Inspection Of Solids Or Liquids By Charged Particles Patents (Class 250/306)
  • Patent number: 11004655
    Abstract: Techniques of using a Transmission Charged Particle Microscope for diffraction pattern detection are disclosed. An example method including irradiating at least a portion of a specimen with a charged particle beam, using an imaging system to collect charged particles that traverse the specimen during said irradiation, and to direct them onto a detector configured to operate in a particle counting mode, using said detector to record a diffraction pattern of said irradiated portion of the specimen, recording said diffraction pattern iteratively in a series of successive detection frames, and during recording of each frame, using a scanning assembly for causing relative motion of said diffraction pattern and said detector, so as to cause each local intensity maximum in said pattern to trace out a locus on said detector.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: May 11, 2021
    Assignee: FEI Company
    Inventors: Bart Buijsse, Maarten Kuijper
  • Patent number: 10996351
    Abstract: The invention relates to a pulse shaper (18). The pulse shaper (18) comprises an integrator (19) for generating a pulse having a peak amplitude indicative of the energy of a detected photon, a feedback resistor (22), switchable discharge circuitry (23) for discharging the integrator (19), and a peak detector (24) for detecting the peak of the pulse. The pulse shaper is adapted to start the discharge of the integrator by the switchable discharge circuitry based on the detection of the peak and to connect the feedback resistor in parallel to the integrator during a period of the pulse generation and to disconnect the feedback resistor during another period of the pulse generation. The pulse shaper can be such that the generation of the pulse is substantially unhindered by any noticeable concurrent discharging mechanism while, at the same time, the occurrence of energy pedestals can be efficiently avoided.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: May 4, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Roger Steadman Booker, Christoph Herrmann
  • Patent number: 10950299
    Abstract: A system and method for high-speed, low-power cryogenic computing are presented, comprising ultrafast energy-efficient RSFQ superconducting computing circuits, and hybrid magnetic/superconducting memory arrays and interface circuits, operating together in the same cryogenic environment. An arithmetic logic unit and register file with an ultrafast asynchronous wave-pipelined datapath is also provided. The superconducting circuits may comprise inductive elements fabricated using both a high-inductance layer and a low-inductance layer. The memory cells may comprise superconducting tunnel junctions that incorporate magnetic layers. Alternatively, the memory cells may comprise superconducting spin transfer magnetic devices (such as orthogonal spin transfer and spin-Hall effect devices). Together, these technologies may enable the production of an advanced superconducting computer that operates at clock speeds up to 100 GHz.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: March 16, 2021
    Assignee: SeeQC, Inc.
    Inventors: Oleg A. Mukhanov, Alexander F. Kirichenko, Igor V. Vernik, Ivan P. Nevirkovets, Alan M. Kadin
  • Patent number: 10943764
    Abstract: Apparatuses for collection of wavelength resolved and angular resolved cathodoluminescence (WRARCL) emitted from a sample exposed to an electron beam (e-beam) or other excitation beams are described. Cathodoluminescence light (CL) may be emitted from a sample at specific angles relative to the excitation beam and analyzed with respect to light-emitting and other optical phenomena. The described embodiments allow collection of WRARCL data more efficiently and with significantly fewer aberrations than existing systems.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: March 9, 2021
    Assignee: Gatan, Inc.
