With Detector Patents (Class 250/397)
  • Patent number: 10861670
    Abstract: Disclosed is a charged particle optical apparatus. The charged particle optical apparatus has a liner electrode in a first vacuum zone. The liner electrode is used to generate an electrostatic objective lens field. The apparatus has a second electrode which surrounds at least a section of the primary particle beam path. The section extends in the first vacuum zone and downstream of the liner electrode. A third electrode is provided having a differential pressure aperture through which the particle beam path exits from the first vacuum zone. A particle detector is configured for detecting emitted particles, which are emitted from the object and which pass through the differential pressure aperture of the third electrode. The liner electrode, the second and third electrodes are operable at different potentials relative to each other.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: December 8, 2020
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Erik Essers, Michael Albiez, Stefan Meyer, Daniel Kirsten, Stewart Bean
  • Patent number: 10832896
    Abstract: The present embodiment relates to an ion detector provided with a structure for suppressing degradation over time in an electron multiplication mechanism in the ion detector. The ion detector includes a dynode unit, serving as an electron multiplication mechanism, which multiplies secondary electrons which are emitted in response to incidence of ions, and a semiconductor detector having an electron multiplication function. Further, a focus electrode having an opening that allows passage of secondary electrons is disposed on a trajectory of secondary electrons which are directed from the dynode unit toward the semiconductor detector, and the focus electrode functions to guide secondary electrons from the dynode unit onto an electron incidence surface of the semiconductor detector.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: November 10, 2020
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Hiroshi Kobayashi, Takeshi Endo, Hiroki Moriya, Toshinari Mochizuki
  • Patent number: 10811225
    Abstract: The present disclosure provides one embodiment of an IC method. First pattern densities (PDs) of a plurality of templates of an IC design layout are received. Then a high PD outlier template and a low PD outlier template from the plurality of templates are identified. The high PD outlier template is split into multiple subsets of template and each subset of template carries a portion of PD of the high PD outlier template. A PD uniformity (PDU) optimization is performed to the low PD outlier template and multiple individual exposure processes are applied by using respective subset of templates.
    Type: Grant
    Filed: September 29, 2019
    Date of Patent: October 20, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jyuh-Fuh Lin, Cheng-Hung Chen, Pei-Yi Liu, Wen-Chuan Wang, Shy-Jay Lin, Burn Jeng Lin
  • Patent number: 10784072
    Abstract: A charged particle beam device for inspection of a specimen with an array of primary charged particle beamlets is described. The charged particle beam device includes a charged particle beam source to generate a primary charged particle beam; a multi-aperture plate having at least two openings to generate an array of charged particle beamlets having at least a first beamlet having a first resolution on the specimen and a second beamlet having a second resolution on the specimen; an aberration correction element to correct at least one of spherical aberrations and chromatic aberrations of rotational symmetric charged particle lenses; and an objective lens assembly for focusing each primary charged particle beamlet of the array of primary charged particle beamlets onto a separate location on the specimen.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: September 22, 2020
    Assignee: ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH
    Inventor: John Breuer
  • Patent number: 10777393
    Abstract: A sensing device for measuring a plasma process parameter in a plasma chamber for processing workpieces may include a substrate with one or more sensor embedded in the substrate. The substrate can have a surface made of substantially the same material as workpieces that are plasma processed in the plasma chamber. Each sensor can include a collector portion made of substantially the same material as the substrate surface. The collector portion includes a surface that is level with the surface of the substrate. The collector portion is the top surface of the substrate. Sensor electronics are embedded into the substrate and coupled to the collector portion. When the substrate surface is exposed to a plasma one or more signals resulting from the plasma can be measured with the sensor(s).
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: September 15, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Earl Jensen, Mei Sun
  • Patent number: 10734189
    Abstract: The present disclosure relates to an ion implantation amount adjustment device that includes: an adjuster configured to turn on or off an ion outlet of the ion implantation apparatus; and an actuator configured to control movement of the adjuster to adjust an opening degree of the ion outlet.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: August 4, 2020
    Assignees: CHENGDU BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Hao Jing, Dongwoo Kang, Yongyi Fu, Chenliang Liu, Rujian Li, Kang Luo
  • Patent number: 10714302
    Abstract: An apparatus is provided. The apparatus includes a beam current measuring device and a first electrode. The beam current measuring device is retractably movable into an ion beam trajectory so as to measure an ion beam current. The first electrode is disposed immediately upstream of the beam current measuring device in an ion beam transport channel. The first electrode serves both as a suppressor electrode for repelling secondary electrons released from the beam current measuring device, back toward the beam current measuring device, and as a beam optical element other than the suppressor electrode.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: July 14, 2020
    Assignee: NISSIN ION EQUIPMENT CO., LTD.
