Methods Patents (Class 250/307)
  • Patent number: 10446404
    Abstract: Provided is a method of adjusting an electron-beam irradiated area in an electron beam irradiation apparatus that deflects an electron beam with a deflector to irradiate an object with the electron beam, the method including: emitting an electron beam while changing an irradiation position on an adjustment plate by controlling the deflector in accordance with an electron beam irradiation recipe, the adjustment plate detecting a current corresponding to the emitted electron beam; acquiring a current value detected from the adjustment plate; forming image data corresponding to the acquired current value; determining whether the electron-beam irradiated area is appropriate based on the formed image data; and updating the electron beam irradiation recipe when the electron-beam irradiated area is determined not to be appropriate.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: October 15, 2019
    Assignee: EBARA CORPORATION
    Inventors: Ryo Tajima, Masahiro Hatakeyama, Kenichi Suematsu, Kiwamu Tsukamoto, Kenji Watanabe, Shoji Yoshikawa, Shinichi Okada, Kenji Terao
  • Patent number: 10422758
    Abstract: A composition analysis method includes iteratively irradiating a sample with an ion beam, irradiating a specific portion of the sample that is thinned by the irradiation of the ion beam with an electron beam, and detecting an intensity of an X-ray generated from the sample by the irradiation of the electron beam. The method further includes determining an identity of an element included in the sample based on at least one detection result obtained in the iterative process.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: September 24, 2019
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventor: Shiro Takeno
  • Patent number: 10424458
    Abstract: An electron reflectometer includes: a sample stage; a source that produces source electrons; a source collimator; and an electron detector that receives collimated reflected electrons.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: September 24, 2019
    Assignee: GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Lawrence H. Friedman, Wen-Li Wu
  • Patent number: 10417756
    Abstract: The purpose of the present invention is to provide a pattern measurement apparatus that appropriately assesses patterns formed by patterning methods for forming patterns that do not exist on photomasks. In order to achieve this purpose, the present invention provides a pattern measurement apparatus comprising a processor that measures the dimensions of patterns formed on a sample by using data acquired by irradiating the sample with a beam, wherein the processor extracts pattern coordinate information on the basis of the data acquired by irradiating the sample with a beam, and uses the coordinate information to generate measurement reference data used when performing dimension measurements of the pattern.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: September 17, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kei Sakai, Satoru Yamaguchi, Kazuyuki Hirao, Yasunori Takasugi
  • Patent number: 10417973
    Abstract: An image processing device includes a luminance modulator operable to receive a video input signal and operable to calculate a video output signal to be supplied to a display panel, a peak value detector operable to calculate a peak value as a maximum luminance in a prescribed region of the video input signal, a histogram detector operable to calculate frequency distribution about a luminance value of the video input signal in the prescribed region, a peak Automatic contrast level (ACL) control gain calculation unit operable to calculate a peak ACL control gain with which luminance of each pixel of the video input signal is amplified, based on the ratio of the peak value to a maximum possible value of the video output signal, and a pattern-adaptive gamma characteristic calculation unit operable to calculate a luminance modulation gain.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: September 17, 2019
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Hirofumi Kawaguchi
  • Patent number: 10410829
    Abstract: A method of preparing a sample of a semiconductor device that includes placing a wafer on a support surface, milling an initial lamella within the wafer using a focused ion beam, lifting the initial lamella out of the wafer, placing the initial lamella on an upper surface of the wafer on a lateral side of the initial lamella, milling a planar lamella out of a portion of the initial lamella and the wafer beneath the initial lamella, lifting the planar lamella out of the wafer; and placing the planar lamella on a carbon grid. A method further includes milling a window within an upper portion of the initial lamella exposing internal structures of the initial lamella; and based at least partially on the exposed internal structures of the initial lamella, aligning the initial lamella on the upper surface of the wafer.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: September 10, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Jamie C. Porter, Scott M. Williams, Clint R. Davlin, Joel B. LeBret
  • Patent number: 10408816