    Inventors: Michael Bertilson, John Andrew Hunt, David J. Stowe
  • Patent number: 10943763
    Abstract: A semiconductor device is scanned by an electron beam of a scanning electron microscope (SEM). The area includes a three-dimensional (3D) feature having a top opening and a sidewall. The 3D feature is imaged while varying an energy value of the electron beam. The electron beam impinges at a first point within a selected area of the semiconductor device and interacts with the sidewall, wherein the first point is at a distance away from an edge of the top opening. Based on change in a signal representing secondary electron yield at the edge as the energy value of the electron beam is varied during the SEM imaging, it is determined whether the sidewall is occluded from a line-of-sight of the electron beam. A slope of the sidewall may be determined by comparing measured signals with simulated waveforms corresponding to various slopes.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: March 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Ofer Yuli, Samer Banna
  • Patent number: 10936788
    Abstract: A display control system includes an image data generation device that generates a plurality of pieces of image data, a storage device that stores the plurality of pieces of image data and a plurality of pieces of position data of holding units, and a display data generation device that generates display data on the basis of the plurality of pieces of image data and position data. The display data is data for aligning and displaying in a fixed direction a plurality of pieces of sample information that includes at least either a plurality of images or a plurality of analysis results, and data that is a result of laying out first sample information and first position information in such a manner that a display device displays the first sample information and the first position information representing a position of a first holding unit corresponding to the first sample information.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: March 2, 2021
    Assignee: OLYMPUS CORPORATION
    Inventors: Mina Kobayashi, Toshiyuki Hattori, Naohiro Ariga, Ayumu Sakurai
  • Patent number: 10921266
    Abstract: The present invention discloses an imaging device, an imaging method, and an imaging system, belonging to the field of sample image data acquisition and imaging technology. The imaging device includes: a charged particle source, a convergence system, a scanning control system, a detection module, and a spectral analysis module disposed below the detection module, where the detection module includes a plurality of pixelated detector units; and the detection module is provided with a hole thereon. The diffraction pattern is obtained by using the detection module, and the spectral analysis module performs spectral analysis on a charged particle beam passing through the hole, so as to obtain the diffraction pattern and spectral signal simultaneously by one scanning. The imaging method of the present invention is based on a hollow ptychography method, which enables toper form imaging on the diffraction pattern obtained through the detection module, with good imaging effects.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: February 16, 2021
    Assignee: NANJING UNIVERSITY
    Inventors: Peng Wang, Zhiyuan Ding, Si Gao, Biying Song
  • Patent number: 10921588
    Abstract: A three-dimensional display apparatus includes a display panel and an optical element. The display panel includes a display surface. The display surface extends in a first direction, extends in a second direction orthogonal to the first direction. The first direction corresponds to a parallax direction of user's eyes seeing an image. The display surface curves around a central axis extending in the second direction. The display surface includes subpixels arranged in a grid pattern in the first direction and the second direction within the display surface. The optical element is arranged along the display surface, and the optical element includes strip-shaped regions, each of which extends in a certain direction. The optical element is configured to define a beam direction of image light emitted from the subpixels. The display surface forms an arc in a cross-section that is orthogonal to the second direction.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: February 16, 2021
    Assignee: KYOCERA Corporation
    Inventor: Kaoru Kusafuka
  • Patent number: 10916405
    Abstract: According to one embodiment, an atom probe inspection device includes one or more processors configured to change a two-dimensional position of a detected ion, detect two-dimensional position information of the ion and a flying time of the ion, identify a type of an element of the ion, generate first information under a first condition and second information under a second condition, and generate a reconstruction image of the sample from the first information and the second information.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: February 9, 2021
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Takahiro Ikeda, Akira Kuramoto, Haruko Akutsu
  • Patent number: 10910189
    Abstract: In embodiments, a linac electron beam excited X-ray source weighing less than 50 pounds, and having a volume less than 1 cubic foot, injects electrons from an RF-excited, diamond tip cathode into a dielectric accelerator tube of diameter less than 10 mm, where the electrons are RF-accelerated to 1-4 MeV. A focusing channel having a plurality of annular permanent magnets can surround the dielectric tube, and a vacuum can be maintained in the tube by a getter pump. The accelerating RF can be 10 GHz or higher. The X-ray source can be powered by a rechargeable battery for more than an hour. Embodiments can be transported within a case having a display attached to an interior surface of its lid. An X-ray head can be removed from the case and extended up to 10 feet while remaining interconnected with the case by a flexible conduit.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: February 2, 2021
    Assignee: Euclid Beamlabs, LLC
    Inventors: Chunguang Jing, Roman Kostin, Ao Liu, Sergey Antipov, Alexei Kanareykin
  • Patent number: 10908056