    Inventor: Tetsuro Yamamoto
  • Patent number: 10702710
    Abstract: Systems and methods are proposed for accurate and efficient automatic measurement of jaw and leaf positioning in multi-leaf collimator imaging systems. Specifically, the method enables the automated and objective processing of images to determine characteristics of collimator jaws and MLC leaves. These novel techniques enable verification of collimator component positioning to ensure accurate beam modulation for radiation application procedures.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: July 7, 2020
    Assignee: Varian Medical Systems, Inc.
    Inventor: Stephen Gaudio
  • Patent number: 10672586
    Abstract: A beamline device includes a deflection device deflecting an ion beam in a first direction perpendicular to a beam traveling direction by applying at least one of an electric field and a magnetic field to the ion beam. A slit is disposed such that the first direction coincides with a slit width direction. A beam current measurement device is configured to be capable of measuring a beam current at a plurality of measurement positions to be different positions in the first direction. A control device calculates angle information in the first direction on the ion beam by acquiring a plurality of beam current values measured at the plurality of measurement positions to be the different positions in the first direction by the beam current measurement device while changing a deflection amount of the ion beam in the first direction with the deflection device.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: June 2, 2020
    Assignee: SUMITOMO HEAVY INDUSTRIES ION TECHNOLOGY CO., LTD.
    Inventors: Sho Kawatsu, Noriyasu Ido
  • Patent number: 10569471
    Abstract: A 3D object forming device and a method thereof are provided. The device includes a tank used for containing a liquid forming material. A light source irradiates the liquid forming material to cure a 3D object layer-by-layer on a moving platform. In the irradiation process, when a target position currently irradiated by the light source is located on a first layer next to the moving platform, the light source is maintained to an original intensity; when the target position is not located on the first layer next to the moving platform, and when it is determined that a non-cured hollow layer exists in a predetermined number of layers at one side of the target position opposite to the light source according to the slicing data, the intensity of the light source is correspondingly decreased according to the number of layers between the hollow layer and the target position.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: February 25, 2020
    Assignees: XYZprinting, Inc., Kinpo Electronics, Inc.
    Inventors: Ming-Hsiung Ding, Tsung-Hua Kuo, Wei-Chun Jau
  • Patent number: 10532229
    Abstract: A beam transport assembly conveys a particle beam from a particle source to an irradiation nozzle, which rotates about a swivel axis at the horizontal input of the nozzle. A support can move horizontally in a plane perpendicular to the swivel axis. The beam transport assembly can change a path length of the particle beam so as to follow a vertical location of the swivel axis of the irradiation nozzle with respect to the support. A controller can coordinate the path length change of the particle beam, rotation of the irradiation nozzle about the swivel axis, and/or horizontal motion of the support to provide irradiation of a supported object from various angles in the plane perpendicular to the swivel axis while maintaining the irradiation nozzle at a constant distance from the supported object.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: January 14, 2020
    Assignees: VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH, VARIAN MEDICAL SYSTEMS, INC
    Inventors: Jan H. Timmer, Juergen Schultheiss
  • Patent number: 10504696
    Abstract: In one embodiment, a multi charged particle beam writing apparatus includes an aperture plate having a plurality of holes to form multiple beams, a blanking aperture array having a plurality of blankers which switch ON-OFF of corresponding respective beams among the multiple beams, a stage on which a writing target substrate is placed, an inspection aperture provided on the stage and that allows one beam among the multiple beams to pass therethrough, a deflector deflecting the multiple beams, a current detector detecting a beam current of each of the multiple beams that has passed through the inspection aperture in a case where the multiple beams are scanned on the inspection aperture, and a control computing machine that generates a beam image based on the detected beam current and detects a defect of the blanking aperture array or the aperture plate based on the beam image.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: December 10, 2019
    Assignee: NuFlare Technology, Inc.
    Inventors: Osamu Iizuka, Yukitaka Shimizu
  • Patent number: 10497539
    Abstract: According to one embodiment, a multi charged particle beam writing apparatus includes an objective lens adjusting a focus position of multiple beams, a coil correcting astigmatism of the multiple beams, an inspection aperture disposed in a stage and configured to allow one beam of the multiple beams to pass therethrough, a deflector deflecting the multiple beams, a current detector detecting a beam current of each beam of the multiple beams scanned over the inspection aperture in the XY direction and passed through the inspection aperture, and a controller generating a beam image on the basis of the detected beam current, calculating a feature quantity of the beam image, and controlling the objective lens or the coil on the basis of the feature quantity.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: December 3, 2019
    Assignee: NuFlare Technology, Inc.
