Using Laser Patents (Class 219/121.6)
  • Patent number: 10892159
    Abstract: Aspects of the disclosure provide for mechanisms for producing group III-nitride substrates. In accordance with some embodiments, a method for producing a group III-nitride substrate is provided. The method may include: forming, on a growth template, an epitaxial layer of a group III-nitride material comprising a surface with a first crystallographic orientation, wherein the first crystallographic orientation comprises a semipolar orientation or a nonpolar orientation; and separating the epitaxial layer of the group III-nitride material from the growth template to produce the group III-nitride substrate, wherein the growth template comprises a semiconductor layer of the group III-nitride material. The group III-nitride material may include gallium.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: January 12, 2021
    Assignee: Saphlux, Inc.
    Inventors: Jie Song, Jung Han
  • Patent number: 10889098
    Abstract: A method for generating control data is a method for generating control data for manufacturing a product having a designated shape using an additive manufacturing technology. The control data includes a path of a nozzle for supplying a material. The method for generating the control data includes: determining a cutting path for cutting the designated shape by a tool; and determining the path of the nozzle by reproducing the cutting path temporally reversely.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: January 12, 2021
    Assignees: MACHINE TOOL TECHNOLOGIES RESEARCH FOUNDATION, DMG MORI CO., LTD.
    Inventors: Kazuo Yamazaki, David Carter, Makoto Fujishima, Yohei Oda
  • Patent number: 10882144
    Abstract: A laser shielding device interposed between the camera and the reflected light and is provided with a plurality of plates juxtaposed at an interval. Of the plurality of plates, an incident-side plate disposed on an incident side of the reflected light may be made larger in heat capacity compared to other plates disposed on the camera side of the incident-side plate.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: January 5, 2021
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Kenji Kitamura
  • Patent number: 10854457
    Abstract: An enhanced symmetric multicycle rapid thermal annealing process for removing defects and activating implanted dopant impurities in a III-nitride semiconductor sample. A sample is placed in an enclosure and heated to a temperature T1 under an applied pressure P1 for a time t1. While the heating of the sample is maintained, the sample is subjected to a series of rapid laser irradiations under an applied pressure P2 and a baseline temperature T2. Each of the laser irradiations heats the sample to a temperature Tmax above its thermodynamic stability limit. After a predetermined number of temperature pulses or a predetermined period of time, the laser irradiations are stopped and the sample is brought to a temperature T3 and held at T3 for a time t3 to complete the annealing.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: December 1, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, Francis J. Kub, Alan G. Jacobs
  • Patent number: 10838406
    Abstract: A system includes a computing device that generates at least one process script for the modification to a glass ceramic substrate and at least one pattern script that corresponds to the process script. The computing device also merges the process script with the pattern script and generates a plurality of command signals that are based on the merged process and pattern scripts. An energy source generates a plurality of light beams based on the generated command signal(s). A waveform apparatus generates at least one waveform signal to customize the generated light beams based on the generated command signal(s). At least one modulating component modulates the generated light beams based on generated command signal(s). An optical assembly is configured to apply the modulated plurality of light beams to the glass ceramic substrate.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: November 17, 2020
    Assignee: The Aerospace Corporation
    Inventor: Frank Edward Livingston
  • Patent number: 10814430
    Abstract: A flow control device for an additive manufacturing system is provided. The flow control device includes a gas supply configured to discharge a gas, a first flow modifier configured to modify at least one flow characteristic of a first portion of the gas, and a second flow modifier configured to cooperate with the first flow modifier to modify the at least on flow characteristic of the first portion of the gas. The second flow modifier is further configured to modify at least one flow characteristic of a second portion of the gas, and the first flow modifier and the second flow modifier are configured to cooperate to direct at least a portion of the first portion and the second portion of the gas towards a melt pool in a plurality of particles.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: October 27, 2020
    Assignee: General Electric Company
    Inventors: Christian Wakelam, Rene du Cauze de Nazelle, Daniel Fischer, Hannes Haderlein, Viktor Engel, Florian Hoefler, Rachel Wyn Levine
  • Patent number: 10819079
    Abstract: An apparatus may include a diode-pumped solid-state laser oscillator configured to output a pulsed laser beam, a modulator configured to modify an energy and a temporal profile of the pulsed laser beam, and an amplifier configured to amplify an energy of the pulse laser beam. A modified and amplified beam to laser peen a target part may have an energy of about 5 J to about 10 J, an average power (defined as energy (J)×frequency (Hz)) of from about 25 W to about 200 W, with a flattop beam uniformity of less than about 0.2. The diode-pumped solid-state oscillator may be configured to output a beam having both a single longitudinal mode and a single transverse mode, and to produce and output beams at a frequency of about 20 Hz.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: October 27, 2020
    Assignee: LSP Technologies, Inc.