    Abstract: A rock sample is nano-indented from a surface of the rock sample to a specified depth less than a thickness of the rock sample. While nano-indenting, multiple depths from the surface to the specified depth and multiple loads applied to the sample are measured. From the multiple loads and the multiple depths, a change in load over a specified depth is determined, using which an energy associated with nano-indenting rock sample is determined. From a Scanning Electron Microscope (SEM) image of the nano-indented rock sample, an indentation volume is determined responsive to nano-indenting, and, using the volume, an energy density is determined. It is determined that the energy density associated with the rock sample is substantially equal to energy density of a portion of a subterranean zone in a hydrocarbon reservoir. In response, the physical properties of the rock sample are assigned to the portion of the subterranean zone.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: February 2, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Katherine Leigh Hull, Younane N. Abousleiman
  • Patent number: 10896800
    Abstract: A charged particle beam system includes a charged particle source, a multi beam generator, an objective lens, a projection system, and a detector system. The projection system includes a first subcomponent configured to provide low frequency adjustments, and the projection system comprises a second subcomponent configured to provide a high frequency adjustments.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: January 19, 2021
    Assignee: Carl Zeiss MultiSEM GmbH
    Inventors: Christoph Riedesel, Dirk Zeidler
  • Patent number: 10866172
    Abstract: A system for producing cryogenic electron microscopy (cryo-EM) grids. A grid holding element holds a cryo-EM grid in place while a sample deposit element deposits liquid sample from a sample supply onto the grid. A sample shaping element shapes the liquid sample and then a cryogenic sample vitrifying element vitrifies the liquid sample. The shaping element may direct a gas jet towards the grid to reduce the thickness of the liquid sample. The gas jet may mix first and second liquid samples together in midair or on the grid. A storage element stores vitrified cryo-EM grids and includes an electromagnetic field (EMF) source that creates an EMF within the storage element such that the vitrified sample is exposed to the EMF. As a result of being exposed to the EMF, a protein provided with the sample is re-oriented from a first orientation to a second orientation.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: December 15, 2020
    Assignee: Neptune Fluid Flow Systems LLC
    Inventors: Trevor Allen McQueen, Winnie Liang
  • Patent number: 10837981
    Abstract: A method of operating an atomic force microscope, comprising a probe, the probe being moved forth and back during respective trace and retrace times of a scan line, the method comprising: a) during trace time, oscillating the probe, b) generating a z feedback signal to keep an amplitude of oscillation of the probe constant at a setpoint value, the z feedback signal being generated by a first feedback loop, c) during retrace time, placing the probe in a drift compensation state by changing the setpoint value to a different value so that the z feedback signal being generated by the first feedback loop causes the probe to move away from the sample and oscillate free, d) detecting an amplitude of free oscillation of the probe and adjusting with a second feedback loop its excitation signal to maintain the amplitude of free oscillation of the probe close to a set value.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: November 17, 2020
    Assignees: INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM), UNIVERSITE D'AIX-MARSEILLE
    Inventors: Simon Scheuring, Atsushi Miyagi
  • Patent number: 10840054
    Abstract: A charged-particle source for emission of electrons or other electrically charged particles comprises, located between the emitter electrode having an emitter surface and a counter electrode, at least two adjustment electrodes; a pressure regulator device is configured to control the gas pressure in the source space at a pre-defined pressure value. In a first cleaning mode of the particle source, applying a voltage between the emitter and counter electrodes directs gas particles towards the counter electrode, generating secondary electrons which ionize particles of the gas in the source space, and electrostatic potentials are applied to at least some of the adjustment electrodes, generating an electric field directing the ionized gas particles onto the emitter surface.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: November 17, 2020
    Assignee: IMS Nanofabrication GmbH
    Inventors: Elmar Platzgummer, Mattia Capriotti, Christoph Spengler
  • Patent number: 10821305
    Abstract: A radiotherapy apparatus is disclosed, with a linear accelerator for producing a beam of electrons, a target aligned with the electron beam, the target being capable of producing photons when electrons are incident thereon, and a material which is capable of producing neutrons when photons of sufficient energy are incident thereon. A neutron detector capable of providing a signal to a controller of the linear accelerator is provided, the controller being capable of varying the energy of the electrons of the electron beam.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: November 3, 2020
    Assignee: ELEKTA LIMITED
    Inventor: John Allen
  • Patent number: 10811217
    Abstract: There is provided a crystal orientation figure creating device for use in a charged particle beam device for making a charged particle beam irradiated to a surface of a sample, the crystal orientation figure creating device being configured to create a crystal orientation figure, which is a figure representing a crystal coordinate system of a crystal at a position selected on the surface with respect to an incident direction of the charged particle beam, the crystal orientation figure creating device including: an orientation information acquiring unit configured to acquire crystal orientation information with respect to the incident direction at the selected position; an incident direction information acquiring unit configured to acquire information relating to an incident direction of the charged particle beam with respect to the sample; and a crystal orientation figure creating unit configured to create a crystal orientation figure in a changed incident direction at the selected position, based on the crys
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: October 20, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Takafumi Amino, Takashige Mori, Naoki Maruyama
  • Patent number: 10811218