    Abstract: In a method for automated determination of the relative position (x/y/z) between a first hole (27) on a first microsystem component (11), which is preferably provided with a first channel (44) opening in the first hole (27), and at least one second hole (29) on a second microsystem component (12), which is preferably provided with a second channel (45) opening in the second hole (29), the two microsystem components (11, 12) lie in a liquid medium (41) at least in the region (25, 26) of the holes (27, 29). Under the supervision of a control device (15) controlled by a computer (22), the first and second microsystem components (11, 12) are displaced relative to one another into different relative positions (x/y/z). Electrical signals (37) are delivered to one of the two microsystem components (12, 12) and are recorded on the other of the two microsystem components (11, 12) as measurement values (38) which depend on the relative position of the two microsystem components (11, 12) with respect to one another.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: September 10, 2019
    Assignee: Multichannel Systems MCS GmbH
    Inventors: Timm Danker, Elke Guenther
  • Patent number: 10401265
    Abstract: A method of preparing a sample that includes milling an initial deep lamella within a wafer using a focused ion beam. The initial deep lamella includes at least one internal structure within an upper portion of the initial deep lamella. The method further includes lifting the initial deep lamella out of the wafer, placing the initial deep lamella on an upper surface of the wafer on a lateral side of the initial lamella, milling a planar shallow lamella out of a portion of the initial deep lamella and the wafer beneath the initial deep lamella to include at least substantially an entire length of the at least one internal structure of the initial deep lamella, lifting the planar shallow lamella out of the wafer, and placing the planar shallow lamella on a carbon grid.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: September 3, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Jamie C. Porter, Scott M. Williams, Clint R. Davlin, Joel B. LeBret
  • Patent number: 10386314
    Abstract: Electrons excited by irradiation of a visible light to a sample is at an energy level lower than a vacuum level, thus photoelectrons are not emitted from the sample and energy of excited electrons cannot be measured. The visible light is irradiated to the sample through a mesh electrode. A surface film for reducing the vacuum level is formed on a surface of the sample. With the surface film being formed, photoelectrons are obtained by the visible light, and these photoelectrons are accelerated by the mesh electrode toward a photoelectron spectrometer. Ultraviolet light may be irradiated to the sample and metal having same potential therewith. In this case, the mesh electrode is set at a retracted position to prohibit interaction of the mesh electrode and the ultraviolet light. A difference between the valence band and the Fermi level of the sample can be measured.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: August 20, 2019
    Assignee: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY
    Inventors: Toru Ujihara, Fumiaki Ichihashi, Takahiko Kawaguchi, Takahiro Ito, Makoto Kuwahara, Peter Baltzer, Yukio Takeuchi
  • Patent number: 10386386
    Abstract: A fixing device selectively fixes a measuring probe of a scanning probe microscope. The fixing device comprises an inserting unit in which the measuring probe is insertable and a master force unit for selectively exerting a master force onto a fixing mechanism. The fixing mechanism is actuatable without a tool. The fixing mechanism is enabled or disabled to controllably detach or fix the measuring probe when the measuring probe is inserted in the inserting unit.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: August 20, 2019
    Assignee: Anton Paar GmbH
    Inventors: Alberto Gomez-Casado, Norbert Rath
  • Patent number: 10386305
    Abstract: A sensor that can be used for real time monitoring of load and structural health in engineering structures is provided. The sensor may include a patch with a portion of an optical fiber embedded therein. There may also be triboluminescent materials dispersed within the patch, on and/or near the portions of the optical fiber embedded in the patch. There may be micro-excitors located in proximity to the triboluminescent materials and on the surface of the optical fiber. Loading events and/or damage to the monitored structure may result in a triboluminescent emission from the triboluminescent material that can be guided via the optical fiber. Analysis of the triboluminescent emission may provide information on the magnitude of the applied load as well as the occurrence, severity and location of damage in the structure.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: August 20, 2019
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Okenwa Okoli, David Olawale
  • Patent number: 10373802
    Abstract: An object of the present invention relates to high-resolution observation on a light field STEM, a dark field image STEM, and an EELS, at a low acceleration voltage. The present invention relates to controlling on incorporation angles of a STEM detector and an electron energy loss spectroscopy by changing the disposition of a sample with respect to an optical axis direction of a primary electron beam in a scanning transmission microscopy including an electron energy loss spectroscopy. According to the present invention, it is possible to easily control an optimum scattering angle in each of a light field STEM, a dark field STEM, and an EELS while suppressing occurrence of chromatic aberration accompanying the controlling on the incorporation angle.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: August 6, 2019