    Inventors: Jeff Dulaney, David Sokol, Mark E. O'Loughlin, Keith Glover, Gary May
  • Patent number: 10792758
    Abstract: A laser machining device includes a storage unit configured to store a reference value based on an energy amount of returning light when laser light is emitted, in a state where external optical system is not contaminated, toward a reflection plate with a predetermined output low enough not to melt or deform the reflection plate such that a focus position of the laser light aligns with a predetermined position, and a processing condition correction unit configured to correct, prior to laser machining, a processing condition in accordance with the contamination level of the external optical system, wherein the processing condition correction unit includes a laser power correction section configured to correct a laser power of the processing condition based on the measurement value measured by a returning light measurement unit and the reference value.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: October 6, 2020
    Assignee: Fanuc Corporation
    Inventor: Takashi Izumi
  • Patent number: 10786868
    Abstract: The invention relates to a laser nozzle that can be used in laser cutting, notably with a fibre or disc laser, comprising a nozzle body comprising an axial housing passing axially through said nozzle body and comprising a first outlet orifice situated at the front face of the nozzle body, and a movable element comprising a skirt-forming front part arranged in the axial housing of the nozzle body, said movable element being capable of translational movement in the axial housing of the nozzle body and comprising an axial passage with a second outlet orifice opening onto the skirt-forming front part.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: September 29, 2020
    Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Isabelle Debecker, Thomas Jouanneau, Philippe Lefebvre
  • Patent number: 10773340
    Abstract: A metal powder additive manufacturing system and method are disclosed that use increased trace amounts of oxygen to improve physical attributes of an object. The system may include: a processing chamber; a metal powder bed within the processing chamber; a melting element configured to sequentially melt layers of metal powder on the metal powder bed to generate an object; and a control system configured to control a flow of a gas mixture within the processing chamber from a source of inert gas and a source of an oxygen containing material, the gas mixture including the inert gas and oxygen from the oxygen containing material. The method may result in an object having a surface porosity of no greater than approximately 0.1%, and an effective density of greater than approximately 99.9%.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: September 15, 2020
    Assignee: General Electric Company
    Inventors: Donnell Eugene Crear, Chad Joseph Dulkiewicz, Archie Lee Swanner, Jr.
  • Patent number: 10777399
    Abstract: A method of analysis is disclosed comprising providing a sample on an insulating substrate such as a petri dish (4) and contacting e.g. the rear surface of the insulating substrate with a first electrode (9). The method further comprises contacting the sample with a second electrode (2) and applying an AC or RF voltage to the first and second electrodes (9,2) in order to generate an aerosol from the sample.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: September 15, 2020
    Assignee: Micromass UK Limited
    Inventors: Steven Derek Pringle, Lajos Godorhazy, Daniel Simon, Daniel Szalay, Zoltan Takats, Tamas Karancsi
  • Patent number: 10772763
    Abstract: The invention relates to treatment apparatus (10) for correcting a refractive error of an eye (12) that includes a laser device (14) for separating corneal tissue by means of laser radiation (16); a control device (18) designed to control the laser device (14) to emit the laser radiation (16) for cutting out and/or ablating a volume (24) out of the surface (26) of the cornea (22) of the eye (12) in dependency on a measured pachymetry of the cornea (22) and the refractive error of the eye (12), whereby the cut-out and/or ablated volume (24) in the surface (20) of the cornea (22) results in a shape of a closed ring, a partial ring, a crescent or a crescent shaped closed ring. A method for controlling such an apparatus for correcting a refractive error of an eye, and to a protective mask for an eye are also provided.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: September 15, 2020
    Inventor: Cesar C. Carriazo
  • Patent number: 10768214
    Abstract: A multi-view planar near-field scattering tomography system is provided herein. In one aspect the system is developed based on the reformulated signal subspace approach. Utilized for solving the electromagnetic inverse scattering problem, the signal subspace approach is reformulated. The present invention pertains to a computationally efficient approach to an electromagnetic inverse scattering-based permittivity profile estimation technique. In a second aspect, the system is developed at the millimeter-wave and THz frequency range to ensure accuracy by eliminating the multipath effects and without the need for an Anechoic chamber or water as a background medium for clinical, security, and manufacturing applications.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: September 8, 2020