    Abstract: There is provided a tilting parameters calculating device for use in a charged particle beam device for making a charged particle beam irradiated to a surface of a sample mounted on a sample stage, the tilting parameters calculating device being configured to calculate tilting parameters, the tilting parameters being input parameters to control a tilting direction and a tilting value of the sample and/or the charged particle beam, the input parameters being necessary to change an incident direction of the charged particle beam with respect to the sample, the tilting parameters calculating device including a tilting parameters calculating unit for calculating the tilting parameters based on information that indicates the incident direction of the charged particle beam with respect to a crystal lying at a selected position on the surface in a state where the incident direction of the charged particle beam with respect to the sample is in a predetermined incident direction, the information being designated on a
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: October 20, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Takashige Mori, Takafumi Amino, Naoki Maruyama, Akira Taniyama, Shunsuke Taniguchi, Chie Yokoyama
  • Patent number: 10811220
    Abstract: An electron sensor and a system with a plurality of electron sensors for electron microscopy using an electron microscope. More specifically, the electron microscope generates an electron beam that includes at least one electron that impacts on a lateral reception surface of said electron sensor and this generates an electrical charge of electron-hole (e-h) pairs that are detected and/or measured by at least electrodes linked to an electric circuit unit to form a high dynamic range image and measure the energy of the electrons impacting each pixel of the image.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: October 20, 2020
    Assignee: CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS (CSIC)
    Inventors: Ricardo Carmona Galán, Lionel Cervera Gontard
  • Patent number: 10804074
    Abstract: The disclosure relates to systems and method for processing images. The method includes selecting a predetermined reference structure, the predetermined reference structure having a known feature size/shape. The method also includes obtaining a reference image of the predetermined reference structure, and capturing a calibration image of the predetermined reference structure using an observation device. The calibration image includes a plurality of features. Additionally, the method includes identifying at least one portion of the plurality of features of the calibration image that include a feature size/shape substantially similar to the known feature size and shape of the predetermined reference structure. Finally, the method includes combining the identified portion of the plurality of features of the calibration image to form a stacked feature image, and determining a point spread function (PSF) of the observation device by comparing the obtained reference image with the stacked feature image.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: October 13, 2020
    Assignee: Nanojehm Inc.
    Inventors: Matthew Daniel Zotta, Eric Lifshin
  • Patent number: 10796891
    Abstract: Disclosed is a substrate processing apparatus including a chamber having a processing space inside, a support unit that supports a substrate in the processing space, a gas supply unit that supplies gas into the processing space, a plasma source that generates plasma from the gas supplied into the processing space, and a detection unit that is provided in a sidewall of the chamber and that measures an impedance change to detect a degree of adsorption of particles on an inner wall of the chamber or a surface of a part that is exposed to the processing space.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: October 6, 2020
    Assignee: SEMES CO., LTD.
    Inventors: Seon Do Kim, Hyung Joon Kim
  • Patent number: 10790113
    Abstract: A charged particle imaging apparatus comprising: A specimen holder, for holding a specimen; A particle-optical column, for: Producing a plurality of charged particle beams, by directing a progenitor charged particle beam onto an aperture plate having a corresponding plurality of apertures within a footprint of the progenitor beam; Directing said beams toward said specimen, wherein: Said aperture plate comprises a plurality of different zones, which comprise mutually different aperture patterns, arranged within said progenitor beam footprint; The particle-optical column comprises a selector device, located downstream of said aperture plate, for selecting a beam array from a chosen one of said zones to be directed onto the specimen.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: September 29, 2020
    Assignee: FEI Company
    Inventors: Bohuslav Sed'a, Ali Mohammadi-Gheidari, Marek Un{hacek over (c)}ovský
  • Patent number: 10785858
    Abstract: An apparatus includes at least one conductive layer, an electromagnetic (EM) wave source, and an electron source. The conductive layer has a thickness less than 5 nm. The electromagnetic (EM) wave source is in electromagnetic communication with the at least one conductive layer and transmits a first EM wave at a first wavelength in the at least one conductive layer so as to generate a surface plasmon polariton (SPP) field near a surface of the at least one conductive layer. The electron source propagates an electron beam at least partially in the SPP field so as to generate a second EM wave at a second wavelength less than the first wavelength.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: September 22, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Ido Kaminer, Liang Jie Wong, Ognjen Ilic, Yichen Shen, John Joannopoulos, Marin Soljacic
  • Patent number: 10782313
    Abstract: A fabrication method for the fabrication of special nano-scale structures, such as AFM probe tip(s) at the edge of a silicon and/or silicon nitride platform, called the cantilever. An array of these special AFM probes with the AFM tip structure located at the edge is fabricated from an array of regular AFM probes where the AFM tip structure may not originally have been located at the edge of the cantilever. A hard mask is formed on the probe's tip from a hard material, such as a metal mask, where more than one side of the tip could be uncovered. The non-covered side(s) of the probe tip structure(s) are subsequently etched to remove substrate materials, so that a sharp shaft (tip) is formed on the edge of the cantilever, when the process is done in a batch manner it results in an array of such AFM probe tips.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: September 22, 2020
    Assignee: Hangzhou Tanzhen Nanotech. Co., Ltd.