    Inventors: Osamu Iizuka, Yukitaka Shimizu
  • Patent number: 10483088
    Abstract: In one embodiment, a multi charged particle beam writing apparatus includes an aperture plate forming multiple beams, a stage on which a writing target substrate is placed, a stage position detector detecting the position of the stage, an inspection aperture plate provided in the stage, the inspection aperture plate permitting one of the multiple beams to pass through the inspection aperture plate, a deflector deflecting the multiple beams, a current detector detecting a beam current of each of the multiple beams scanned over the inspection aperture plate in X and Y directions and passed through the inspection aperture plate, and a control computer generating a beam image based on the detected beam currents and calculating positions of the beams based on the beam image and the position of the stage.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: November 19, 2019
    Assignee: NuFlare Technology, Inc.
    Inventors: Osamu Iizuka, Yukitaka Shimizu
  • Patent number: 10484610
    Abstract: A mobile terminal apparatus includes a geometrical arrangement detecting section (111) detecting groups of edge pixels arranged in a shape of a line segment in an image captured by an image-capturing apparatus; and a display processing section (112) causes a contour line representative of a contour of a rectangular captured object to be displayed on the captured image displayed on a display section so that the contour line is superimposed on the groups of edge pixels detected by the geometrical arrangement detecting section (111).
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: November 19, 2019
    Assignee: SHARP KABUSHIKI KAISHA
    Inventor: Hiroshi Ishida
  • Patent number: 10483087
    Abstract: In one embodiment, a multi charged particle beam writing apparatus includes a blanking plate including a plurality of blankers, bitmap generation processing circuitry generating bitmap data for each writing pass of multi-pass writing, the bitmap data specifying irradiation time periods for a plurality of irradiation positions, a plurality of dose correction units configured to receive bitmap subdata items obtained by dividing the bitmap data from the bitmap generation processing circuitry, and correct the irradiation time periods to generate a plurality of dose data items corresponding to respective processing ranges, and data transfer processing circuitry transferring the plurality of dose data items to the blanking plate through a plurality of signal line groups. Each of the signal line groups corresponds to the blankers located in a predetermined region of the blanking plate.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: November 19, 2019
    Assignee: NuFlare Technology, Inc.
    Inventors: Kei Hasegawa, Hayato Kimura, Ryoh Kawana
  • Patent number: 10473621
    Abstract: A device, including a non-radioactive detection source, configured to detect airborne particulates and/or gases in an environment by applying a voltage bias to the non-radioactive detection source to create at least one detecting condition, and determining if airborne particulates are present within the at least one detection condition. A method of creating a detecting condition for airborne particulates and/or gases in an environment, the method including the steps of coupling a pair of electrical conductors to a nanocellular material, and applying a voltage bias to the pair of electrical conductors.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: November 12, 2019
    Assignee: CARRIER CORPORATION
    Inventors: Michael J. Birnkrant, Marcin Piech, Michael T. Gorski, Wayde R. Schmidt
  • Patent number: 10460902
    Abstract: In one embodiment, a charged particle beam writing apparatus includes a blanking circuit applying a blanking voltage to a blanking deflector, a stage on which a substrate is placed, a mark on the stage, a detector detecting an irradiation position of the charged particle beam based on irradiation of the mark with the charged particle beam, and a diagnostic electric circuitry that causes the charged particle beam to enter a predetermined defocused state relative to the mark, obtains a difference between a first irradiation position when the mark is scanned under first irradiation conditions and a second irradiation position when the mark is scanned under second irradiation conditions in which at least either of irradiation time and settling time in the first irradiation conditions is varied, and determines occurrence of a failure of the blanking circuit when the difference is a predetermined value or more.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: October 29, 2019
    Assignee: NuFlare Technology, Inc.
    Inventor: Takahito Nakayama
  • Patent number: 10460909
    Abstract: In one embodiment, a charged particle beam writing apparatus includes a current limiting aperture, a blanking deflector switching between beam ON and beam OFF so as to control an irradiation time by deflecting the charged particle beam having passed through the current limiting aperture, a blanking aperture blocking the charged particle beam deflected by the blanking deflector in such a manner that the beam OFF state is entered, and an electron lens disposed between the current limiting aperture and the blanking aperture. A lens value set for the electron lens is substituted into a given function to calculate an offset time. The offset time is added to an irradiation time for writing a pattern to correct the irradiation time. The blanking deflector switches between the beam ON and the beam OFF based on the corrected irradiation time.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: October 29, 2019
    Assignee: NuFlare Technology, Inc.