    Assignee: OZ Optics Limited
    Inventors: Safieddin Safavi-Naeini, Shahed Shahir
  • Patent number: 10758417
    Abstract: A method of verifying a laser scan at a predetermined location within an object includes imaging at least a portion of the object, the resulting image comprising the predetermined location; identifying the predetermined location in the image, thereby establishing an expected scan location of the laser scan in the image; performing a laser scan on the object by scanning a focal point of the laser beam in a scanned area; detecting a luminescence from the scanned area and identifying an actual scanned location within the image based on the detected luminescence; and determining whether the difference between the actual scanned location and the expected scan location is within a threshold value.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: September 1, 2020
    Assignee: AMO Development, LLC
    Inventors: Javier G. Gonzalez, John S. Hart
  • Patent number: 10751766
    Abstract: A laser ablation system comprises a volume configured to contain a workpiece and a carriage configured to move within the volume relative to a workpiece. The carriage comprises a clamping system, a laser enclosure, and a laser ablation work head within the laser enclosure. The clamping system is configured to clamp the workpiece and seal against a portion of the workpiece.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: August 25, 2020
    Assignee: The Boeing Company
    Inventors: Matthew C. Johnson, Bruce J. Hanninen
  • Patent number: 10722944
    Abstract: A system for the additive manufacturing of components includes a powder receptacle, which is designed to receive a powdered material in the form of a starting material for a component to be manufactured, a construction platform that is mounted within the powder receptacle and is mounted so as to rotate relative to the powder receptacle about a rotational shaft, a lowering drive, which is designed to incrementally or continuously lower the construction platform within the powder receptacle, and an energy input apparatus, which is arranged above an opening in the powder receptacle and is designed to carry out locally selective melting or hardening of a powdered material introduced into the powder receptacle on a surface of the material. The construction platform can be tilted by an angle of inclination relative to a rotational shaft of the rotatable mount.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: July 28, 2020
    Assignee: Airbus Operations GmbH
    Inventor: Thorsten Michael Wienberg
  • Patent number: 10727644
    Abstract: A laser device has a plurality of laser diodes; a plurality of optical elements installed corresponding to the plurality of the laser diodes; a plurality of units formed by fixing the laser diodes and the optical elements per each laser diode and installed corresponding to the plurality of the laser diodes; a converging element that converges laser beams emitted from the plurality of the laser diodes to a fiber; a housing element houses the plurality of the units and the converging element; and a thermal transfer plate performs heat dissipation of the plurality of the units. The heat resistance reducing element having a heat resistance value that is smaller than a predetermined value is installed between the thermal transfer plate and each unit or the processing for reducing the heat resistance is performed.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: July 28, 2020
    Assignee: SHIMADZU CORPORATION
    Inventors: Junki Sakamoto, Ichiro Fukushi, Akiyuki Kadoya, Kazuma Watanabe, Naoya Ishigaki, Jiro Saikawa, Shingo Uno, Tomoyuki Hiroki, Koji Tojo
  • Patent number: 10722977
    Abstract: A scanning device including: a first, second and third scan mirrors; a first and second relay lenses; and a mirror; wherein the rotational axis of the second scan mirror is tilted with a first angle with respect to a reference plane, the optical axis of the first relay lens is tilted with the first angle with respect to the reference plane, the optical axis of the second relay lens is parallel to the reference plane and is orthogonal to that of the first relay lens, and the rotational axis of the first scan mirror is parallel to the reference plane; and the first and second scan mirrors, and first and second relay lenses are arranged such that the respective axes of the first and second scan mirrors, and first and second relay lenses lie on a plane that is tilted at the first angle with respect to the reference plane.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: July 28, 2020
    Assignee: Thorlabs, Inc.
