Methods Patents (Class 250/307)
  • Patent number: 9947596
    Abstract: A technique to identify non-visual defects, such as SEM non-visual defects (SNVs), includes generating an image of a layer of a wafer, evaluating at least one attribute of the image using a classifier, and identifying the non-visual defects on the layer of the wafer. A controller can be configured to identify the non-visual defects using the classifier. This controller can communicate with a defect review tool, such as a scanning electron microscope (SEM).
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: April 17, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Hemanta Kumar Roy, Arpit Jain, Arpit Yati, Olivier Moreau, Arun Lobo
  • Patent number: 9927509
    Abstract: A current measurement device is provided for use with a measurement target having a conductive path. The current measurement device includes a non-contact current sensor to be positioned adjacent the conductive path of the measurement target. A calibration current superimposing unit, including a first electrode and a second electrode to be positioned in contact with the conductive path of the measurement target, is configured to output a calibration current to flow through the conductive path between the first electrode and the second electrode. A controller, coupled to the non-contact current sensor and the calibration current superimposing unit, is configured to control the output of the calibration current from the calibration current superimposing unit, and is configured to sample a signal from the non-contact current sensor positioned adjacent the conductive path of the measurement target.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: March 27, 2018
    Assignee: Keysight Technologies, Inc.
    Inventor: Yasuhiro Miyake
  • Patent number: 9928316
    Abstract: A photomask lithography simulation model is created for making a semiconductor chip. Poor metrology is filtered and removed from a contour-specific metrology dataset to improve performance of the photomask. Filtering is performed by the application of a weighting scheme.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: March 27, 2018
    Assignee: International Business Machines Corporation
    Inventors: Todd C. Bailey, Ioana C. Graur, Scott D. Halle, Marshal A. Miller
  • Patent number: 9928990
    Abstract: A method for generating cross-sectional profiles using a scanning electron microscope (SEM) includes scanning a sample with an electron beam to gather an energy-dispersive X-ray spectroscopy (EDS) spectrum for an energy level to determine element composition across an area of interest. A mesh is generated to locate positions where a depth profile will be taken. EDS spectra are gathered for energy levels at mesh locations. A number of layers of the sample are determined by distinguishing differences in chemical composition between depths as beam energies are stepped through. A depth profile is generated for the area of interest by compiling the number of layers and the element composition across the mesh.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: March 27, 2018
    Assignee: International Business Machines Corporation
    Inventors: Eric J. Campbell, Sarah K. Czaplewski
  • Patent number: 9927461
    Abstract: A semiconductor carrier profiling method utilizes a scanning tunneling microscope and shielded probe with an attached spectrum analyzer to measure power loss of a microwave frequency comb generated in a tunneling junction. From this power loss and by utilizing an equivalent circuit or other model, spreading resistance may be determined and carrier density from the spreading resistance. The methodology is non-destructive of the sample and allows scanning across the surface of the sample. By not being destructive, additional analysis methods, like deconvolution, are available for use.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: March 27, 2018
    Inventor: Mark J. Hagmann
  • Patent number: 9928991
    Abstract: A method for generating cross-sectional profiles using a scanning electron microscope (SEM) includes scanning a sample with an electron beam to gather an energy-dispersive X-ray spectroscopy (EDS) spectrum for an energy level to determine element composition across an area of interest. A mesh is generated to locate positions where a depth profile will be taken. EDS spectra are gathered for energy levels at mesh locations. A number of layers of the sample are determined by distinguishing differences in chemical composition between depths as beam energies are stepped through. A depth profile is generated for the area of interest by compiling the number of layers and the element composition across the mesh.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: March 27, 2018
    Assignee: International Business Machines Corporation
    Inventors: Eric J. Campbell, Sarah K. Czaplewski
  • Patent number: 9922797
    Abstract: An improved microreactor for use in microscopy, use of said microreactor, and a microscope comprising said reactor. The present invention is in the field of microscopy, specifically in the field of electron and focused ion beam microscopy (EM and FIB), and in particular Transmission Electron Microscopy (TEM). However its application is extendable in principle to any field of microscopy, especially wherein characteristics of a (solid) specimen (or sample) are studied in detail, such as during a reaction.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: March 20, 2018
    Assignee: TECHNISCHE UNIVERSITEIT DELFT
    Inventor: Hendrik Willem Zandbergen
  • Patent number: 9921240
    Abstract: A probe actuation system has a detection system arranged to measure a position or angle of a probe to generate a detection signal. An illumination system is arranged to illuminate the probe. Varying the illumination of the probe causes the probe to deform which in turn causes the detection signal to vary. A probe controller is arranged to generate a desired value which varies with time. A feedback controller is arranged to vary the illumination of the probe according to the detection signal and the desired value so that the detection signal is driven towards the desired value. The probe controller receives as its inputs a detection signal and a desired value, but unlike conventional feedback systems this desired value varies with time. Such a time-varying desired value enables the probe to be driven so that it follows a trajectory with a predetermined speed. A position or angle of the probe is measured to generate the detection signal and the desired value represents a desired position or angle of the probe.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: March 20, 2018