    Inventors: Shuo Zheng, Babak Baradaran Shokouhi, Mengmeng Deng, Bo Cui
  • Patent number: 10777384
    Abstract: A multiple beam image acquisition apparatus includes a stage to mount thereon a target object, a beam forming mechanism to form multiple primary electron beams and a measurement primary electron beam, a primary electron optical system to collectively irradiate the target object surface with the multiple primary electron beams and the measurement primary electron beam, a secondary electron optical system to collectively guide multiple secondary electron beams generated because the target object is irradiated with the multiple primary electron beams, and a measurement secondary electron beam generated because the target object is irradiated with the measurement primary electron beam, a multi-detector to detect the multiple secondary electron beams collectively guided, a measurement mechanism to measure a position of the measurement secondary electron beam collectively guided, and a correction mechanism to correct a trajectory of the multiple secondary electron beams by using a measured position of the measureme
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: September 15, 2020
    Assignee: NuFlare Technology, Inc.
    Inventors: Nobutaka Kikuiri, Atsushi Ando
  • Patent number: 10777382
    Abstract: A low voltage scanning electron microscope is disclosed, which includes: an electron source configured to generate an electron beam; an electron beam accelerator configured to accelerate the electron beam; a compound objective lens configured to converge the electron beams accelerated by the electron beam accelerator; a deflection device arranged between the inner wall of the magnetic lens and the optical axis of the electron beam and configured to deflect the electron beam; a detection device comprising a first sub-detection device for receiving secondary and backscattered electrons from the specimen, a second sub-detection device for receiving backscattered electrons, and a control device for changing the trajectories of the secondary electrons and the backscattered electrons; an electrostatic lens comprising the second sub-detection device, a specimen stage, and a control electrode for reducing the moving speed of the electron beam and changing the moving directions of the secondary and the backscattered e
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: September 15, 2020
    Assignee: FOCUS-EBEAM TECHNOLOGY (BEIJING) CO., LTD.
    Inventors: Shuai Li, Wei He
  • Patent number: 10755890
    Abstract: An object of the invention is to provide a charged particle beam apparatus capable of achieving both acquisition of an image having high resolution of an inspection target pattern and suppression of a beam irradiation amount when a specific pattern is an inspection target from a highly integrated pattern group.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: August 25, 2020
    Assignee: Hitachi High-Tech Corporation
    Inventors: Shinya Ueno, Hiroshi Nishihama, Shaungqi Dong, Shahedul Hoque, Susumu Koyama
  • Patent number: 10748737
    Abstract: A flat top laser beam is used to generate an electron beam with a photocathode that can include an alkali halide. The flat top profile can be generated using an optical array. The laser beam can be split into multiple laser beams or beamlets, each of which can have the flat top profile. A phosphor screen can be imaged to determine space charge effects or electron energy of the electron beam.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: August 18, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Katerina Ioakeimidi, Gildardo R. Delgado, Frances Hill, Michael E. Romero, Rudy F. Garcia
  • Patent number: 10741357
    Abstract: A method of observing a liquid specimen in an electron microscope includes: housing the liquid specimen in a space formed by a specimen stage and a lid member; and observing the liquid specimen, wherein the lid member includes a water retaining material, and a supporting member for supporting the water retaining material, and the water retaining material is provided with a through-hole that enables passage of an electron beam with which the liquid specimen is irradiated.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: August 11, 2020
    Assignee: JEOL Ltd.
    Inventors: Noriyuki Inoue, Toshiaki Suzuki, Yoshiko Takashima
  • Patent number: 10732037
    Abstract: Apparatus and methods for creating deposits of uniformly spaced or uniformly overlapping droplets of selected chemicals where each droplet has an a priori known amount of the selected chemical or chemicals is taught (including biological and microbial materials). In some embodiments the deposits may be used as samples of different but known concentrations that may be used to calibrate spectroscopic inspection instruments to enable such instruments to not only provide identification in situ of unknown materials but also to provide calibrated and traceable surface concentrations of such materials. In some embodiments, such calibrated instruments may be used in enhanced processes for validating the cleanliness of manufacturing surfaces such as surfaces of equipment used in the preparation of pharmaceuticals, food, or semiconductor devices.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: August 4, 2020
    Assignee: Photon Systems, Inc.
    Inventor: Michael R. Reid
  • Patent number: 10731979
    Abstract: A method for monitoring a first nanometric structure formed by a multiple patterning process, the method may include performing a first plurality of measurements to provide a first plurality of measurement results; wherein the performing of the first plurality of measurements comprises illuminating first plurality of locations of a first sidewall of the first nanometric structure by oblique charged particle beams of different tilt angles; and processing, by a hardware processor, the first plurality of measurement results to determine a first attribute of the first nanometric structure.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: August 4, 2020
    Assignee: Applied Materials Israel Ltd.