    Inventor: Hongzhou Ma
  • Patent number: 10712500
    Abstract: The present disclosure provides a semiconductor device, including a semiconductive substrate, a dielectric stack disposed over the semiconductive substrate to form a wall of a grating coupler opening, and an etch stopper interfacing with two sublayers of the dielectric stack and partially separating the interface of the two sublayers. The etch stopper has a resistance to a fluorine solution that is higher than that of the two sublayers. A method of manufacturing the semiconductor device is also provided.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: July 14, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Kai-Fung Chang, Lien-Yao Tsai, Chien Shih Tsai, Shih-Che Hung
  • Patent number: 10702209
    Abstract: Methods and systems for planning and forming incisions in a cornea, lens capsule, and/or crystalline lens nucleus are disclosed. A method includes measuring spatial dispositions, relative to a laser surgery system, of at least portions of the corneal anterior and posterior surfaces. A spatial disposition of an incision of the cornea is generated based at least in part on the measured corneal anterior and posterior spatial dispositions and at least one corneal incision parameter. A composite image is displayed that includes an image representative of the measured corneal anterior and posterior surfaces and an image representing the corneal incision.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: July 7, 2020
    Assignee: AMO Development, LLC
    Inventors: Bruce Woodley, Javier Gonzalez, Katrina Bell Sheehy, Daniel Oliveira Santos, Darrel Q. Pham, Paul Daniel Gallagher, Lawrence Edward Miller
  • Patent number: 10702949
    Abstract: A laser cutting device includes: a main body configured to emit a laser beam, a cutting point being formed at a position where the laser beam intersects a material to be cut; a gas blow pipe, of which a gas blow mouth configured to blow out a gas flow that is inclined to the laser beam, the gas flow capable of aiming at the cutting point; a gas suction pipe, of which a gas suction mouth being located downstream of a flowing direction of the gas flow, relative to the cutting point; the gas blow pipe and the gas suction pipe being attached respectively to the main body by means of an adjustment mechanism, such that positions of the gas blow pipe and the gas suction pipe are adjustable to adapt to change of a laser beam cutting route.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: July 7, 2020
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Haibin Zhu, Xiaohu Li, Lu Wang
  • Patent number: 10695853
    Abstract: A device for the application of solder material deposits includes a conveying device for conveying solder material deposits from a reservoir at an upper housing part toward an application device at a lower housing part. The conveying device can be moved from a receiving position P1 to a transfer position P2, in which the solder material deposit is exposed to a pressure gas via a pressure bore formed in the upper housing part and from which the solder material deposit is transferred to an application nozzle in an application position P3. The application device includes an application duct formed in the lower housing and forms a lower section of a transmission duct which serves to transmit laser radiation to the solder in the application nozzle. The application duct is inclined at an application angle ? with respect to the rotation axis.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: June 30, 2020
    Assignee: PAC TECH—PACKAGING TECHNOLOGIES
    Inventors: Ghassem Azdasht, Thorsten Krause
  • Patent number: 10682701
    Abstract: An apparatus for producing a three-dimensional work piece, the apparatus comprises a process chamber accommodating a carrier for receiving a raw material powder, an irradiation device for selectively irradiating electromagnetic or particle radiation onto the raw material powder on the carrier in order to produce a work piece made of said raw material powder by an additive layer construction method, a first gas inlet for supplying gas to the process chamber and a gas outlet for discharging gas from the process chamber, wherein the first gas inlet and the gas outlet are configured and arranged in such a manner that a first gas flow across the carrier is generated, a transmission element which allows the transmission of the electromagnetic or particle radiation emitted by the irradiation device into the process chamber, and a second gas inlet for supplying gas to the process chamber, wherein the second gas inlet is configured and arranged in such a manner that a second gas flow in a direction facing away from th
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: June 16, 2020
    Assignee: SLM Solutions Group AG
    Inventors: Jan Wilkes, Toni Adam Krol, Dieter Schwarze
  • Patent number: 10675708
    Abstract: This disclosure relates to methods for cutting metal workpieces in sheet form with a thickness of at least 2 mm. A laser beam is positioned in a nozzle opening of a cutting gas nozzle configured to cut via the laser beam and a cutting gas so that a beam axis of the laser beam along a direction of propagation of the laser beam is at least a distance of 3 mm from a rear opening wall portion of the nozzle opening. Cutting gas configured for concurrently exiting the nozzle opening with the laser beam is emitted through the nozzle opening at a cutting gas pressure (p) of at most 10 bar.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: June 9, 2020
    Assignee: TRUMPF Werkzeugmaschinen GmbH + Co. KG
    Inventors: Martin Bea, Tobias Kaiser, Volker Rominger
  • Patent number: 10667556
    Abstract: The present disclosure is a handheld apparatus that vaporizes plant-based or synthetic compounds, for the purpose of inhalation, or diffusion into an external environment. More specifically, the disclosure describes a handheld apparatus wherein a laser beam from an internal laser unit heats compounds, such as dried plant, tinctures, resins, or essential oils, to the compound's vaporization temperature for inhalation, or diffused as part of aromatherapy or other holistic therapeutic treatments.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: June 2, 2020
    Assignee: Lumenary, Inc.