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Yu Yamazawa, Kazutoshi Kaji
  • Patent number: 10373799
    Abstract: Probe landing is detected by detecting a change in a vibration of the probe in a plane substantially parallel to the work piece surface as the probe is lowered toward the work piece. The vibration may be observed, for example, by acquiring multiple electron microscope images of the probe as it moves and analyzing the images the determine a characteristic, such as the amplitude of the vibration. When the probe contacts the work piece surface, the friction between the probe tip and the work piece surface will change the characteristic of the vibration, which can be detected to indicate that the probe has landed.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: August 6, 2019
    Assignee: FEI Company
    Inventor: Yoav Neuman
  • Patent number: 10354834
    Abstract: An x-ray analysis apparatus comprises an electron beam assembly for generating a focused electron beam within a first gas pressure environment. A sample assembly is used for retaining a sample within a second gas pressure environment such that the sample receives the electron beam from the electron beam assembly and such that the gas pressure in the second gas pressure environment is greater than the gas pressure within the first gas pressure environment. An x-ray detector is positioned so as to have at least one x-ray sensor element within the first gas pressure environment. The sensor element is mounted to a part of the electron beam assembly which is proximal to the sample assembly and further arranged in use to receive x-rays generated by the interaction between the electron beam and the sample.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: July 16, 2019
    Assignee: Oxford Instruments Nanotechnology Tools Limited
    Inventor: Peter J. Statham
  • Patent number: 10354375
    Abstract: A pattern inspection method includes: generating an image of an inspection area including a pattern to be inspected; obtaining, from the image, measured values representing two-dimensional shape information of the pattern to be inspected; producing a frequency distribution of the measured values; calculating a statistic of the measured values; calculating a change in the statistic while carrying out an inspection operation which comprises repeating the processes from generating the image to calculating the statistic; and terminating the inspection operation if the change in the statistic is smaller than a threshold value.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: July 16, 2019
    Assignee: NGR INC.
    Inventor: Yoshishige Sato
  • Patent number: 10340119
    Abstract: Techniques are described that facilitate automated extraction of lamellae and attaching the lamellae to sample grids for viewing on transmission electron microscopes. Some embodiments of the invention involve the use of machine vision to determine the positions of the lamella, the probe, and/or the TEM grid to guide the attachment of the probe to the lamella and the attachment of the lamella to the TEM grid. Techniques that facilitate the use of machine vision include shaping a probe tip so that its position can be readily recognized by image recognition software. Image subtraction techniques can be used to determine the position of the lamellae attached to the probe for moving the lamella to the TEM grid for attachment. In some embodiments, reference structures are milled on the probe or on the lamella to facilitate image recognition.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: July 2, 2019
    Assignee: FEI Company
    Inventors: Valerie Brogden, Jeffrey Blackwood, Michael Schmidt, Dhruti Trivedi, Richard J. Young, Thomas G. Miller, Brian Roberts Routh, Jr., Stacey Stone, Todd Templeton
  • Patent number: 10340117
    Abstract: Since a diffraction phenomenon occurs in the electron beam passing through a differential evacuation hole, an electron beam whose probe diameter is narrowed cannot pass through a hole having an aspect ratio of a predetermined value or more, and accordingly, a degree in vacuum on the electron beam side cannot be improved. By providing a differential evacuation hole with a high aspect ratio in an ion beam device, it becomes possible to obtain an observed image on a sample surface, with the sample being placed under the atmospheric pressure or a pressure similar thereto, in a state where the degree of vacuum on the ion beam side is stabilized. Moreover, by processing the differential evacuation hole by using an ion beam each time it is applied, both a normal image observation with high resolution and an image observation under atmospheric pressure or a pressure similar thereto can be carried out.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: July 2, 2019
    Assignee: Hitachi, Ltd.
    Inventors: Shinichi Matsubara, Hiroyasu Shichi, Takashi Ohshima
  • Patent number: 10332721
    Abstract: An aberration computing device (100) includes a fitting section (48) for fitting line profiles of a diffractogram taken in radial directions to a fitting function and finding fitting parameters of the fitting function and a computing section (49) for finding at least one of an amount of defocus and two-fold astigmatism, based on the fitting parameters.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: June 25, 2019
    Assignee: JEOL Ltd.