    Inventors: Shimon Levi, Ishai Schwarzband, Roman Kris
  • Patent number: 10720306
    Abstract: The scanning charged particle beam microscope according to the present application is characterized in that, in acquiring an image of the FOV (field of view), interspaced beam irradiation points are set, and then, a deflector is controlled so that a charged particle beam scan is performed faster when the charged particle beam irradiates a position on the sample between each of the irradiation points than when the charged particle beam irradiates a position on the sample corresponding to each of the irradiation points (a position on the sample corresponding to each pixel detecting a signal). This allows the effects from a micro-domain electrification occurring within the FOV to be mitigated or controlled.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: July 21, 2020
    Assignee: Hitachi High-Tech Corporation
    Inventors: Toshiyuki Yokosuka, Chahn Lee, Hideyuki Kazumi, Hajime Kawano, Shahedul Hoque, Kumiko Shimizu, Hiroyuki Takahashi
  • Patent number: 10714610
    Abstract: A semiconductor device of an embodiment includes a silicon carbide layer; a gate electrode; a gate insulating layer disposed between the silicon carbide layer and the gate electrode; a first region disposed in the silicon carbide layer and containing nitrogen (N); and a second region disposed between the first region and the gate insulating layer, and containing at least one element selected from the group consisting of nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), scandium (Sc), yttrium (Y), lanthanum (La), lanthanoids (Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), hydrogen (H), deuterium (D), and fluorine (F).
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: July 14, 2020
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuo Shimizu, Ryosuke Iijima, Toshihide Ito, Shunsuke Asaba, Yukio Nakabayashi, Shigeto Fukatsu
  • Patent number: 10714305
    Abstract: A method for evaluating a specimen, the method can include positioning an energy dispersive X-ray (EDX) detector at a first position; scanning a flat surface of the specimen by a charged particle beam that exits from a charged particle beam optics tip and propagates through an aperture of an EDX detector tip; detecting, by the EDX detector, x-ray photons emitted from the flat surface as a result of the scanning of the flat surface with the charged particle beam; after a completion of the scanning of the flat surface, positioning the EDX detector at a second position in which a distance between the EDX detector tip and a plane of the flat surface exceeds a distance between the plane of the flat surface and the charged particle beam optics tip; and wherein a projection of the EDX detector on the plane of the flat surface virtually falls on the flat surface when the EDX detector is positioned at the first position and when the EDX detector is positioned at the second position.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: July 14, 2020
    Assignee: Applied Materials Israel Ltd.
    Inventors: Alon Litman, Efim Vinnitsky
  • Patent number: 10707052
    Abstract: An imaging system that selectively alternates between a first, non-destructive imaging mode and a second, destructive imaging mode to analyze a specimen so as to determine an atomic structure and composition of the specimen is provided. The field ionization mode can be used to acquire first images of ionized atoms of an imaging gas present in a chamber having the specimen disposed therein, and the field evaporation mode can be used to acquire second images of ionized specimen atoms evaporated from a surface of the specimen with the imaging gas remaining in the chamber. The first and second image data can be analyzed in real time, during the specimen analysis, and results can be used to dynamically adjust operating parameters of the imaging system.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: July 7, 2020
    Assignee: Atomnaut Inc.
    Inventor: Peter V. Liddicoat
  • Patent number: 10692688
    Abstract: A charged particle beam apparatus automatically prepares a sample piece from a sample. The apparatus includes a charged particle beam irradiation optical system that emits a charged particle beam. A sample stage with a sample placed thereon is movable relative to the charged particle beam irradiation optical system. A sample piece transferring device holds and transports a sample piece separated and extracted from the sample, and a holder fixing base holds a sample piece holder to which the sample piece is to be transferred. An electrical conduction sensor detects electrical conduction between the sample piece transferring device and an object, and a computer sets a time management mode when electrical conduction between the sample piece transferring device and the sample piece is not detected when the sample piece transferring device and the sample piece are connected to each other.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: June 23, 2020
    Assignee: HITACHI HIGH-TECH SCIENCE CORPORATION
    Inventors: Satoshi Tomimatsu, Makoto Sato, Masato Suzuki
  • Patent number: 10684308
    Abstract: Techniques are disclosed for stabilizing soft specimen traditionally considered too fragile for APT instruments. These specimens include biological samples, polymers and other fragile materials. For this purpose, a protective structure is disclosed that surrounds the sides of the specimen by supporting walls while only exposing the very end or terminus of the specimen to the electrostatic field of the APT instrument. The protective structure may take the form of a nanoscale conical grinder which continually machines the specimen to regenerate the terminus of the specimen in-situ. Alternately, the protective structure may take the form of a nanopipette in which the specimen is first frozen before undergoing field evaporation together with the tip of the nanopipette. Heretofore only routinely possible for rigid and hard materials, the design thus extends APT analysis to produce three-dimensional atomic-scale maps of soft specimens.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: June 16, 2020
    Inventor: Gregory Hirsch
  • Patent number: 10663380
    Abstract: A multiple degree of freedom sample stage or testing assembly including a multiple degree of freedom sample stage. The multiple degree of freedom sample stage includes a plurality of stages including linear, and one or more of rotation or tilt stages configured to position a sample in a plurality of orientations for access or observation by multiple instruments in a clustered volume that confines movement of the multiple degree of freedom sample stage. The multiple degree of freedom sample stage includes one or more clamping assemblies to statically hold the sample in place throughout observation and with the application of force to the sample, for instance by a mechanical testing instrument. Further, the multiple degree of freedom sample stage includes one or more cross roller bearing assemblies that substantially eliminate mechanical tolerance between elements of one or more stages in directions orthogonal to a moving axis of the respective stages.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: May 26, 2020
    Assignee: Bruker Nano, Inc.