    Inventor: Haruyuki Nomura
  • Patent number: 10437144
    Abstract: Disclosed are a mask assembly, and a method for assembling the same. The mask assembly includes: a frame including a hollow area; a mask arranged across the hollow area, wherein two opposite ends of the mask are fixed on the frame; and first support sheets configured to support the mask, wherein the first support sheets include first sub-support sheets and second sub-support sheets stacked over each other, the first sub-support sheets and the second sub-support sheets are arranged across the hollow area of the frame, and two opposite ends of each of the first sub-support sheets, and two opposite ends of each of the second sub-support sheets are fixed on the frame; wherein orthographic projections of the first sub-support sheets onto the second sub-support sheets lie into the second sub-support sheets; and the thickness of the second sub-support sheets is smaller than the thickness of the first sub-support sheets.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: October 8, 2019
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Wei Zhang
  • Patent number: 10431423
    Abstract: The present disclosure provides one embodiment of an IC method. First pattern densities (PDs) of a plurality of templates of an IC design layout are received. Then a high PD outlier template and a low PD outlier template from the plurality of templates are identified. The high PD outlier template is split into multiple subsets of template and each subset of template carries a portion of PD of the high PD outlier template. A PD uniformity (PDU) optimization is performed to the low PD outlier template and multiple individual exposure processes are applied by using respective subset of templates.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: October 1, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jyuh-Fuh Lin, Cheng-Hung Chen, Pei-Yi Liu, Wen-Chuan Wang, Shy-Jay Lin, Burn Jeng Lin
  • Patent number: 10395882
    Abstract: A tunable photocathode for use in vacuum electronic devices includes a nanostructured photoemission layer including quantum confined nanostructures, such as quantum dots. The quantum confined nanostructures can be tuned (e.g., prepared to have various characteristics or parameters) in order to independently optimize various characteristics of the electron beam emitted by the photocathode. For example, by changing the material composition, size and geometry of the quantum confined nanostructures, the energy levels of the quantum confined nanostructures in the photoemission layer can be tuned to provide a photocathode having a high quantum efficiency, low emittance, fast response time to incident light pulses, long operational lifetime, and increased environmental stability compared with conventional photocathodes and cathodes in vacuum electronic devices.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: August 27, 2019
    Assignee: Triad National Security, LLC
    Inventors: Nathan Moody, Jeffrey Pietryga, Istvan Robel
  • Patent number: 10361062
    Abstract: A scanning electron microscope includes: a liner tube which transmits an electron beam; a scintillator having a through-hole into which the liner tube is inserted; a light guide which guides light generated by the scintillator; a conductive layer provided on a sensitive surface of the scintillator; and a conductive member provided in the scintillator, wherein the shortest distance between the liner tube and the conductive member is shorter than the shortest distance between the liner tube and the conductive layer, a voltage for accelerating electrons is applied to the conductive layer, and the conductive layer and the conductive member have a same potential.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: July 23, 2019
    Assignee: JEOL Ltd.