    Inventor: Robert Schneider
  • Patent number: 10668532
    Abstract: An additively manufactured assembly including an additively manufactured component with an edge oriented with respect to a recoater blade direction and an non-contact support that does not form a part of the additively manufactured component, the additively manufactured support located adjacent the edge. A method of additively manufacturing a component includes additively manufacturing an component with an edge oriented with respect to a recoater blade direction simultaneous with additively manufacturing an non-contact support that does not form a part of the component, the additively manufactured support located adjacent the edge.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: June 2, 2020
    Assignee: Raytheon Technologies Corporation
    Inventors: Adam Z Doherty, Christopher F O'Neill, John P Rizzo, Jr.
  • Patent number: 10661512
    Abstract: A system comprises a laser projector, an automated material placement head, and a laser inspection system. The laser projector is configured to project boundary projection line onto a part. The automated material placement head is configured to lay down a course of composite material. The laser inspection system is connected to the automated material placement head and configured to project a laser beam into a laser line parallel to the motion of the automated material placement head in laying the composite material.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: May 26, 2020
    Assignee: The Boeing Company
    Inventors: Roger W. Engelbart, Reed Hannebaum, Eric Rector
  • Patent number: 10647060
    Abstract: A method of manufacturing three-dimensional (3D) objects is provided. The method includes generating a plan for printing a plurality of 3D objects in a 3D printing medium at least in part by identifying an unprinted area of the 3D printing medium for insertion of a cooling device and determining where at least some of the plurality of 3D objects are to be printed in the 3D printing medium such that none of the at least some of the plurality of 3D objects, when printed, intersect the identified unprinted area for the insertion of the cooling device. The method further includes printing, using a 3D printer, the at least some of the plurality of 3D objects in accordance with the plan and, after the printing, inserting the cooling device into the unprinted area of the 3D printing medium and cooling the 3D printing medium using the cooling device.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: May 12, 2020
    Assignee: Shapeways, Inc.
    Inventor: William Carter Davis
  • Patent number: 10632566
    Abstract: A method for controlling, during metal processing, the input energy from an energy point source that directs focused emitted energy onto a metal workpiece having a geometry, wherein the directed focused emitted energy creates a melt pool and hot zone on the workpiece that emit radiation during the process. The method comprises determining a wavelength range for the emitted radiation that is within a spectral range of radiation emitted by the hot zone during processing that is comparatively high in amount in relation to the amount of radiation emitted by the melt pool in that spectral range during processing; directing the beam onto the workpiece to generate a melt pool and hot zone on the structure; measuring the intensity of radiation within the determined wavelength range; and adjusting the input energy from the energy point source based upon the measured intensity of radiation within the determined wavelength range.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: April 28, 2020
    Assignee: Product Innovation and Engineering L.L.C.
    Inventor: Todd Eugene Sparks
  • Patent number: 10597781
    Abstract: The present disclosure relates to a method for producing a coating film having high heat resistance, high hardness and wear resistance, a coating film having high heat-resistance, high hardness and wear resistance produced using the method, and a cutting tool including the same. The method includes forming a metal nitride layer on a metal base; forming a carbon layer on the metal nitride layer; and irradiating a laser into the carbon layer to add carbons into a portion of the metal nitride layer, thereby to form a carburized layer.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: March 24, 2020
    Assignee: Pusan National University Industry-University Cooperation Foundation
    Inventors: Hee Soo Lee, Seol Jeon, Ji Seung Ryu, Bu Young Kim, Seung Hyeon Jo, Eun Pyo Hong, Yang Do Kim, Hyun Jo Yoo
  • Patent number: 10582856
    Abstract: A surgical assistance system includes an endomicroscope (4) and an imaging device (2) for capturing image data, and a transmission unit (63) for transmitting the image data. A pathology unit (70) includes a receiving unit (74) for receiving the image data and a display unit (76) displays the image data. A data connection (69) connects the transmission unit (63) to the receiving unit (74). The imaging device (2) and/or the endomicroscope (4) has at least one functional unit assigned to a functional control unit (65). A data receiving unit (64) receives data from the pathology unit (70). The pathology unit (70) has an input unit (77) for inputting functional control data for the functional control unit (65) and a transmitter unit (73) transmits the functional control data to the devices. The data receiving unit (64) receives and relays the functional control data to the functional control unit (65).