    Assignee: INFINITESIMA LIMITED
    Inventor: Andrew Humphris
  • Patent number: 9909860
    Abstract: Systems and methods for monitoring component deformation are provided. The component has an exterior surface. A method includes directly measuring a passive strain indicator configured on the exterior surface of the component along an X-axis, a Y-axis and a Z-axis to obtain X-axis data points, Y-axis data points, and Z-axis data points. The X-axis, Y-axis and Z-axis are mutually orthogonal. The method further includes assembling a three-dimensional profile of the passive strain indicator based on the X-axis data points, Y-axis data points and Z-axis data points.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: March 6, 2018
    Assignee: General Electric Company
    Inventors: Jason Lee Burnside, Gregory Lee Hovis, Bryan J. Germann, John David Ward, Jr., William F. Ranson
  • Patent number: 9905480
    Abstract: A method includes forming a first nitride layer on a semiconductor substrate, forming a first oxide layer on the first nitride layer, forming a first trench through the first oxide layer, the first nitride layer and a portion of the semiconductor substrate, forming a first spacer on a sidewall of the first trench, forming a second trench in the semiconductor substrate by using the first spacer as a mask, forming a third trench, forming a second oxide layer in the second trench, wherein the second oxide layer laterally extends into the semiconductor substrate and under the first spacer, forming a second spacer on a sidewall of the third trench, and removing a portion of the first nitride layer and a portion of the semiconductor substrate by etching and using the second spacer as a mask to form a fin structure on the second oxide layer.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: February 27, 2018
    Assignee: NUVOTON TECHNOLOGY CORPORATION
    Inventor: Wen-Ying Wen
  • Patent number: 9905394
    Abstract: The system described herein analyzes an object using a charged particle beam device, such as an electron beam device and/or an ion beam device. The charged particle beam device is used to generate high resolution 3D data sets by sequentially removing material from the object, exposing surfaces of the object and generating images of the surfaces. When removing material from the object, an opening having sides is generated. Lamellas are generated using the sides and material characteristics of those lamellas are identified. Moreover, filtered data is generated for each pixel of images of the sides of the opening. The method uses the information with respect to the identified material characteristics, the images of the sides and the filtered data of those images to obtain information on the material characteristics for each pixel of each surface generated when sequentially removing material from the object.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: February 27, 2018
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Sreenivas Bhattiprolu, Lorenz Lechner
  • Patent number: 9903813
    Abstract: Multiply patterned metrology targets and target design methods are provided to enable pitch walk measurements using overlay measurements. Multiply patterned structures having single features or spacers produced simultaneously and sharing a common pitch with the paired features or spacers are used to express pitch walk as a measurable overlay between the structures. For example, targets are provided which comprise a first multiply patterned structure having a single left-hand feature or spacer produced simultaneously and sharing a common pitch with the respective paired features or spacers, and a second multiply patterned structure having a single right-hand feature or spacer produced simultaneously and sharing a common pitch with the respective paired features or spacers.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: February 27, 2018
    Assignee: KLA-Tencor Corporation
    Inventor: Nuriel Amir
  • Patent number: 9903756
    Abstract: Apparatuses and methods are provided that minimize the effects of dark-current pulses. For example, in one embodiment of the invention, a method is provided where a first pixel is struck (i.e., a primary pixel). Pixels struck within a fixed time frame after the primary pixel is struck are referred to as secondary pixels. After a short fixed time frame has expired, the number of primary and secondary pixels is added. If the count exceeds a threshold, the primary pixel was activated by the first (or early) photon from a true gamma event. If the threshold is not met then it is likely the primary pixel generated a dark pulse that should be ignored.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: February 27, 2018
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Peter Hansen, Michael Casey, Stefan B. Siegel
  • Patent number: 9897791
    Abstract: Presented herein are systems and methods for performing sequencing, including fluorescence in situ sequencing. In one embodiment, a confocal time delay and integration (TDI) line scan imaging system may include various pinhole and/or slit aperture mechanisms in front of the image sensor. The system may also include structures with focusing strips on a substrate in contact with the tissue sample to be imaged. Alternatively, these strips may be cut into the tissue sample. The system may also include configurations and methods of placing a tissue sample inside a reaction chamber of a flow cell during the assembly of the flow cell and then performing chemistry operations on the tissue sample. The flow cells may use an open container for performing chemistry operations on the tissue sample.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: February 20, 2018
    Assignee: ILLUMINA, INC.