    Inventors: Tatsuru Kuramoto, Yuichiro Ohori, Yoshinori Matsuda, Makoto Aoshima
  • Patent number: 10354831
    Abstract: The present invention relates to a charged particle system comprising: a charged particle source; a first multi aperture plate; a second multi aperture plate disposed downstream of the first multi aperture plate, the second multi aperture plate; a controller configured to selectively apply at least first and second voltage differences between the first and second multi aperture plates; wherein the charged particle source and the first and second multi aperture plates are arranged such that each of a plurality of charged particle beamlets traverses an aperture pair, said aperture pair comprising one aperture of the first multi aperture plate and one aperture of the second multi aperture plate, wherein plural aperture pairs are arranged such that a center of the aperture of the first multi aperture plate is, when seen in a direction of incidence of the charged particle beamlet traversing the aperture of the first multi aperture plate, displaced relative to a center of the aperture of the second multi aperture p
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: July 16, 2019
    Assignees: Carl Zeiss Microscopy GmbH, Applied Materials Israel, Ltd
    Inventors: Thomas Kemen, Rainer Knippelmeyer, Stefan Schubert
  • Patent number: 10347460
    Abstract: A method for imaging a surface of a substrate using a multi-beam imaging system includes: modifying an electron beam using a multipole-field device; generating beamlets from the electron beam using a beam-splitting device having multiple apertures; in response to projecting foci of the beamlets onto the surface, driving the beamlets using a deflector set to scan a region of the surface for receiving signals based on electrons scattered from the region; and determining an image of the region for inspection based on the signals. The multi-beam imaging system includes: an electron source; a first multipole-field device for beam shaping and beam aberration correction; a beam-splitting device; a projection lens set; a deflector set; an objective lens set; a detector array; a second multipole-field device; a processor; and a memory storing instructions to determine an image of the region for inspection based on the signals.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: July 9, 2019
    Assignee: Dongfang Jingyuan Electron Limited
    Inventors: Yan Zhao, Weiqiang Sun, Tao Feng
  • Patent number: 10264978
    Abstract: Vision systems on catheters, cannulas, or similar devices with guiding lumens include receptors distributed in annular areas around respective lumens. Each of the receptors has a field of view covering only a portion of an object environment, and the field of view of each of the receptors overlaps with at least one of the fields of view of the other receptors. A processing system can receive image data from the receptors of the vision systems and combine the image data to construct a visual representation of the object environment.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: April 23, 2019
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Peter M. Herzlinger, Giuseppe Maria Prisco, Vincent Duindam, David Q. Larkin
  • Patent number: 10245448
    Abstract: Presented systems and methods facilitate efficient and effective monitoring of particle beams. In some embodiments, a system comprises a primary particle beam generator that generates a primary particle beam, and a monitoring component that monitors the primary particle beam. The monitoring component comprises: a reaction component that is impacted by the primary particle beam, wherein results of an impact include creation of secondary photons; a detection component that detects a characteristic of the secondary photons; and a primary particle beam characteristic determination component that determines a characteristic of the primary particle beam based upon the characteristic of the secondary photons. The characteristic of the primary particle beam can include a radiation dose measurement and dose rate. The reaction component can include a foil component. A resolution time of less than a nano second can be associated with detecting the secondary photon characteristic.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: April 2, 2019
    Assignee: Varian Medical Systems Particle Therapy GmbH
    Inventor: Juergen Heese
  • Patent number: 10224183
    Abstract: Systems and methods for multi-level pulsing of a parameter and multi-level pulsing of a frequency of a radio frequency (RF) signal are described. The parameter is pulsed from a low level to a high level while the frequency is pulsed from a low level to a high level. The parameter and the frequency are simultaneously pulsed to increase a rate of processing a wafer, to increase mask selectivity, and to reduce angular spread of ions within a plasma chamber.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: March 5, 2019
    Assignee: Lam Research Corporation
    Inventors: Juline Shoeb, Alex Paterson, Ying Wu
  • Patent number: 10176965
    Abstract: A charged particle beam device for inspection of a specimen with an array of primary charged particle beamlets is described. The charged particle beam device includes a charged particle beam source to generate a primary charged particle beam; a multi-aperture plate having at least two openings to generate an array of charged particle beamlets having at least a first beamlet having a first resolution on the specimen and a second beamlet having a second resolution on the specimen; an aberration correction element to correct at least one of spherical aberrations and chromatic aberrations of rotational symmetric charged particle lenses; and an objective lens assembly for focusing each primary charged particle beamlet of the array of primary charged particle beamlets onto a separate location on the specimen.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: January 8, 2019
    Assignee: ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH
    Inventor: John Breuer
  • Patent number: 10170276
    Abstract: The present disclosure provides one embodiment of an IC method. First pattern densities (PDs) of a plurality of templates of an IC design layout are received. Then a high PD outlier template and a low PD outlier template from the plurality of templates are identified. The high PD outlier template is split into multiple subsets of template and each subset of template carries a portion of PD of the high PD outlier template. A PD uniformity (PDU) optimization is performed to the low PD outlier template and multiple individual exposure processes are applied by using respective subset of templates.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: January 1, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jyuh-Fuh Lin, Cheng-Hung Chen, Pei-Yi Liu, Wen-Chuan Wang, Shy-Jay Lin, Burn Jeng Lin
  • Patent number: 10163603
    Abstract: A particle beam system includes a particle source to produce a first beam of charged particles. The particle beam system also includes a multiple beam producer to produce a plurality of partial beams from a first incident beam of charged particles. The partial beams are spaced apart spatially in a direction perpendicular to a propagation direction of the partial beams. The plurality of partial beams includes at least a first partial beam and a second partial beam. The particle beam system further includes an objective to focus incident partial beams in a first plane so that a first region, on which the first partial beam is incident in the first plane, is separated from a second region, on which a second partial beam is incident. The particle beam system also a detector system including a plurality of detection regions and a projective system.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: December 25, 2018