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: March 10, 2020
    Assignee: CARL ZEISS MEDITEC AG
    Inventors: Christoph Hauger, Roland Guckler, Gerald Panitz
  • Patent number: 10583532
    Abstract: A metal powder additive manufacturing system and method are disclosed that use increased trace amounts of oxygen to improve physical attributes of an object. The system may include: a processing chamber; a metal powder bed within the processing chamber; a melting element configured to sequentially melt layers of metal powder on the metal powder bed to generate an object; and a control system configured to control a flow of a gas mixture within the processing chamber from a source of inert gas and a source of an oxygen containing material, the gas mixture including the inert gas and oxygen from the oxygen containing material.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: March 10, 2020
    Assignee: General Electric Company
    Inventors: Donnell Eugene Crear, Chad Joseph Dulkiewicz, Archie Lee Swanner, Jr.
  • Patent number: 10571615
    Abstract: Embodiments described herein include broadband light source system comprising an optic coupler including a plurality of input branches coupled to an output. The system includes a plurality of light sources coupled to the plurality of input branches. Each light source outputs light having a different wavelength distribution than any other light source of the plurality of light sources. The output emits a broadband light source comprising a combined spectral output of the plurality of light sources.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: February 25, 2020
    Assignee: FILMETRICS, INC.
    Inventor: Scott A. Chalmers
  • Patent number: 10571708
    Abstract: A beam shaping device includes an SAC and an FAC. The SAC is placed between an LD bar and the FAC. A first incident surface and a first exit surface are formed in the SAC. The first incident surface includes a plurality of incident-side lens surfaces aligned in a slow axis direction X. The incident-side lens surfaces each have, in section orthogonal to a fast axis direction Y, a shape convexed toward the outside of the SAC and, in section orthogonal to the slow axis direction X, a shape concaved toward the inside of the SAC. The shape of the first incident surface and the shape of the first exit surface in section orthogonal to the slow axis direction X are concentric arcs having a point on an emission end surface of a light emitting layer as the center.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: February 25, 2020
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Nobutaka Kobayashi, Chisako Oda, Daiji Morita, Junichi Nishimae
  • Patent number: 10553450
    Abstract: A method for thermally processing a minimally absorbing thin film in a selective manner is disclosed. Two closely spaced absorbing traces are patterned in thermal contact with the thin film. A pulsed radiant source is used to heat the two absorbing traces, and the thin film is thermally processed via conduction between the two absorbing traces. This method can be utilized to fabricate a thin film transistor (TFT) in which the thin film is a semiconductor and the absorbers are the source and the drain of the TFT.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: February 4, 2020
    Assignee: NCC NANO, LLC
    Inventors: Kurt A. Schroder, Robert P. Wenz
  • Patent number: 10538036
    Abstract: A laser welding method and system for joining portions of first and second workpieces of thermoplastic material that is partially permeable to a laser beam but absorbs radiation from the laser beam. The first and second workpieces, which are made of material that absorbs radiation from a laser beam, are clamped together. A mask is placed on a first surface of the first workpiece, the first surface being opposite the surface engaging the second workpiece. The mask is impermeable to a laser beam and forms a slot for passing a laser beam to the portion of the first surface of the upper workpiece exposed by the slot, so that heating and melting of the material of the workpieces is limited to the width of the slot. A laser beam is directed onto the slot and moved in a manner to illuminate the slot to melt and join the workpieces.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: January 21, 2020
    Assignee: Dukane IAS, LLC
    Inventors: Alexander Savitski, Grzegorz Zdzislaw Bugaj, Leo Klinstein
  • Patent number: 10532431
    Abstract: A planar object to be processed 1 comprising a hexagonal SiC substrate 12 having a front face 12a forming an angle corresponding to an off-angle with a c-plane is prepared. Subsequently, the object 1 is irradiated with pulse-oscillated laser light L along lines to cut 5a, 5m such that a pulse pitch becomes 10 ?m to 18 ?m while locating a converging point P of the laser light L within the SiC substrate 12. Thereby, modified regions 7a, 7m to become cutting start points are formed within the SiC substrate 12 along the lines 5a, 5m.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: January 14, 2020