    Inventor: Wenyi Feng
  • Patent number: 9899185
    Abstract: A system, computer readable medium and a method for material analysis, the method may include (i) receiving or generating (a) an estimated composition of a microscopic element; wherein the estimated composition is responsive to an energy spectrum of, at least, the microscopic element; wherein the energy spectrum is obtained by an energy dispersive X-ray (EDX) detector; additional information related to, at least, the microscopic element, wherein the additional information is not obtained by the energy dispersive X-ray detector; and (ii) resolving an ambiguity in the estimated composition in response to the additional information, wherein the ambiguity occurs when the energy spectrum comprises a predefined energy peak that is attributed to a predefined material of ambiguous EDX composition determination.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: February 20, 2018
    Assignee: APPLIED MATERIALS ISRAEL LTD.
    Inventors: Dror Shemesh, Mor Baram
  • Patent number: 9899197
    Abstract: A hybrid extreme ultraviolet (EUV) imaging spectrometer includes: a radiation source to: produce EUV radiation; subject a sample to the EUV radiation; photoionize a plurality of atoms of the sample; and form photoions from the atoms subject to photoionization by the EUV radiation, the photoions being desorbed from the sample in response to the sample being subjected to the EUV radiation; an ion detector to detect the photoions: as a function of a time-of-arrival of the photoions at the ion detector after the sample is subjected to the EUV radiation; or as a function of a position of the photoions at the ion detector; an electron source to: produce a plurality of primary electrons; subject the sample to the primary electrons; and form scattered electrons from the sample in response to the sample being subjected to the primary electrons; and an electron detector to detect the scattered electrons: as a function of a time-of-arrival of the scattered electrons at the electron detector after the sample is subjected
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: February 20, 2018
    Assignees: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE, COLORADO SCHOOL OF MINES
    Inventors: Norman A. Sanford, Ann Chiaramonti Debay, Brian P. Gorman, David R. Diercks
  • Patent number: 9896329
    Abstract: The present disclosure relates to an integrated semiconductor device, comprising a semiconductor substrate; a cavity formed into the semiconductor substrate; a sensor portion of the semiconductor substrate deflectably suspended in the cavity at one side of the cavity via a suspension portion of the semiconductor substrate interconnecting the semiconductor substrate and the sensor portion thereof, wherein an extension of the suspension portion along the side of the cavity is smaller than an extension of said side of the cavity.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: February 20, 2018
    Assignee: Infineon Technologies Dresden GmbH
    Inventors: Thoralf Kautzsch, Heiko Froehlich, Alessia Scire, Maik Stegemann, Bernhard Winkler, Andre Roeth, Steffen Bieselt, Mirko Vogt
  • Patent number: 9884206
    Abstract: Embodiments disclosed herein include methods for performing intensity-modulated radiation therapy on a subject using a plurality of pencil beams. The methods can include generating a treatment plan for intensity-modulated radiation therapy that satisfies dose constraints for each of a plurality of sub-volumes. The treatment plan can be generated using a superiorization technique that reduces total variation in dose space. Additional dose-volume constraints that permit a fraction of treatment doses to violate a prescription by up to a defined percentage of intensity can be used to assist in determining the treatment plan.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: February 6, 2018
    Assignees: Loma Linda University Medical Center, Carmel-HAIFA University Economic Corporation Ltd.