    Inventor: Shigeyuki Morishita
  • Patent number: 10319559
    Abstract: The disclosed subject matter relates to testing a sample by means of a particle beam microscope in which the sample is scanned in a point-wise manner by a focused beam of charged particles thereby generating imaging signals. The particle beam dose applied per scanning point is changed during scanning.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: June 11, 2019
    Inventors: Tim Dahmen, Niels de Jonge
  • Patent number: 10308500
    Abstract: The present invention relates to a cantilever or membrane comprising a body and an elongated beam attached to the body. The elongated beam includes a first layer comprising a first material, a second layer comprising a second material having an elastic modulus different to that of the first material, a third layer comprising a third material having an elastic modulus different to that of the first material, where the first layer is sandwiched between the second layer and the third layer.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: June 4, 2019
    Assignee: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Georg Ernest Fantner, Jonathan David Adams, Nahid Hosseini
  • Patent number: 10312053
    Abstract: The present invention shortens the time spent in a search for a visual field by a user in a charged particle beam apparatus in which an observation range on a sample is set by using a captured image of the sample. When the contour of a sample table is circularly configured, for example, the central position of a sample table image on an optical image is quickly, easily, and accurately obtained by calculating, from the coordinates of the respective vertices of a triangle circumscribed about the contour created on the optical image by the user, the incenter of the triangle without direct recognition by automatic image analysis, which is complex and time-consuming, of the contour of the sample table image on the optical image.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: June 4, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kazuki Ishizawa, Hiroyuki Chiba, Yoshihiro Takahoko, Daichi Nara
  • Patent number: 10298909
    Abstract: An optical inspector with feedback capability includes an optical device that captures an image when a sample is within the field of view of the optical device, a storage device that stores the captured image, a processor that determines a quality characteristic value of the sample based on the captured image, and an interface circuit that outputs inspection data or a command based on the quality characteristic value. A method of controlling a sample processing line is also disclosed, the method including capturing an image of a sample traversing the processing line, determining a quality characteristic of the sample based at least in part on the captured image, and causing the operation of a device included in the processing line to be adjusted based at least in part on the quality characteristic value. In one example, the optical inspector is an in-flight 3D inspector located in the processing line.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: May 21, 2019
    Assignee: Qcify Inc.
    Inventors: Raf Peeters, Bert Peelaers
  • Patent number: 10297436
    Abstract: The present invention relates to a method and device for measuring m/z ratios of ions in ion cyclotron resonance (ICR) mass spectrometry. The described ion traps for ICR mass spectrometry are distinct from the previous configurations by having one or many narrow aperture (flat) detection electrodes that could be moved radially inward the ICR trap, for example on the plane where radiofrequency excitation potential is minimal, closer to the post-excitation ion trajectories.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: May 21, 2019
    Assignee: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Yury Tsybin, Anton Kozhinov, Konstantin Nagornov
  • Patent number: 10290465
    Abstract: In order to evaporate material, an electronic beam is guided over a melt surface in a periodic pattern by a detecting unit. Whether or not the actual pattern matches the target pattern specified by the deflecting unit is detected in principle on an image of the melt surface. In order to allow a better analysis of the image, the periodicity of the deflection pattern during the analysis of temporally successive images is taken into consideration.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: May 14, 2019
    Assignee: ALD Vacuum Technologies GmbH
    Inventors: Georg Reiter, Matthias Waelzlein
  • Patent number: 10288643
    Abstract: A scanning probe microscopy system for mapping nanostructures on a surface of a sample is described. The nanostructures include at least one face having a slope with a slope angle that exceeds a threshold. The system includes a metrology frame, a sample support structure, a sensor head including a probe which includes a cantilever and a probe tip, and an actuator for scanning the probe tip relative to the substrate surface. For sensing the nanostructures, the probe tip is arranged under a fixed offset angle with respect to the sensor head such as to be angled relative to the sample surface. The system further includes a sensor head carrier for receiving the sensor head, the sensor head carrier and the sensor head being provided with a mutually cooperating mounting structure for forming a kinematic mount having at least three contact points for detachable mounting of the sensor head on the sensor head carrier.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: May 14, 2019
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Stefan Kuiper, William Edward Crowcombe
  • Patent number: 10290464