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Junji Okuma, Takeshi Sakamoto
  • Patent number: 10500017
    Abstract: A digital control laser automatic tooth preparation method and device and a tooth positioner are provided. The device includes an intra-oral three-dimensional scanner, a dental laser, an oral working end, an oral and maxillofacial cone beam CT scanner, a computer, a tooth positioner, a negative-pressure suction device and a real-time monitoring device. The computer is connected respectively with the intra-oral three-dimensional scanner, the dental laser, the oral working end, the oral and maxillofacial cone beam CT scanner, the negative-pressure suction device, and the real-time monitoring device. The dental laser is connected with the oral working end of the digital control laser tooth preparation control system through a light guiding arm (1). The oral working end of the digital control laser tooth preparation control system is connected with the tooth positioner and the real-time monitoring device. The negative-pressure suction device is connected with the tooth positioner.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: December 10, 2019
    Assignee: Peking University School of Stomatology
    Inventors: Peijun Lv, Yong Wang, Yuchun Sun, Dangxiao Wang, Wenqi Ge, Ning Dai, Yongbo Wang, Jing Zhang, Chaohui Shi, Yuru Zhang, Lei Wang, Lei Ma, Haihua Cui, Huifu Li, Dongdong Wang
  • Patent number: 10501212
    Abstract: A system utilizing an antenna generating an electromagnetic (EM) wave to interact with a solar EM wave to streamline magnetic flux in the polar cusp and to facilitate the flow of solar plasma through the Polar Cusp, resulting in an elevated plasma flux at the exit of the Polar Cusp. The elevated plasma flux intercepts and removes small space debris from Low Earth Orbit (LEO), Geosynchronous Earth Orbit (GEO) and Geosynchronous Transfer Orbits (GTO) transiting the LEO altitude regimes.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: December 10, 2019
    Inventor: John Francis Dargin, III
  • Patent number: 10500882
    Abstract: A laser-marked polymer workpiece is described. The workpiece has a transparent component and an opaque component applied to at least one region of the transparent component. A mark is introduced onto a surface of the opaque component facing the transparent component with at least one laser. The mark is introduced, via a laser, through the transparent component. The mark is a lightening of the surface of the opaque component on which the mark was introduced.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: December 10, 2019
    Assignee: SAINT-GOBAIN GLASS FRANCE
    Inventor: Oliver Spindler
  • Patent number: 10478340
    Abstract: An optical system for a laser therapy instrument for the application of laser radiation on and in the eye, includes a femtosecond laser, an objective. The objective or at least one lens or lens group of the objective is shiftable in the direction of the optical axis being intended for shifting of the focus position from the region of the cornea to the region of the crystalline lens and vice versa. The optical system may include at least two optical assemblies designed for the axial variation of the focus of the therapeutic laser radiation, with the focus variation range ?z differing between the individual assemblies and a changing device, designed for the insertion of any one of these assemblies into the therapeutic laser beam path at a time.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: November 19, 2019
    Assignee: Carl Zeiss Meditec AG
    Inventors: Gregor Stobrawa, Mark Bischoff
  • Patent number: 10470843
    Abstract: A dental laser treatment system includes a treatment laser beam and a pilot (e.g., aiming/marking) laser beam sharing a collinear beam path, where the beam path is guided by a guidance system through a handpiece/main chamber assembly having a beam exit. A laser beam presence detector is removably affixed to or within the handpiece/main chamber assembly. The laser beam presence detector provides feedback to a computer which can control actuation of the treatment laser beam and the pilot laser beam, and the beam guidance system. The computer performs a search for determining the center location of the beam exit based on the feedback and controls the beam guidance system to guide the beam path approximately to the center of the beam exit, thereby providing automatic alignment of the laser beam with the beam exit or an optional hollow waveguide.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: November 12, 2019
    Assignee: Convergent Dental, Inc.
    Inventors: Christopher B. Courtin, William Harris Groves, Jr.