    Inventors: Reinhard W. Schulte, Yair Censor
  • Patent number: 9881764
    Abstract: An electron beam apparatus addresses blanking issues resulting from sinking high-power heat onto an aperture diaphragm by evenly spreading heat on the aperture diaphragm. The apparatus can include an aperture diaphragm and a deflector that deflects the electron beam on the aperture diaphragm. The electron beam is directed at the aperture diaphragm in a pattern around the aperture. The pattern may be a circle, square, or polygon. The pattern also may include a variable locus relative to the aperture.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: January 30, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Xinrong Jiang, Christopher Sears, Douglas Larson
  • Patent number: 9874582
    Abstract: A probe system including a probe with first and second arms and a probe tip carried by the first and second arms, the probe tip having a height and a tilt angle; an illumination system arranged to deform the probe by illuminating the first arm at a first actuation location and the second arm at a second actuation location each with a respective illumination power; and an actuation controller arranged to independently control the illumination power at each actuation location in order to control the height and tilt angle of the probe tip.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: January 23, 2018
    Assignee: INFINITESIMA LIMITED
    Inventor: Andrew Humphris
  • Patent number: 9859093
    Abstract: A scanning charged particle microscope apparatus includes image quality improvement unit which performs an image quality improvement process on image data which is obtained by detecting particles generated from a sample, the image quality improvement unit divides a region in which the image data is acquired into two or more regions on the basis of a distance from a region in which the image data within a visual field of a charged particle optical unit is not acquired, determines an image quality improvement processing method and a processing parameter for image quality improvement for the image data in each of the separate regions according to the separate regions; and performs an image quality improvement process on the image data in each of the separate regions by using the determined processing method and processing parameter corresponding to the separate region.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: January 2, 2018
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kenji Nakahira, Maki Tanaka
  • Patent number: 9859095
    Abstract: An electron microscope is provided which can measure, with high sensitivity and high positional resolution, an amount of deflection of an electron beam occurring when it is transmitted through a sample. The electron microscope (100) is adapted to measure the amount of deflection of the electron beam (EB) when it is transmitted through the sample (S), and has an electron beam source (10) producing the electron beam (EB), an illumination lens system for focusing the electron beam (EB) onto the sample (S), an aperture (30) having an electron beam blocking portion (32) for providing a shield between a central portion (EB1) and an outer peripheral portion (EB2) of the cross section of the beam (EB) impinging on the sample (S), and a segmented detector (20) having a detection surface (22) for detecting the electron beam (EB) transmitted through the sample (S). The detection surface (22) is divided into a plurality of detector segments (D1-D4).
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: January 2, 2018
    Assignees: The University of Tokyo, JEOL Ltd.
    Inventors: Naoya Shibata, Yuji Kohno, Hidetaka Sawada
  • Patent number: 9823273
    Abstract: Probe tip formation is described for die sort and test. In one example, the tips of wires of a test probe head are prepared for use as test probes. The wires are attached to a test probe head substrate. The end opposite the substrate has a tip. The tips of the wires are polished when attached to the test probe head to form a sharpened point.
    Type: Grant
    Filed: June 29, 2013
    Date of Patent: November 21, 2017
    Assignee: Intel Corporation
    Inventors: Keith J. Martin, Kip P. Stevenson, Kamil S. Salloum, Todd P. Albertson
  • Patent number: 9818576
    Abstract: To improve the workability of the task of adjusting the position of a limit field diaphragm. An electron microscope provided with an image-capturing means for capturing an image of an observation visual field prior to insertion of a limit field diaphragm as a map image, a recording means for recording the map image, an extraction means for capturing an image of the observation visual field after insertion of the limit field diaphragm and extracting the outline of the diaphragm, a drawing means for drawing the outline on the map image, and a display means for displaying the image drawn by the drawing means.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: November 14, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Takashi Kubo, Hiroyuki Kobayashi
  • Patent number: 9812287
    Abstract: An improved spectroscopic analysis apparatus and method are disclosed, comprising directing a beam of radiation onto a measurement location on a specimen, thereby causing a flux of X-rays to emanate from this location; examining the X-ray flux using a detector arrangement, thus acquiring a spectrum; choosing a set of different measurement directions originating from the location; recording outputs from the detector arrangement for different measurement directions; adopting a spectral model that is a convoluted mix of terms B and Lp, where B is the Bremsstrahlung background spectrum and Lp comprises spectral lines corresponding to the specimen composition at the measurement location; and then automatically deconvolving the set of measurements on the basis of the spectral model to calculate Lp to determine the chemical composition of the specimen at the measurement location. The method includes corrections for differential X-ray absorption within the specimen along the different measurement directions.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: November 7, 2017
    Assignee: FEI Company
    Inventors: Cornelis Sander Kooijman, Thijs Thomas Withaar, Gerard Nicolaas Anne van Veen
  • Patent number: 9805908
    Abstract: A signal charged particle deflection device for a charged particle beam device is provided. The signal charged particle deflection device includes a beam bender configured for deflecting the signal charged particle beam, wherein the beam bender includes a first electrode and a second electrode providing an optical path for the signal charged particle beam therebetween, wherein the first electrode has a first cross section in a plane perpendicular to the optical path, and the second electrode has a second cross section in the plane perpendicular to the optical path, and wherein a first part of the first cross section and a second part of the second cross section provide the optical path therebetween, and wherein the first part and the second part are different in shape.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: October 31, 2017
    Assignee: Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH
    Inventors: Matthias Firnkes, Stefan Lanio
  • Patent number: 9805909
    Abstract: An inspection system that includes charged particle optics that irradiate a bottom of a hole with a charged particle beam propagated along an optical axis, an energy dispersive x-ray detector and a processor. The x-ray detector detects x-ray photons emitted from the bottom of the hole and generates detection signals indicative of the x-ray photons. The processor processes the detection signals to provide an estimate of the bottom of the hole.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: October 31, 2017
    Assignee: APPLIED MATERIALS ISRAEL LTD.