    Abstract: The present invention provides a charged particle beam device capable of predicting the three-dimensional structure of a sample, without affecting the charge of the sample. The present invention provides a charged particle beam device characterized in that a first distance between the peak and the bottom of a first signal waveform obtained on the basis of irradiation with a charged particle beam having a first landing energy, and a second distance between the peak and the bottom of a second signal waveform obtained on the basis of irradiation with a charged particle beam having a second landing energy different from the first landing energy are obtained, and the distance between the peak and the bottom at a landing energy (zero, for instance) different from the first and second landing energies is obtained on the basis of the extrapolation of the first distance and the second distance.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: May 14, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Toshiyuki Yokosuka, Chahn Lee, Hideyuki Kazumi, Manabu Hasegawa
  • Patent number: 10281412
    Abstract: An apparatus for measuring a semiconductor device includes a beam irradiating unit configured to irradiate a first beam to a semiconductor substrate, a stage configured to receive the semiconductor substrate thereon and which is configured to rotate toward a central axis, which is perpendicular to a horizontal plane lying in the same plane with the semiconductor substrate, by a first angle to the horizontal plane and a second angle that is different from the first angle, a detector configured to receive a second beam generated by reflecting the first beam to the semiconductor substrate at the first angle and to receive a third beam generated by reflecting the first beam to the semiconductor substrate at the second angle, and an arithmetic operation unit configured to generate a 3D image of the semiconductor substrate using the second beam and the third beam received by the detector.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: May 7, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Choon-Shik Leem, Yeon-Joong Kim
  • Patent number: 10276346
    Abstract: A multi-beam inspection system includes one or more particle beam sources to generate two or more particle beams, a set of particle control elements configured to independently direct the two or more particle beams to a sample, one or more detectors positioned to receive particles emanating from the sample in response to the two or more particle beams, and a controller communicatively coupled to the one or more detectors. The controller includes one or more processors to generate two or more inspection datasets associated with the particles received by the one or more detectors.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: April 30, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Brian Duffy, Amir Azordegan, Christopher Sears
  • Patent number: 10269536
    Abstract: The objective of the present invention is to simultaneously achieve image observations at a high resolution using an electron microscope, and X-ray analysis at a high energy-resolution using a microcalorimeter. An X-ray detector is disposed at a position where the intensity of the magnetic field from an objective lens is weaker than the critical magnetic field of a material used in a thermal insulation shield for a superconducting transition-edge sensor or a microcalorimeter. In addition, an optical system for transmitting X-rays to the detector is inserted between a sample and the detector. Alternatively, a magnetic field shield for shielding the X-ray detector is used.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: April 23, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Satoshi Takada, Naomasa Suzuki, Kazuo Aoki, Takehiko Konno, Takayuki Hoshino
  • Patent number: 10256072
    Abstract: Disclosed are methods for optimized sub-sampling in an electron microscope. With regard at least to utilization of electron dose budgets, of time for acquisition of measurements, and of computing/processing capabilities, very high efficiencies can be achieved by informing and/or adapting subsequent sub-sampling measurements according to one or more earlier-acquired sparse datasets and/or according to analyzes thereof.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: April 9, 2019
    Assignee: Battelle Memorial Institute
    Inventors: Andrew J. Stevens, Libor Kovarik, Andrey V. Liyu, Nigel D. Browning
  • Patent number: 10256071
    Abstract: Quantitative Secondary Electron Detection (QSED) using the array of solid state devices (SSD) based electron-counters enable critical dimension metrology measurements in materials such as semiconductors, nanomaterials, and biological samples (FIG. 3). Methods and devices effect a quantitative detection of secondary electrons with the array of solid state detectors comprising a number of solid state detectors. An array senses the number of secondary electrons with a plurality of solid state detectors, counting the number of secondary electrons with a time to digital converter circuit in counter mode.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: April 9, 2019
    Assignee: Science Tomorrow LLC
    Inventors: Jyoti Agrawal, David C. Joy, Subuhadarshi Nayak
  • Patent number: 10235937
    Abstract: The present application discloses an organic light-emitting display panel and a driving method thereof, as well as an organic light-emitting display device. A specific implementation of the organic light-emitting display panel comprises: an array arrangement comprising a plurality of pixel units, a plurality of data lines and a plurality of reference signal lines, wherein each pixel unit comprises a first subpixel, a second subpixel and a third subpixel, and a color of the first subpixel, a color the second subpixel and a color of the third subpixel differ from one another; a pixel driving circuit is formed in each subpixel, and comprises a driving transistor and an organic light-emitting diode; and the first subpixel, the second subpixel and the third subpixel of an identical pixel unit are electrically connected with a given reference signal line.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: March 19, 2019
    Assignee: SHANGHAI TIANMA AM-OLED CO., LTD.
