent number: 8436273
    Abstract: A processing information supply apparatus 10 is prepared for a laser processing apparatus for forming a modified region, which becomes a starting point of cutting, along a line to cut within an object to be processed by irradiating the object with laser light while locating a light-converging point within the object. The processing information supply apparatus 10 includes an object information input unit 12 for inputting processing object information on the object to be processed, a processing condition database 19 in which data on processing conditions corresponding to the processing object information is accumulated, a processing condition setting unit 16 for referring to the processing condition data in the database 19 and setting the processing condition for the object based on the processing object information, and a condition information output unit 13 for outputting processing condition information for the set processing condition.
    Type: Grant
    Filed: July 4, 2008
    Date of Patent: May 7, 2013
    Assignee: Hamamatsu Photonics K.K.
    Inventor: Takeshi Sakamoto
  • Publication number: 20130087538
    Abstract: The invention relates to a device and to an associated method for joining sheet metal parts, each with a flange, by laser, wherein the flanges of the sheet metal parts (2) are joined into one connecting flange. The device has a clamping device (5) for clamping the sheet metal parts (2) to be joined in a main clamping direction running transversely to the connecting flange and a beam guidance system for a laser beam (1). Moreover, the device has a compensation shaft (9) which tracks the laser beam (1) according to a relative movement between the connecting flange and a guidance apparatus.
    Type: Application
    Filed: May 25, 2011
    Publication date: April 11, 2013
    Applicant: SCANSONIC MI GMBH
    Inventors: Steffen Walter, Igor Haschke
  • Patent number: 8410392
    Abstract: The invention relates to a machining device (10) comprising at least one machining head (16) designed to provide at least one high-energy machining beam (22), especially an electron or laser beam. Such a machining device is used to remove material from workpieces (28) or for connecting workpieces (28) by bonding, especially by means of welding. According to the invention, at least one scanning device (32) designed as an optical coherence tomograph and provided for surface scanning is associated with the machining head (16). The invention also relates to a method for machining material using a high-energy machining beam for scanning surface areas of a workpiece which is machined, not yet machined, or being machined, by means of an optical coherence tomograph.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: April 2, 2013
    Assignee: Precitec Optronik GmbH
    Inventors: Markus Kogel-Hollacher, Christoph Dietz
  • Patent number: 8397537
    Abstract: A method of forming, on the surface of a glass material, a raised feature having a height within a target range, comprising (1) providing a glass material having a surface, (2) providing the glass material locally, at a location at or below the surface, with an amount of energy causing local expansion of the glass material so as to raise a feature on the surface at the location, (3) detecting the height of the raised feature or the height over time of the raised feature, (4) (a) if the height is below or approaching a value below the target range, providing the glass material at the location with energy in a greater amount, or (b) if the height is above or approaching a value above the target range, providing the glass material at the location with energy in a lesser amount, and (5) repeating steps (3) and (4) as needed to bring the height within the target range. Methods and devices for automating this process are also disclosed.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: March 19, 2013
    Assignee: Corning Incorporated
    Inventors: Richard R Grzybowski, Alexander Mikhailovich Streltsov, James Scott Sutherland
  • Patent number: 8399798
    Abstract: The invention relates to a method for incorporating a structure into a surface of a workpiece that is transparent in a certain wavelength range. For this purpose the surface to be structured is brought into contact with a target surface containing a target material by means of a laser beam, the wavelength of which is within the certain wavelength range, energy is introduced at least at one position through the workpiece and into the boundary region of the surface to be structured and the target surface such that target material is deposited at the respective position in and/or on the surface to be structured. For this purpose a pulsed laser beam having a pulse repetition rate of more than 10 kHz is used, which is focused such that the focus is positioned on or under the target surface, wherein the laser beam has a power density in the focus of more than 2000 W/mm2. The invention further relates to a device for introducing a structure into a surface of a workpiece transparent in a certain wavelength range.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: March 19, 2013
    Assignee: Panasonic Electric Works Europe AG
    Inventor: Christoph Stahr
  • Publication number: 20130062323
    Abstract: Systems and techniques are disclosed for removing contaminants from a surface of a thermal barrier coating (TBC) and, optionally, estimating the remaining lifetime of the TBC. Laser induced breakdown spectroscopy (LIBS) is one method that may be used to remove contaminants from a surface the TBC prior to performing photo luminescence piezo spectroscopy (PLPS) or another spectroscopic technique on a thermally grown oxide (TGO). LIBS may facilitate monitoring substantially in real-time the chemical composition of the material removed. LIBS may be used to remove substantially only the contaminants with minimal effects on the underlying TBC. One technique for determining when to stop removal of material from the TBC is cross-correlation between a spectrum collected from the ablated material and a reference spectrum collected from a reference substrate. In some embodiments, the same system may be used to perform LIBS to remove impurities and PLPS to measure stress in the TGO.