    Inventors: Edward Cyrankowski, Syed Amanulla Syed Asif, Ryan Major, Derek Rasugu, Yuxin Feng
  • Patent number: 10664955
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method includes generating, using an imaging device, a set of one or more images, each including an instance of a feature within a respective pattern structure. The method also includes detecting edges of the features within the pattern structure of each image using an inverse linescan model, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure provided as part of a training data set to a machine learning model.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: May 26, 2020
    Assignee: FRACTILIA, LLC
    Inventor: Chris Mack
  • Patent number: 10665417
    Abstract: Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: May 26, 2020
    Assignee: FRACTILIA, LLC
    Inventor: Chris Mack
  • Patent number: 10665419
    Abstract: A method of imaging a specimen in a Scanning Transmission Charged Particle Microscope, comprising the following steps: Providing the specimen on a specimen holder; Providing a beam of charged particles that is directed from a source through an illuminator so as to irradiate the specimen; Providing a segmented detector for detecting a flux of charged particles traversing the specimen; Causing said beam to scan across a surface of the specimen, and combining signals from different segments of the detector so as to produce a vector output from the detector at each scan position, said vector output having components Dx, Dy along respective X, Y coordinate axes, specifically comprising: Performing a relatively coarse pre-scan of the specimen, along a pre-scan trajectory; At selected positions pi on said pre-scan trajectory, analyzing said components Dx, Dy and also a scalar intensity sensor value Ds; Using said analysis of Dx, Dy and Ds to classify a specimen composition at each position pi into one of a grou
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: May 26, 2020
    Assignee: FEI Company
    Inventors: Erik Michiel Franken, Ivan Lazic, Bart Jozef Janssen
  • Patent number: 10651008
    Abstract: Techniques of using a Transmission Charged Particle Microscope for diffraction pattern detection are disclosed. An example method including irradiating at least a portion of a specimen with a charged particle beam, using an imaging system to collect charged particles that traverse the specimen during said irradiation, and to direct them onto a detector configured to operate in a particle counting mode, using said detector to record a diffraction pattern of said irradiated portion of the specimen, recording said diffraction pattern iteratively in a series of successive detection frames, and during recording of each frame, using a scanning assembly for causing relative motion of said diffraction pattern and said detector, so as to cause each local intensity maximum in said pattern to trace out a locus on said detector.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: May 12, 2020
    Assignee: FEI Company
    Inventors: Bart Buijsse, Maarten Kuijper
  • Patent number: 10651006
    Abstract: According to an embodiment of the present invention, an ion beam apparatus switches between an operation mode of performing irradiation with an ion beam most including H3+ ions and an operation mode of performing irradiation with an ion beam most including ions heavier than the H3+.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: May 12, 2020
    Assignee: Hitachi High-Tech Science Corporation
    Inventors: Shinichi Matsubara, Yoshimi Kawanami, Hiroyasu Shichi
  • Patent number: 10648802
    Abstract: Methods and systems for feed-forward of multi-layer and multi-process information using XPS and XRF technologies are disclosed. In an example, a method of thin film characterization includes measuring first XPS and XRF intensity signals for a sample having a first layer above a substrate. The first XPS and XRF intensity signals include information for the first layer and for the substrate. The method also involves determining a thickness of the first layer based on the first XPS and XRF intensity signals. The method also involves combining the information for the first layer and for the substrate to estimate an effective substrate. The method also involves measuring second XPS and XRF intensity signals for a sample having a second layer above the first layer above the substrate. The second XPS and XRF intensity signals include information for the second layer, for the first layer and for the substrate.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: May 12, 2020
    Assignee: NOVA MEASURING INSTRUMENTS, INC.