    Inventors: Yue Li, Gang Liu
  • Patent number: 10223784
    Abstract: A pattern evaluation device of the present invention includes a model estimation unit that estimates a model caused by a manufacturing method on the basis of an inspection image, a deformation amount estimation unit that estimates a deformation amount of the inspection image by using the estimated model, a reference data deformation unit that deforms reference data by using the estimated deformation amount, and an evaluation unit that performs an evaluation process by comparing the reference data which is deformed by the reference data deformation unit with the inspection image.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: March 5, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroyuki Ushiba, Tsuyoshi Minakawa
  • Patent number: 10224174
    Abstract: A method, includes, with an illumination system, directing a first charged particle beam along a particle-optical axis to a specimen position, with an imaging system, receiving a second charged particle beam from the specimen position and directing the second charged particle beam to a detector, recording a first output of the detector, varying an excitation of an optical element of the imaging system with a controller so as to rotate the second charged particle beam at the detector through a yaw angle about the particle-optical axis, and recording a second output of the detector at the yaw angle.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: March 5, 2019
    Assignee: FEI Company
    Inventors: Bert Henning Freitag, Peter Christiaan Tiemeijer, Maarten Bischoff
  • Patent number: 10209295
    Abstract: A non-contact probe signal loading device is disclosed. The non-contact probe signal loading device includes a probe metal sheet electrically connected to a signal loading terminal, a lower surface of the probe metal sheet facing towards a signal inputting metal sheet into which a signal is to be loaded. A signal transmitting capacitor is formed between the probe metal sheet and the signal inputting metal sheet, and the signal transmitting capacitor functions as a medium to transmit a loaded signal to the signal inputting metal sheet from the probe metal sheet.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: February 19, 2019
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., HEFEI BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Min Xu, Jianyang Yu, Weiwei Sun, Zhen Wei
  • Patent number: 10210962
    Abstract: The outer shape and size of a diffraction grating including an edge dislocation is made smaller than the irradiation areas of light waves and electromagnetic waves, by using an opener different from in the diffraction grating, the shape and size of the opening is superposed on the shape of a spiral wave that is generated by an edge dislocation diffraction grating, and the shape and size of the opening are reflected in the shape and size of the spiral wave on the diffractive surface. In addition, not only a diffraction grating system including a pair of a single opener and a single diffraction grating, but also a diffraction grating system in which plural openers and plural edge dislocation diffraction gratings are combined are used, and plural spiral waves can be generated on the diffractive surface with a higher degree of freedom.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: February 19, 2019
    Assignee: HITACHI , LTD.
    Inventors: Ken Harada, Teruo Kohashi, Tomohiro Iwane
  • Patent number: 10210292
    Abstract: A photomask lithography simulation model is created for making a semiconductor chip. Poor metrology is filtered and removed from a contour-specific metrology dataset to improve performance of the photomask. Filtering is performed by the application of a weighting scheme.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: February 19, 2019
    Assignee: International Business Machines Corporation
    Inventors: Todd C. Bailey, Ioana C. Graur, Scott D. Halle, Marshal A. Miller
  • Patent number: 10211757
    Abstract: An apparatus is provided. The apparatus includes a bidirectional comb drive actuator. The apparatus may also include a cantilever. The cantilever includes a first end connected to the bidirectional comb drive actuator and a second end connected to an inner frame. In addition, the cantilever may include first and second conductive layers for routing electrical signals. Embodiments of the disclosed apparatuses, which may include multi-dimensional actuators, allow for an increased number of electrical signals to be routed to the actuators. Moreover, the disclosed apparatuses allow for actuation multiple directions, which may provide for increased control, precision, and flexibility of movement. Accordingly, the disclosed embodiments provide significant benefits with regard to optical image stabilization and auto-focus capabilities, for example in size- and power-constrained environments.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: February 19, 2019
    Assignee: MEMS Drive, Inc.