    Inventors: Dror Shemesh, Lei Zhong
  • Patent number: 9804107
    Abstract: The purpose of the present invention is to provide a pattern measurement device for quantitatively evaluating a pattern formed using a directed self-assembly (DSA) method with high accuracy. The present invention is a pattern measurement device for measuring distances between patterns formed in a sample, wherein the centroids of a plurality of patterns included in an image are determined; the inter-centroid distances, and the like, of the plurality of centroids are determined; and on the basis of the inter-centroid distances, and the like, of the plurality of centroids, a pattern meeting a specific condition is distinguished from patterns different from the pattern meeting the specific condition or information is calculated about the number of the patterns meeting the specific condition, the size of an area including the patterns meeting the specific condition, and the number of imaginary lines between the patterns meeting the specific condition.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: October 31, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Akiyuki Sugiyama, Miki Isawa, Satoru Yamaguchi, Motonobu Hommi
  • Patent number: 9797923
    Abstract: A method of forming a sample and performing correlative S/TEM and APM analysis is provided wherein a sample containing a region of interest is cut from a bulk of sample material and formed into an ultra-thin lamella. The lamella is then analyzed with an S/TEM to form an image. The lamella sample and mount may then go through a cleaning process to remove any contamination. The lamella containing the ROI is then embedded within a selected material and is formed into a needle-shaped sample. The needle-shaped sample is then analyzed with the APM and the resulting data is merged and correlated with the S/TEM data.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: October 24, 2017
    Assignee: FEI Company
    Inventor: Roger Alvis
  • Patent number: 9799486
    Abstract: In a charged particle beam apparatus that applies a retarding voltage to a sample through a contact terminal and executes measurement or inspection of a surface of the sample, potential variation of the sample when changing the retarding voltage applied to the contact terminal is measured by a surface potential meter, a time constant of the potential variation of the sample is obtained, and it is determined whether execution of measurement or inspection by a charged particle beam continues or stops based on the time constant, or a conduction ensuring process between the sample and the contact terminal is executed.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: October 24, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Seiichiro Kanno, Yasushi Ebizuka, Go Miya, Takafumi Miwa
  • Patent number: 9793090
    Abstract: The present invention discloses an e-beam inspection tool, and an apparatus for detecting defects. In one aspect is described an apparatus for detecting defects that includes a focusing column that accelerates the e-beam and separately, for each of the plurality of predetermined locations, focuses the e-beam to a predetermined non-circular spot that is within the predetermined surface area of each of the plurality of predetermined locations based upon the major axis.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: October 17, 2017
    Assignee: PDF Solutions, Inc.