    Inventors: Heath A. Pois, Wei Ti Lee, Lawrence V. Bot, Michael C. Kwan, Mark Klare, Charles Thomas Larson
  • Patent number: 10641607
    Abstract: A height detection apparatus is configured to project a pattern on a sample arranged at any of a plurality of reference positions and configured to detect a height of the sample. The apparatus includes: a projection optical system that generates a plurality of spatially separated light beams each having the pattern and projects the generated spatially separated light beams onto the sample; an imaging element that images the pattern reflected from the sample; a detection optical system that guides the pattern reflected from the sample to the imaging element; and at least one optical path length correction member disposed on an optical path different from an optical path having a shortest optical path length among a plurality of optical paths corresponding to the plurality of light beams at a position where the plurality of light beams is spatially separated.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: May 5, 2020
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yoshifumi Sekiguchi, Naoya Nakai, Koichi Taniguchi, Makoto Suzuki
  • Patent number: 10629546
    Abstract: A semiconductor device including a substrate including a central region and a peripheral region surrounding the central region, a semiconductor integrated circuit in the central region, and a three-dimensional crack detection structure in the peripheral region, the three-dimensional crack detection structure surrounding the central region, the three-dimensional crack detection structure including a first pattern, a second pattern, and a third pattern, the first and second patterns extending in a first direction and spaced apart from each other, the third pattern being parallel to an upper surface of the substrate and connecting the first and second patterns to each other, the third pattern including a first portion and a second portion, the first and second portions extending in a second direction and a third direction respectively, the second direction intersecting with the first direction, the third direction intersecting with the first and second directions may be provided.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: April 21, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jung Hyun Roh
  • Patent number: 10586679
    Abstract: An electron microscope sample holder that includes at least one capillary having a sufficient inner diameter to act as a catheter pathway that allows objects that can be accommodated within the at least one capillary to be replaced or swapped with other objects. The sample holder having at least one capillary allows the user to insert and remove temporary fluidic pathways, sensors or other tools without the need to dissemble the holder.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: March 10, 2020
    Assignee: PROTOCHIPS, INC.
    Inventors: Daniel Stephen Gardiner, Franklin Stampley Walden, II, John Damiano, Jr.
  • Patent number: 10573488
    Abstract: A method of performing sub-surface imaging of a specimen in a charged-particle microscope of a scanning transmission type, comprising the following steps: Providing a beam of charged particles that is directed from a source along a particle-optical axis through an illuminator so as to irradiate the specimen; Providing a detector for detecting a flux of charged particles traversing the specimen; Causing said beam to follow a scan path across a surface of said specimen, and recording an output of said detector as a function of scan position, thereby acquiring a scanned charged-particle image I of the specimen; Repeating this procedure for different members n of an integer sequence, by choosing a value Pn of a variable beam parameter P and acquiring an associated scanned image In, thereby compiling a measurement set M={(In, Pn)}; Using computer processing apparatus to automatically deconvolve the measurement set M and spatially resolve it into a result set representing depth-resolved imagery of the specimen,
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: February 25, 2020
    Assignee: FEI Company
    Inventors: Ivan Lazic, Eric Gerardus Theodoor Bosch
  • Patent number: 10571676
    Abstract: A device may capture, using a camera associated with the device, a first image of a first set of optical fibers associated with an optical connector within a field of view of the camera. The device may determine that an actual distance of a relative movement of the camera and the optical connector and an expected distance of the relative movement of the camera and the optical connector fail to match. The device may perform one or more actions after determining that the actual distance and the expected distance fail to match.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: February 25, 2020
    Assignee: VIAVI Solutions Inc.
    Inventors: Jay Brace, Porter McCain, Gordon Mackay, Andrew Parsons
  • Patent number: 10573487
    Abstract: One modified source-conversion unit and one method to reduce the Coulomb Effect in a multi-beam apparatus are proposed. In the modified source-conversion unit, the aberration-compensation function is carried out after the image-forming function has changed each beamlet to be on-axis locally, and therefore avoids undesired aberrations due to the beamlet tilting/shifting. A Coulomb-effect-reduction means with plural Coulomb-effect-reduction openings is placed close to the single electron source of the apparatus and therefore the electrons not in use can be cut off as early as possible.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: February 25, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Xuedong Liu, Weiming Ren, Shuai Li, Zhongwei Chen