  • Patent number: 10442032
    Abstract: Provided are a processing device and a processing method with which the device can be made more compact, and with which highly precise processing can be performed. The processing device, which processes a member to be processed by irradiating the member to be processed with a laser, has: a laser oscillator having a plurality of vertical cavity surface-emitting laser diode chips that output laser light having a wavelength of 1,070 nm or less, and a substrate on the surface of which the plurality of vertical cavity surface-emitting laser diode chips are arranged in a matrix; a guidance optical system that guides the laser light output from the laser oscillator; and a control device that controls the output of the laser oscillator.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: October 15, 2019
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Saneyuki Goya, Kenji Muta, Toshiya Watanabe, Takashi Ishide
  • Patent number: 10406760
    Abstract: A method may include controlling, by a computing device, a directed energy deposition material addition (DED MA) technique based at least in part on a thermal model. The thermal model may define a plurality of default operating parameters for the DED MA technique. The method also may include detecting, by at least one sensor, at least one parameter related to the DED MA technique. Further, the method may include, responsive to determining, by the computing device, that a value of the at least one detected parameter is different from an expected value of a corresponding parameter predicted by the thermal model, determining, by the computing device and using a neuro-fuzzy algorithm, an updated value for at least one operating parameter for the DED MA technique, and controlling, by the computing device, the DED MA technique based at least in part on the updated value.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: September 10, 2019
    Assignee: Rolls-Royce Corporation
    Inventors: Quinlan Yee Shuck, Kong Ma
  • Patent number: 10399181
    Abstract: A laser cladding apparatus is capable of easily collecting metal powder and improving operational efficiency. The laser cladding apparatus clads valve seats of exhaust ports formed in a cylinder head by irradiating the valve seats with a laser beam while supplying metal powder to the valve seats. The laser cladding apparatus includes: a duct connected to the exhaust ports; and a dust collector that sucks a surplus of the metal powder generated at the valve seats. The duct has a vertical part formed in a straight tube and arranged so that the axis thereof is substantially vertical, and a branched part branched from the vertical part and arranged so that the branched direction is upward relative to the horizontal direction. The dust collector is connected to the tip of the branched part.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: September 3, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Kohei Yanaka
  • Patent number: 10365499
    Abstract: The invention relates to an article (I) that in at least one region (2) consists of a transparent or translucent material, in particular of glass, wherein the article (I) comprises a dynamic moire pattern in the transparent or translucent region (2), and wherein the moire pattern comes about by superimposing at least two, preferably precisely two, laser-engraved grid structures (3), which at least in regions are visually separated from each other. The grid structures (3) are located: in different layers (4) inside the transparent or translucent region (2); or in at least one layer (4) inside and in a coating (5) of at least one surface of the transparent or translucent region (2); or in at least one first layer (4) inside the transparent or translucent region (2) and at least one second virtual layer (6) that is produced by reflecting the first layer (4) at a reflecting surface (7).
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: July 30, 2019
    Assignee: D. Swarovski KG
    Inventors: Helmut Schaur, Helmut Fuchs
  • Patent number: 10358374
    Abstract: Methods of forming scribe vents in a strengthened glass substrate having a compressive surface layer and an inner tension layer are provided. In one embodiment, a first and second defect is formed to partially expose the inner tension layer. A first scribe vent may be generated in a first scribing direction by translating a laser beam and a cooling jet on a surface of the strengthened glass substrate at a first scribing speed. A second scribe vent intersecting the first scribe vent may be generated in a second scribing direction by translating the laser beam and the cooling jet on the surface of the strengthened glass substrate at a second scribing speed that is greater than the first scribing speed. The defects may be perpendicular to the scribing directions. In another embodiment, the first scribe vent may be fused at an intersection location prior to generating the second scribe vent.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: July 23, 2019
    Assignee: CORNING INCORPORATED
    Inventor: Xinghua Li
  • Patent number: 10343236
    Abstract: A method and associated system are provided for producing a perforation line between adjacent lottery tickets in an automated production line wherein a substrate having lottery tickets printed thereon is conveyed through a perforation station in the production line prior to being folded into a Z-fold pattern for subsequent packaging. A perforation machine in the line is controlled by a controller for defining the perforation lines, wherein the control process includes determining the perforation lines that correspond to fold lines in the Z-fold pattern and, for these perforation lines, programming the perforation machine to generate a second perforation profile that is different from a first perforation profile of non-fold perforation lines that lie between the fold lines in the Z-fold pattern. The second perforation profile is specifically tailored to produce a stronger perforation line to compensate for weakness induced in the perforation line from being folded.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: July 9, 2019
    Assignee: Scientific Games International, Inc.
    Inventor: Ajay J. Ghia
  • Patent number: 10328523
    Abstract: A material deposition head may include a body that defines first and second ends, an exterior surface, an interior surface, and one or more material delivery channels, where the exterior surface includes fluting. In some examples, a system may include a fluted material deposition head, a fluidized powder source, and an energy source.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: June 25, 2019
    Assignee: Rolls-Royce Corporation
    Inventors: Pavlo Earle, Brandon David Ribic, Quinlan Yee Shuck, Johnny D. Grubbs
  • Patent number: 10322826
    Abstract: A spacecraft propulsion system operated in the presence of an ambient flux of cosmic rays is provided, wherein the cosmic rays interact with deuterium-containing nuclear micro-fusion fuel material to generate products having useful kinetic energy. The propulsion system comprises a supply of the deuterium-containing particle fuel material, along with means (such as a gun) for projecting the material (e.g. as successive packages in the form of shell projectiles) outward from a spacecraft. The spacecraft has means (such as a pusher mechanism) for receiving at least some portion of the generated kinetic-energy-containing products to produce thrust upon the spacecraft.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: June 18, 2019
    Inventor: Jerome Drexler