    Inventors: Indranil De, Christopher Hess, Dennis J. Ciplickas
  • Patent number: 9786063
    Abstract: Provided is a method of computing precise disparity using a stereo matching method based on developed census transform with an adaptive support weight method in area based stereo matching. The method includes a step of setting an adaptive support weight window centered on a specific point of a left image and setting adaptive support weight windows with the same size with respect to one point positioned within a maximum disparity prediction value about a specific point of the left image in a right image.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: October 10, 2017
    Assignee: KYUNGPOOK NATIONAL UNIVERSITY INDUSTRY—ACADEMIC COOPERATION FOUNDATION
    Inventors: Byung In Moon, Kyeong Ryeol Bae, Hyeon Sik Son, Seung Ho Ok
  • Patent number: 9778215
    Abstract: The present invention discloses a combination of two existing approaches for mineral analysis and makes use of the Similarity Metric Invention, that allows mineral definitions to be described in theoretical compositional terms, meaning that users are not required to find examples of each mineral, or adjust rules. This system allows untrained operators to use it, as opposed to previous systems, which required extensive training and expertise.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: October 3, 2017
    Assignee: FEI Company
    Inventors: Michael James Owen, Michael Buhot
  • Patent number: 9779910
    Abstract: Transmission electron microscopes (TEMs) are being utilized more often in failure analysis labs as processing nodes decrease and alternative device structures, such as three dimensional, multi-gate transistors, e.g., FinFETs (Fin Field Effect Transistors), are utilized in IC designs. However, these types of structures may confuse typical TEM sample (or “lamella”) preparation as the resulting lamella may contain multiple potentially faulty structures, making it difficult to identify the actual faulty structure. Passive voltage contrast may be used in a dual beam focused ion beam (FIB) microscope system including a scanning electron microscope (SEM) column by systematically identifying non-faulty structures and milling them from the lamella until the faulty structure is identified.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: October 3, 2017
    Assignee: QUALCOMM Incorporated
    Inventor: Corey Senowitz
  • Patent number: 9766286
    Abstract: A method for diagnosing a defect is provided. A first candidate pair comprises a first defect candidate and a second defect candidate. A first pattern is generated to distinguish one or more faults of the first defect candidate from one or more faults of the second defect candidate. The first defect candidate is removed responsive to determining that the first pattern does not detect the first defect candidate and determining that an automatic test equipment (ATE) failure log associates the first pattern with failure. Removing the first candidate pair, as well as additional candidate pairs when possible, promotes diagnosis efficiency by reducing a number of computations required.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: September 19, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Kuen-Jong Lee, Cheng-Hung Wu, Wei-Cheng Lien, Hui-Ling Lin, Yen-Ling Liu, Ji-Jan Chen
  • Patent number: 9762763
    Abstract: An image inspection apparatus includes: a light source configured to emit white light onto a test image formed on a paper sheet; an optical lens system configured to receive light reflected by the paper sheet, the reflected light being of the white light emitted from the light source; a separating unit configured to separate light having passed through the optical lens system; a reading unit configured to receive the separated light at the different wavelengths, and optically read the test image of the light; and a control unit configured to calculate edge blurs at a rising edge and a falling edge of each set of image data of the light obtained by the reading unit reading the test image, calculate widths of the test image, and determine the width calculated from the set of image data having the smallest edge blur to be the width of the test image.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: September 12, 2017
    Assignee: KONICA MINOLTA, INC.
    Inventors: Toru Yamaguchi, Takahiro Kusunoki, Takashi Harashima
  • Patent number: 9754762
    Abstract: Provided are a device and a method allowing a crystal orientation to be adjusted with adequate throughput and high precision to observe a sample, regardless of the type of the sample or the crystal orientation. In the present invention, the method comprises: setting a fitting circular pattern (26) displayed overlaid so that a main spot (23) is positioned on the circumference thereof, on the basis of the diffraction spot brightness distribution in an electron diffraction pattern (22b) displayed on a display unit (13); setting a vector (28) displayed with the starting point at the center position (27) of the displayed circular pattern (26), and the end point at the location of the main spot (23) positioned on the circumference of the circular pattern (26); and adjusting the crystal orientation on the basis of the orientation and the magnitude of the displayed vector (28).
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: September 5, 2017
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Toshie Yaguchi, Hiroyuki Kobayashi, Takafumi Yotsuji
  • Patent number: 9746493
    Abstract: The present invention relates to sample holders for holding a sample, particularly for an atomic force microscope. Such a sample holder comprising a sample dish (1) comprising a bottom (2), and an opening (3) arranged in said bottom (2) for receiving and holding the sample (15). Furthermore the present invention relates to a sample holder system and to a method for transferring an e.g. biological sample (15) from a biopsy tool (18) to a sample holder.