    Inventors: Xiaolei Liu, Roman Gutierrez, Matthew Ng, Guiqin Wang
  • Patent number: 10203200
    Abstract: Method, metrology modules and RCA tool are provided, which use the behavior of resonance region(s) in measurement landscapes to evaluate and characterize process variation with respect to symmetric and asymmetric factors, and provide root cause analysis of the process variation with respect to process steps. Simulations of modeled stacks with different layer thicknesses and process variation factors may be used to enhance the analysis and provide improved target designs, improved algorithms and correctables for metrology measurements. Specific targets that exhibit sensitive resonance regions may be utilize to enhance the evaluation of process variation.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: February 12, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Tal Marciano, Michael E. Adel, Mark Ghinovker, Barak Bringoltz, Dana Klein, Tal Itzkovich, Vidya Ramanathan, Janay Camp
  • Patent number: 10191082
    Abstract: A carbon nanotube or similar structure is used as the final end tip structure in a Scanning Probe Microscope to measure, modify or identify material and reentrant structures in typical recesses or very small recesses. Further the nanotube or similar structure is acoustically driven such that its locus of motion forms a dynamic reentrant probe. The nanotube is calibrated by known vertical or reentrant structures.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: January 29, 2019
    Inventor: Victor B. Kley
  • Patent number: 10176963
    Abstract: Apparatus and methods for the alignment of a charged-particle beam with an optical beam within a charged-particle beam microscope, and to the focusing of the optical beam are disclosed. An embodiment includes a charged-particle beam microscope having one or more charged-particle beams, such as an electron beam, and one or more optical beams provided by an optical-beam accessory that is mounted in or on the charged-particle beam microscope. This accessory is integrated into a nanomanipulator system, allowing its focus location to be moved within the microscope. The apparatus includes a two-dimensional pixelated beam locator such as a CCD or CMOS imaging array sensor. The image formed by this sensor can then be used to manually, or automatically in an open or closed loop configuration, adjust the positioning of one or more charged-particle beams or optical beams to achieve coincidence of such beams or focus of one or more such beams.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: January 8, 2019
    Assignee: Waviks, Inc.
    Inventors: Thomas M. Moore, Gregory A. Magel
  • Patent number: 10175382
    Abstract: A method of radiological examination of an object for the identification and detection of the composition the object comprising the steps of: irradiating an object under test with high energy radiation such as x-rays or gamma-rays and collecting radiation emergent from the object at a suitable detector system in such manner that emergent radiation intensity data is collected for the entire volume of the object under test; numerically processing the radiation intensity data to obtain a first data item correlated to the total number of electrons within the sample; applying an alternative method to obtain a second data item correlated to another property of the sample; using the first and second data items to derive an indication of the material content of the sample.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: January 8, 2019
    Assignee: Kromek Limited
    Inventors: Ian Radley, Benjamin John Cantwell, Andrew Keith Powell
  • Patent number: 10168354
    Abstract: In a scanning probe microscope including a condensing optical system which includes a laser beam source, a collimator lens and a focus lens, a cantilever, and a detector, the condensing optical system including a cylindrical lens barrel having the laser beam source fixed to one end thereof, and a cylindrical lens mount which is coaxially disposed inside the lens barrel and has the collimator lens fixed to an end portion close to the laser beam source and the focus lens fixed to the opposite end portion, ring-shaped elastic members and are attached to the outer circumferential surface of the lens mount.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: January 1, 2019
    Assignee: Shimadzu Corporation
    Inventor: Masato Hirade
  • Patent number: 10168261
    Abstract: A heated or cooled sample holding stage for use in a nanoindentation measurement system is described. The geometry of the design and the selection of materials minimizes movement of a sample holder with respect to a nanoindentation tip over a wide range of temperatures. The system controls and minimizes motion of the sample holder due to the heating or cooling of the tip holder and/or the sample holder in a high temperature nanoindentation system. This is achieved by a combination of geometry, material selection and multiple sources and sinks of heat. The system is designed to control both the steady state and the transient displacement response.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: January 1, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Warren Oliver, Sudharshan Phani Pardhasaradhi, Richard Anthony
  • Patent number: 10157724