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Dirk Zeidler, Stefan Schubert
  • Patent number: 10157726
    Abstract: The invention relates to a cathodoluminescence detection system comprising: a collecting optic (112) collecting light radiation (108) from a sample illuminated by a beam of charged particles and reflecting said radiation (108) onto analysis means, said collecting optic (112) being placed in a chamber, called a vacuum chamber, wherein the pressure is below atmospheric pressure; and means (316) for adapting the light radiation, placed downstream of the collecting optic (112) and designed to adapt said light radiation (108) at the inlet of the analysis means. Said system is characterized in that all or part of the adapting means (316) is placed in an environment where the pressure is higher than the pressure in said vacuum chamber.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: December 18, 2018
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE PARIS SUD 11
    Inventors: Mathieu Kociak, Luiz Fernando Zagonel, Marcel Tence, Stefano Mazzucco
  • Patent number: 10157723
    Abstract: In one embodiment, a multi charged particle beam writing apparatus includes an emitter that emits a charged particle beam, an aperture plate in which a plurality of openings are formed and that forms multiple beams by allowing the charged particle beam to pass through the plurality of openings, a blanking plate provided with a plurality of blankers that each perform blanking deflection on a corresponding beam included in the multiple beams, a stage on which a substrate irradiated with the multiple beams, a detector that detects a reflection charged particle from the substrate, feature amount calculation circuitry that calculates a feature amount of an aperture image based on a detection value of the detector, and aberration correction circuitry that corrects aberration of the charged particle beam based on the feature amount.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: December 18, 2018
    Assignee: NuFlare Technology, Inc.
    Inventors: Tsubasa Nanao, Yukitaka Shimizu
  • Patent number: 10128081
    Abstract: A composite charged particle beam apparatus modulates an irradiation condition of a charged particle beam at high speed and detects a signal in synchronization with a modulation period to extract a signal arising from a particular charged particle beam when a sample is irradiated with a plurality of charged particle beams simultaneously. Light emitted from two or more kinds of scintillators having different light emitting properties is dispersed, signal strength is detected, and a signal is processed based on a ratio of first signal strength when the sample is irradiated with a first charged particle beam alone to second signal strength when the sample is irradiated with a second charged particle beam alone. The apparatus can extract only a signal arising from a desired charged particle beam even when the sample is irradiated with the plurality of charged particle beams simultaneously.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: November 13, 2018
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Tsunenori Nomaguchi, Toshihide Agemura
  • Patent number: 10083815
    Abstract: Embodiments of the invention relate to a mass resolving aperture that may be used in an ion implantation system that selectively exclude ion species based on charge to mass ratio (and/or mass to charge ratio) that are not desired for implantation, in an ion beam assembly. Embodiments of the invention relate to a mass resolving aperture that is segmented, adjustable, and/or presents a curved surface to the oncoming ion species that will strike the aperture. Embodiments of the invention also relate to the filtering of a flow of charged particles through a closed plasma channel (CPC) superconductor, or boson energy transmission system.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: September 25, 2018
    Assignee: Glenn Lane Family Limited Liability Limited Partnership
    Inventor: Glenn E. Lane
  • Patent number: 10074514
    Abstract: An apparatus may include an electrode system, the electrode system comprising a plurality of electrodes to guide an ion beam from an entrance aperture to an exit aperture, and a voltage supply to apply a plurality of voltages to the electrode system. The electrode system may comprise an exit electrode assembly, where the exit electrode assembly includes a first exit electrode and a second exit electrode, separated from the first exit electrode by an electrode gap. The first exit electrode and the second exit electrode may be movable with respect to one another so as to change a size of the electrode gap over a gap range.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: September 11, 2018
    Assignee: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Shengwu Chang, Frank Sinclair, Alexandre Likhanskii, Philip Layne
  • Patent number: 10068744
    Abstract: Disclosed is a charged particle optical apparatus. The charged particle optical apparatus has a liner electrode in a first vacuum zone. The liner electrode is used to generate an electrostatic objective lens field. The apparatus has a second electrode which surrounds at least a section of the primary particle beam path. The section extends in the first vacuum zone and downstream of the liner electrode. A third electrode is provided having a differential pressure aperture through which the particle beam path exits from the first vacuum zone. A particle detector is configured for detecting emitted particles, which are emitted from the object and which pass through the differential pressure aperture of the third electrode. The liner electrode, the second and third electrodes are operable at different potentials relative to each other.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: September 4, 2018
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Erik Essers, Michael Albiez, Stefan Meyer, Daniel Kirsten, Stewart Bean
  • Patent number: 10062540
    Abstract: A multi charged particle beam exposure method includes transmitting ON/OFF control signals each being an ON/OFF control signal for a corresponding beam of multi-beams of charged particle beams in a batch to a blanking apparatus in which there are mounted a substrate where a plurality of passage holes are formed to let a corresponding beam of the multi-beams individually pass therethrough, and a plurality of individual blanking mechanisms arranged in the substrate to individually perform blanking deflection of each beam of the multi-beams, and irradiating the substrate with the multi-beams in accordance with the ON/OFF control signals transmitted in a batch, while shifting an irradiation timing for each group obtained by grouping the multi-beams into a plurality of groups by a plurality of individual blanking mechanisms mounted in the blanking apparatus.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: August 28, 2018
    Assignee: NuFlare Technology, Inc.