    Type: Grant
    Filed: July 5, 2014
    Date of Patent: August 29, 2017
    Assignee: University of Basel
    Inventors: Marko Loparic, Pascal Alexander Oehler
  • Patent number: 9748073
    Abstract: An analysis method using an electron microscope, detects by a first electronography detector an electron beam transmitted through or scattered by a sample to detect an ADF image of the sample, detects by a second electronography detector the electron beam passing through the first electronography detector to detect an MABF image, adjusts a focal point of the electron beam to be located on the film of the sample to obtain first and second electronographies by the second and first electronography detectors, respectively, adjusts the focal point of the electron beam to be located on the substrate of the sample to obtain third and fourth electronographies by the second and first electronography detectors, respectively, aligns positions of the second and fourth electronographies based on the first and third electronographies, and after the aligning, subtracts the fourth electronography from the second electronography to obtain an image of the film.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: August 29, 2017
    Assignee: FUJITSU LIMITED
    Inventor: Takashi Yamazaki
  • Patent number: 9741531
    Abstract: A charged particle beam device allowing an analysis position in a sample analyzable with an EBSD detector to be acquired beforehand, and allowing a sample to be adjusted to a desired analysis position in a short time. A charged particle beam device is provided with a charged particle source (111), a charged particle optical system (115), an EBSD detector (101), a sample stage (116), an image display unit (117) for displaying a portion of the sample observable with the EBSD detector and a non-observable portion of the sample such that said portions are distinguished from each other, an operation input unit (121) where a position to be observed by the EBSD detector is entered, and a control unit (118) for controlling a planar movement, an inclination movement and a rotation movement of the sample stage so as to allow the observation position entered from the operation input unit to be observed with the EBSD detector.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: August 22, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kazuyuki Takeda, Tohru Ando, Tsutomu Saito
  • Patent number: 9741535
    Abstract: A charged particle beam apparatus includes a stage for fixing a sample, a driving mechanism for driving the stage, a focused ion beam column, an electron beam column, a detector that detects a secondary charged particle emitted from the sample irradiated with a charged particle beam, a gas supplying device that supplies gas for forming a deposition film on a surface of the sample, and a control device that generates image data indicating the position distribution of the secondary charged particle detected by the detector. The control device irradiates the sample with the electron beam prior to irradiating the sample with a focused ion beam, recognizes an alignment mark provided in the sample in the image data by the electron beam, and performs positioning of an irradiation region of the sample using the alignment mark.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: August 22, 2017
    Assignee: HITACHI HIGH-TECH SCIENCE CORPORATION
    Inventors: Shota Torikawa, Tatsuya Asahata, Atsushi Uemoto, Makoto Sato
  • Patent number: 9719950
    Abstract: A method and apparatus are provided for identifying a material with a sample-specific reference spectral list or library. A sequential approach to SEM-EDS automated mineralogy classification is carried out by performing two or more material classification analyses. A pre-classification step restricts the processing of spectra deconvolution algorithms to a subset of spectra that pass a dominant mineral criteria resulting in a significantly reduced subset of reference spectra that occur within the measured sample in pure enough form at a given minimum quantity. The following complex classification stages involving deconvolution of multiple constituents within measured spectra is based on this sample relevant subset.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: August 1, 2017
    Assignee: FEI Company
    Inventors: Michael James Owen, Ashley Donaldson, Garth Howell, Phillip John Christopher Parker
  • Patent number: 9720220
    Abstract: A tomography accessory device for supporting a sample relative to the imaging assembly of a microscope has an electric positioning motor supported on the existing sample supporting stage of the microscope. An output shaft of the positioning motor is supported for rotation about an output axis parallel to a plane of the stage and a controller acts to control the motor so as to rotate the output shaft between a plurality of different angular positions about the output axis. An adjustable assembly supports a sample holder relative to the outer shaft such that i) the sample holder is translatable relative to the output shaft along at least one translation axis oriented generally perpendicularly to the output axis, and ii) the sample holder is pivotable relative to the output shaft about at least two pivot axes which are transverse to one another and which are generally perpendicular to the output axis.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: August 1, 2017
    Inventors: Catherine Rui Jin Findlay, Kathleen Margaret Gough
  • Patent number: 9702835
    Abstract: A method for generating cross-sectional profiles using a scanning electron microscope (SEM) includes scanning a sample with an electron beam to gather an energy-dispersive X-ray spectroscopy (EDS) spectrum for an energy level to determine element composition across an area of interest. A mesh is generated to locate positions where a depth profile will be taken. EDS spectra are gathered for energy levels at mesh locations. A number of layers of the sample are determined by distinguishing differences in chemical composition between depths as beam energies are stepped through. A depth profile is generated for the area of interest by compiling the number of layers and the element composition across the mesh.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: July 11, 2017