    Type: Application
    Filed: November 16, 2010
    Publication date: March 14, 2013
    Applicants: UNIVERSITY OF CONNECTICUT, ROLLS-ROYCE CORPORATION
    Inventors: Waled T. Hassan, William J. Brindley, Eric H. Jordan, Michael W. Renfro
  • Patent number: 8378256
    Abstract: A method of sealing a surface crack in a member is provided includes steps of irradiating a region of the member at which the crack is produced with a heating laser beam so as to heat the region to a temperature lower than a melting point of the member, and then irradiating a region of the member at which the crack is produced with a welding laser beam subsequent to irradiation of the heating laser beam so as to heat the region to a temperature higher than or equal to the melting point of the member, thereby sealing an opening of the surface crack of the member.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: February 19, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masataka Tamura, Yoshinobu Makino, Wataru Kono, Katsunori Shiihara, Yoshimi Tanaka, Masaki Yoda, Yoshio Hamamoto, Satoshi Okada, Hiromi Kato
  • Patent number: 8362389
    Abstract: Aims are to provide a tubular-body residual-stress improving apparatus and an adjustment method thereof capable of adjusting irradiation position with favorable reproducibility, even when an optical fiber is eccentric. In the tubular-body residual-stress improving apparatus, an optical control unit (5) includes a rotational hold mechanism (9) for holding an optical fiber (6) in a manner that the optical fiber (6) is rotatable in a circumferential direction of the optical fiber (6), and, if a position of an intensity peak of the laser beam from the optical fiber (6) in an axial direction of the tubular body (2) is offset from the center of an irradiation profile, a position at which the optical fiber (6) is held in the circumferential direction is adjusted by the rotational hold mechanism (9) so as to eliminate the offset or to minimize an influence of the offset.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: January 29, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shuho Tsubota, Takashi Ishide, Takashi Akaba, Hironori Onitsuka, Kenichi Kawanishi
  • Patent number: 8358671
    Abstract: Processing a workpiece with a laser includes generating laser pulses at a first pulse repetition frequency. The first pulse repetition frequency provides reference timing for coordination of a beam positioning system and one or more cooperating beam position compensation elements to align beam delivery coordinates relative to the workpiece. The method also includes, at a second pulse repetition frequency that is lower than the first pulse repetition frequency, selectively amplifying a subset of the laser pulses. The selection of the laser pulses included in the subset is based on the first pulse repetition frequency and position data received from the beam positioning system. The method further includes adjusting the beam delivery coordinates using the one or more cooperating beam position compensation elements so as to direct the amplified laser pulses to selected targets on the workpiece.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: January 22, 2013
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Brian W. Baird, Kelly J. Bruland, Clint R. Vandergiessen, Mark A. Unrath, Brady Nilsen, Steve Swaringen
  • Patent number: 8350183
    Abstract: A method for machining a transparent material by the non-linear absorption of pulsed laser radiation, in the region of a laser focus, includes the following steps: a laser wavelength of between 300 and 1000 ?m is selected; and laser impulses having a temporally flat beam profile are applied. The method is characterized in that the irradiation intensity is selected from an interval pre-determined for the material to be machined, in which plasma is formed without plasma luminescence. An apparatus for laser treating a transparent material includes structure to set an irradiance and inspect the treatment as being within a defined interval.
    Type: Grant
    Filed: June 7, 2008
    Date of Patent: January 8, 2013
    Assignee: Universitat Zu Lubeck
    Inventors: Alfred Vogel, Norbert Linz, Sebastian Freidank
  • Patent number: 8319149
    Abstract: The time between illumination of adjacent zones of a workpiece edge is extended by a long cool-down period or delay, by interlacing a radiation beam scanning pattern. During the cool-down period, the beam successively scans (along the fast axis) two rows separated by about half the wafer diameter, and travels back and then forth (along the slow axis) across the distance between the two rows, while the radiation beam source continuously generates the beam.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: November 27, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Kai Ma, Abhilash J. Mayur, Vijay Parihar