    Inventor: Hiroshi Matsumoto
  • Patent number: 10061083
    Abstract: A compact wavelength dispersing device and a wavelength selective optical switch based on the wavelength dispersing device is described. The wavelength dispersing device has a folding mirror that folds the optical path at least three times. A focal length of a focusing coupler of the device is reduced and the NA is increased, while the increased optical aberrations are mitigated by using an optional coma-compensating wedge. A double-pass arrangement for a transmission diffraction grating allows further focal length and overall size reduction due to increased angular dispersion.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: August 28, 2018
    Assignee: Lumentum Operations LLC
    Inventor: Sheldon McLaughlin
  • Patent number: 10049856
    Abstract: A method includes providing a semiconductor substrate, and performing an ion implantation process to a surface of the substrate. The ion implantation process includes intermittently applying an ion beam to the surface, and while applying the ion beam, applying a heating process with a heating temperature above a threshold level.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: August 14, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsin-Wei Wu, Chun-Feng Nieh, Yu Chi-Fu, Hsing-Jui Lee, Tsun-Jen Chan
  • Patent number: 10020160
    Abstract: An object of the present invention is to provide a charged particle beam device which can realize improved contrast of an elongated pattern in a specific direction, such as a groove-like pattern. In order to achieve the above-described object, the present invention proposes a charged particle beam device including a detector for detecting a charged particle obtained based on a charged particle beam discharged to a sample. The charged particle beam device includes a charged particle passage restricting member that has at least one of an arcuate groove and a groove having a longitudinal direction in a plurality of directions, and a deflector that deflects the charged particle discharged toward the groove from the sample. The charged particle discharged from the sample is deflected to a designated position of the groove.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: July 10, 2018
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Koichi Kuroda, Hajime Kawano, Makoto Suzuki, Yuzuru Mizuhara
  • Patent number: 10002801
    Abstract: The device manufacturing method includes a length measuring step (S5) of, on the basis of an observation target image of an SEM image taken from a direction having a predetermined angle from a direction perpendicular to a plane of a substrate, measuring the thickness of a target object, or the depth of etching, formed on the substrate. In addition, in the length measuring step, an etching angle made by a cross section of the etching and the direction perpendicular to the plane of the substrate is calculated from processing data of the target object, and the thickness of the target object or the depth of the etching is measured on the basis of the calculated etching angle.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: June 19, 2018
    Assignee: HITACHI, LTD.