    Assignee: International Business Machines Corporation
    Inventors: Eric J. Campbell, Sarah K. Czaplewski
  • Patent number: 9690369
    Abstract: A facial expression control system, a facial expression control method, and a computer system thereof are disclosed. The facial expression control system includes a face detection module, a database, and a processing module. The face detection module is used for determining whether a facial expression feature is detected in a captured image. The database is used for storing a control parameter table, wherein the control parameter table is corresponding to the facial expression feature. If the face detection module detects the facial expression feature, the control parameter table of the database is accessed according to the facial expression feature to get an encode signal and transmitted to the processing module. The processing module is used for generating a control signal according to the encode signal.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: June 27, 2017
    Assignee: Wistron Corporation
    Inventor: Chih-Sung Chang
  • Patent number: 9678325
    Abstract: An analysis apparatus includes a two-dimensional coordinate detecting unit and a three-dimensional coordinate determining unit. The two-dimensional coordinate detecting unit is configured to detect, with respect to a captured image group obtained by capturing an analysis specimen including an analysis target object at a plurality of focal depths, a two-dimensional coordinate candidate being a candidate of a plane coordinate of the analysis target object in each captured image. The three-dimensional coordinate determining unit is configured to determine, based on a position relationship of the plane coordinate candidates between the captured images, a three-dimensional coordinate candidate being a candidate of a three-dimensional coordinate of the analysis target object.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: June 13, 2017
    Assignee: Sony Corporation
    Inventors: Shiori Oshima, Suguru Dowaki, Eriko Matsui
  • Patent number: 9673023
    Abstract: A method and a system for imaging an object, the system may include electron optics that may be configured to scan a first area of the object with at least one electron beam; wherein the electron optics may include a first electrode; and light optics that may be configured to illuminate at least one target of (a) the first electrode and (b) the object, thereby causing an emission of electrons between the first electrode and the object.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: June 6, 2017
    Assignee: APPLIED MATERIALS ISRAEL LTD.
    Inventor: Alex Goldenshtein
  • Patent number: 9671223
    Abstract: Beforehand, the device characteristic patterns of each critical dimension SEM are measured, a sectional shape of an object to undergo dimension measurement is presumed by a model base library (MBL) matching system, dimension measurements are carried out by generating signal waveforms through SEM simulation by inputting the presumed sectional shapes and the device characteristic parameters, and differences in the dimension measurement results are registered as machine differences. In actual measurements, from the dimension measurement results in each critical dimension SEM, machine differences are corrected by subtracting the registered machine differences. Furthermore, changes in critical dimension SEM's over time are monitored by periodically measuring the above-mentioned device characteristic parameters and predicting the above-mentioned dimension measurement results. According to the present invention, actual measurements of machine differences, which require considerable time and effort, are unnecessary.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: June 6, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Chie Shishido, Maki Tanaka, Katsuhiro Sasada
  • Patent number: 9666412
    Abstract: A system that may include a first mechanical stage, a second mechanical stage, charged particle beam optics and a controller. The system may charge, with a charged particle beam, a slice of the object. During the charging of the slice the first mechanical stage may introduce a first movement along a first direction, between the object and charged particle beam optics. The charged particle beam optics may scan the slice with the charged particle beam. The scanning of the slice includes performing, by the charged particle optics, a first counter-movement deflection of the charged particle beam to at least partially counter the first movement. The second mechanical stage is configured to introduce a second movement along a second direction, between the object and the charged particle beam optics. Upon a completion of the charging of the slice, the second mechanical stage is configured to perform a first flyback operation.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: May 30, 2017
    Assignee: APPLIED MATERIALS ISRAEL LTD.
    Inventors: Alon Litman, Yoram Uziel, Benzion Sender
  • Patent number: 9666410
    Abstract: Proposed is a charged particle beam device including an arithmetic processing unit that generates an image of a sample, based on a detection signal that is detected based on irradiation to the sample with a charged particle beam emitted from a charged particle source. The arithmetic processing unit searches a second image as a search target image with use of a first image as a template, and when a region corresponding to the first image is not detected in the second image, the arithmetic processing unit searches a third image that represents a region larger than a region displayed in the second image, with use of a second template.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: May 30, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Takefumi Kakinuma, Kazuyuki Hirao, Ayana Yamamoto