    Abstract: In a scanning electron microscope, an atmospheric pressure space having a specimen arranged therein and a vacuum space arranged on a charged particle optical system side are isolated from each other using an isolation film that transmits charged particle beams. The scanning electron microscope has an electron optical lens barrel, a chassis, and an isolation film. The electron optical lens barrel radiates a primary electron beam onto a specimen. The chassis is directly bonded to the inside of the electron optical lens barrel and has an inside that turns into a lower vacuum state than the inside of the electron optical lens barrel at least during the radiation of the primary electron beam. The isolation film isolates a space in an atmospheric pressure atmosphere having a specimen mounted therein and the inside of the chassis in a lower vacuum state, and transmits the primary charged particle beam.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: December 18, 2018
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Shinsuke Kawanishi, Yusuke Ominami
  • Patent number: 10151773
    Abstract: According to this invention, a scanning probe microscope for scanning a surface of a sample with a probe by bringing the probe into contact with the surface of the sample, comprises a cantilever having the probe at its tip; a displacement detection unit to detect both a bending amount and a torsion amount of the cantilever; and a contact determination unit to determine a primary contact of the probe with the surface of the sample, based on the bending amount and the torsion amount detected by the displacement detection unit in all directions from an undeformed condition of the cantilever.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: December 11, 2018
    Assignee: Hitachi High-Tech Science Corporation
    Inventors: Masatsugu Shigeno, Kazutoshi Watanabe, Masafumi Watanabe, Hiroyoshi Yamamoto, Kazuo Chinone
  • Patent number: 10141157
    Abstract: In a device for performing observation with a charged particle microscope at an atmospheric pressure using a diaphragm, while there was a demand that a distance between the diaphragm and a sample be reduced as much as possible, there was a problem that a limit for how close the diaphragm and the sample can be brought to each other was unknown in the past. In the present invention, a height adjustment member is used, and the position of a diaphragm in a charged particle beam device with respect to the height adjustment member is defined as the specific point of an optical device, so that the positional relationship between the height adjustment member and the diaphragm in the optical device is reproduced, and the height of a sample table with a Z-axis driving mechanism is adjusted so as to locate the surface of the sample at the position of the specific point of the optical device.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: November 27, 2018
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Makoto Nakabayashi, Yuusuke Oominami, Shinsuke Kawanishi
  • Patent number: 10137642
    Abstract: Methods to form cross-linked or sintered objects include forming walls for reservoir layers, with cross-linkable or sinterable materials deposited in the reservoir layers. The cross-linkable or sinterable materials can then be cross-linked, e.g., changing the structure of the deposited cross linkable materials, or sintered, e.g., heat treated to fused the sinterable materials together. The walls for the reservoir layers can be removed after the objects are formed.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: November 27, 2018
    Inventors: Karl Joseph Gifford, Daniel Joseph Hutchison, Tai Dung Nguyen, Tue Nguyen
  • Patent number: 10140772
    Abstract: Embodiments are directed to visualizing electromagnetic (EM) particle emissions in a computer-generated virtual environment. In one scenario, a computer system accesses portions of data representing EM particle emissions emitted by a virtualized EM particle emitter. The computer system generates a particle visualization that includes at least a portion of the EM particle emissions being emitted from the virtualized EM particle emitter within the virtual environment. The particle visualization includes an indication of the EM particle emissions' interactions with other virtual or non-virtual elements in the virtual environment. The computer system then presents the generated particle visualization in the computer-generated virtual environment. In some cases, the computer system further receives user input intended to interact with virtual elements within the virtual environment.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: November 27, 2018
    Assignee: L3 Technologies, Inc.
    Inventors: Nathan H. Stoddart, Adrian Musters, Thomas R. Giallorenzi, Zachary D. Jenkins, Joseph J. Booker, Braden J. Bartlett, David R. Heath, Ashley M. Holt, Michael D. Jackson, Jason C. Newbold, Dallin S. Pabst, Jonathan C. Sanderson, Benjamin I. Smart, Lily Wang
  • Patent number: 10138543
    Abstract: A method of analyzing growth of a two-dimensional material includes forming a two-dimensional material layer includes defects on a substrate, depositing detection material layers on the defects, and one of (i) capturing an image of the two-dimensional material layer on which the detection material layers are deposited and processing the captured image, or (ii) obtaining map coordinates of the detection material layers and processing the obtained map coordinates.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: November 27, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seongjun Jeong, Jaeho Lee, Seongjun Park