    Inventors: Misuzu Sagawa, Tetsufumi Kawamura
  • Patent number: 9984848
    Abstract: A multi-beam lens device is described, which includes: a first beam passage for a first charged particle beam formed along a first direction between a first beam inlet of the first beam passage and a first beam outlet of the first beam passage; a second beam passage for a second charged particle beam formed along a second direction between a second beam inlet of the second beam passage and a second beam outlet of the second beam passage, wherein the first direction and the second direction are inclined with respect to each other by an angle (?) of 5° or more such that the first beam passage approaches the second beam passage toward the first beam outlet; and a common excitation coil or a common electrode arrangement configured for focussing the first charged particle beam and the second charged particle beam. Further, a charged particle beam device as well as a method of operating a multi-beam lens device are described.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: May 29, 2018
    Assignee: ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH
    Inventor: Jürgen Frosien
  • Patent number: 9844404
    Abstract: An electrosurgical system for performing an electrosurgical procedure is provided and includes an electrosurgical generator and a calibration computer system. The electrosurgical generator includes one or more processors and a measurement module including one or more log amps that are in operative communication with the processor. The calibration computer system configured to couple to a measurement device and is configured to measure parameters of an output signal generated by the electrosurgical generator. The calibration computer system is configured to compile the measured parameters into one or more data look-up tables and couple to the electrosurgical generator for transferring the data look-up table(s) to memory of the electrosurgical generator. The microprocessor is configured to receive an output from the log amp(s) and access the data look-up table(s) from memory to execute one or more control algorithms for controlling an output of the electrosurgical generator.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: December 19, 2017
    Assignee: COVIDIEN LP
    Inventors: Robert J. Behnke, II, Donald W. Heckel, Robert B. Smith, James E. Krapohl
  • Patent number: 9834858
    Abstract: The present invention provides an oxide-base scintillator single crystal having an extremely large energy of light emission, adoptable to X-ray CT and radioactive ray transmission inspection apparatus, and more specifically to provide a Pr-containing, garnet-type oxide single crystal, a Pr-containing perovskite-type oxide single crystal, and a Pr-containing silicate oxide single crystal allowing detection therefrom light emission supposedly ascribable to 5d-4f transition of Pr.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: December 5, 2017
    Assignees: TOHOKU TECHNO ARCH CO., LTD., FURUKAWA CO., LTD.
    Inventors: Akira Yoshikawa, Hiraku Ogino, Kei Kamada, Kenji Aoki, Tsuguo Fukuda
  • Patent number: 9824856
    Abstract: A deposition method is implemented in a focused ion beam system that supplies a compound gas to a specimen, and applies an ion beam to the specimen to deposit a deposition film, the deposition method including: a first deposition film-depositing step that deposits a first deposition film on the specimen using the ion beam that is defocused with respect to the specimen; and a second deposition film-depositing step that deposits a second deposition film on the first deposition film using the ion beam that is smaller in defocus amount than that used in the first deposition film-depositing step.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: November 21, 2017
    Assignee: JEOL Ltd.
    Inventor: Misumi Kadoi
  • Patent number: 9801551
    Abstract: A vision system that may be used in a catheter or similar guiding instrument includes receptors distributed in an annular area. Each of the receptors has a field of view covering only a portion of an object environment, and the field of view of each of the receptors overlaps with at least one of the fields of view of the other receptors. A processing system can receive image data from the receptors and combine image data from the receptors to construct a visual representation of the entirety of the object environment.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: October 31, 2017
    Assignee: Intuitive Sugical Operations, Inc.
    Inventors: Peter M. Herzlinger, Giuseppe Maria Prisco, Vincent Duindam, David Q. Larkin
  • Patent number: 9777378
    Abstract: Embodiments described herein relate to methods for forming flowable chemical vapor deposition (FCVD) films suitable for high aspect ratio gap fill applications. Various process flows described include ion implantation processes utilized to treat a deposited FCVD film to improve dielectric film density and material composition. Ion implantation processes, curing processes, and annealing processes may be utilized in various sequence combinations to form dielectric films having improved densities at temperatures within the thermal budget of device materials. Improved film quality characteristics include reduced film stress and reduced film shrinkage when compared to conventional FCVD film formation processes.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: October 3, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Srinivas D. Nemani, Erica Chen, Ludovic Godet, Jun Xue, Ellie Y. Yieh
  • Patent number: 9763315
    Abstract: Beam current variation system for a cyclotron, arranged in the inner center of the cyclotron, downstream from the ion source generating the charged particle beam, the system comprising a deflector system powered by a voltage and a collimator. The beam is dumped in the collimator, if the deflector system (10; 20, 21) is not powered, and the beam is switched on by powering the deflector system with a voltage.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: September 12, 2017
    Assignee: VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH
    Inventors: Thomas Stephani, Heinrich Rocken
  • Patent number: RE48046
    Abstract: Lithography system, sensor and method for measuring properties of a massive amount of charged particle beams of a charged particle beam system, in particular a direct write lithography system, in which the charged particle beams are converted into light beams by using a converter element, using an array of light sensitive detectors such as diodes, CCD or CMOS devices, located in line with said converter element, for detecting said light beams, electronically reading out resulting signals from said detectors after exposure thereof by said light beams, utilizing said signals for determining values for one or more beam properties, thereby using an automated electronic calculator, and electronically adapting the charged particle system so as to correct for out of specification range values for all or a number of said charged particle beams, each for one or more properties, based on said calculated property values.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: June 9, 2020
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Pieter Kruit, Erwin Slot, Tijs Frans Teepen, Marco Jan-Jaco Wieland, Stijn Willem Herman Karel Steenbrink