Co, S, Negative Element, Or Acid, Bindant Containing Patents (Class 252/189)
  • Publication number: 20140231311
    Abstract: A composition useful for scavenging hydrogen sulfide by admixing metal carboxylates which have high viscosity due to polymerization and a viscosity improver selected from the group consisting of glycol ethers having from about 4 to about 10 carbons and alkyl alcohols having from about 1 to about 4 carbons.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 21, 2014
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Corina L. Sandu, Yun Bao, Jerry J. Weers, Ross Poland, Philip L. Leung, Lei Zhang, John A. Schield
  • Publication number: 20140227766
    Abstract: Materials and methods for use of constrained cohydration agents in the purification of biological materials such as antibodies, viruses, cells, and cellular organelles in connection with convective chromatography, fluidized bed or co-precipitation applications.
    Type: Application
    Filed: June 1, 2012
    Publication date: August 14, 2014
    Applicant: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventor: Peter Stanley Gagnon
  • Publication number: 20140190870
    Abstract: The use of a composition including a transition metal salt and at least one water-soluble aldehyde or water-soluble aldehyde precursor scavenges H2S that is present in aqueous fluids (e.g. produced water liquid streams), natural gas and in oil and mixtures thereof (e.g. mixed production streams that contain all three phases) better than either component when used alone. The resulting scavenger combination significantly increases the reaction rate and the overall scavenging efficiency, i.e. capacity over the case where each component is used alone, in the same total amount. Non-limiting examples of the metal salt include zinc or iron carboxylates, and a non-limiting example of a water-soluble aldehyde or water-soluble aldehyde precursor is ethylene glycol hemiformal.
    Type: Application
    Filed: January 7, 2014
    Publication date: July 10, 2014
    Applicant: Baker Hughes Incorporated
    Inventors: SCOTT E. LEHRER, Vladimir Jovancicevic, Sunder Ramachandran
  • Publication number: 20140186923
    Abstract: Disclosed herein are compounds, compositions, methods and kits for purifying a serine protease and serine proteases purified with the compounds, compositions and methods.
    Type: Application
    Filed: March 14, 2013
    Publication date: July 3, 2014
    Applicant: Portola Pharmaceuticals, Inc.
    Inventor: Portola Pharmaceuticals, Inc.
  • Publication number: 20140186246
    Abstract: Methods are provided for synthesizing novel types of self-assembled siloxanes, such as polysiloxanes, with a sufficiently high density of amine functional groups to be useful for CO2 capture and release processes. Additionally, it has been unexpectedly found that some self-assembled polysiloxanes can be used for high temperature adsorption of CO2.
    Type: Application
    Filed: November 25, 2013
    Publication date: July 3, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: David C. Calabro, Quanchang Li, Dennis G. Peiffer, Mobae Afeworki, Stephen M. Cundy, Charanjit S. Paur, Peter I. Ravikovitch
  • Publication number: 20140175334
    Abstract: The invention concerns a capture mass for capturing heavy metals in a liquid or gaseous effluent, comprising a porous solid support, copper sulphide and at least one second metal sulphide the metal of which is selected from the group constituted by chromium, manganese, iron, cobalt and nickel, and in which the ratio of the percentage by weight of the metal or metals other than copper to the percentage by weight of copper is in the range 0.01 to 2. The invention also concerns a process for preparing said capture mass and a process for capturing heavy metals in a gaseous or liquid effluent, in which said effluent is brought into contact with said capture mass.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 26, 2014
    Applicant: IEP Energies nouvelles
    Inventors: Fabien PORCHERON, Arnaud BAUDOT, Karin BARTHELET
  • Publication number: 20140171721
    Abstract: Processes and compositions for scavenging hydrogen sulfide from hydrocarbon streams are disclosed that reduce, if not substantially eliminate, the formation of crystalline or amorphous solids even under cold conditions. The compositions used in the processes comprise a hexahydrotriazine component and an amphiphilic component that form a hydrophobic micelle when the hexahydrotriazine component becomes spent.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 19, 2014
    Applicant: Coastal Chemical Co., L.L.C.
    Inventor: Roy Bertrand, III
  • Publication number: 20140161701
    Abstract: A particulate desulphurisation material is described including one or more copper compounds supported on a zinc oxide support material, wherein the desulphurisation material has a copper content in the range 0.1 to 5.0% by weight and a tapped bulk density?1.55 kg/l.
    Type: Application
    Filed: April 12, 2012
    Publication date: June 12, 2014
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Norman Macleod, Gordon Edward Wilson
  • Publication number: 20140151857
    Abstract: A method and apparatus are presented for reducing halide-based contamination within deposited titanium-based thin films. Halide adsorbing materials are utilized within the deposition chamber to remove halides, such as chlorine and chlorides, during the deposition process so that contamination of the titanium-based film is minimized. A method for regenerating the halide adsorbing material is also provided.
    Type: Application
    Filed: February 10, 2014
    Publication date: June 5, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Garo J. Derderian, Cem Basceri, Donald L. Westmoreland
  • Patent number: 8741246
    Abstract: Systems containing imidazoles or blends of imidazoles and amines are described herein. Methods of their preparation and use are also described herein. The methods of using the systems include the reduction of volatile compounds from gas streams and liquid streams.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: June 3, 2014
    Assignee: Board of Trustees of the University of Alabama
    Inventor: Jason E. Bara
  • Patent number: 8741245
    Abstract: A method of recovering carbon dioxide, includes bringing gas to be processed containing carbon dioxide (CO2) and oxygen into contact with the CO2-absorbing solution in an absorption column to form a CO2-rich solution; circulating the solution in a regeneration column to thermally release and recover CO2 and recirculating the absorbing solution as a CO2-poor solution inside the absorption column; and performing heat exchange between the solution being delivered from the absorption column to the regeneration column and the solution recirculated from the regeneration column to the absorption column, wherein an alkanolamine aqueous solution containing a silicone oil and/or an organosulfur compound is added to the solution inside the absorption column and/or the solution recirculated from the regeneration column to the absorption column to adjust the composition of the absorbing solution inside the absorption column.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: June 3, 2014
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Koichi Yokoyama, Eiji Miyamoto, Hirofumi Kikkawa, Shigehito Takamoto, Toshio Katsube, Naoki Oda, Jun Shimamura, Masaharu Kuramoto
  • Publication number: 20140145110
    Abstract: A structure and system for the adsorption of carbon dioxide from air, the system comprising a sorbent structure comprising a porous substrate having a porous alumina coating on the surfaces of said substrate, and the sorbent for carbon dioxide is embedded on the surfaces of said porous alumina coating. The substrate is preferably a porous monolith, formed from silica or mesocellular foam. The sorbent is an amine group-containing material, preferably loaded at 40 to 60 percent by volume relative to the porous alumina coating.
    Type: Application
    Filed: November 15, 2013
    Publication date: May 29, 2014
    Inventors: Peter Eisenberger, Mark Thomas Buelow, Michael Durilla, John Kauffman, Pascaline Tran
  • Publication number: 20140127103
    Abstract: A process for the capture of CO2 from gas streams, the process including contacting a CO2 containing gas stream with a compound including: a primary or non-sterically hindered secondary amine group and at least one tertiary amine or sterically hindered secondary amine group; wherein the primary or non-sterically hindered secondary amine and the nearest tertiary or sterically hindered secondary amine group are separated by a carbon chain including 3 or 4 carbon atoms and wherein the compound is a compound of Formula (I).
    Type: Application
    Filed: April 18, 2012
    Publication date: May 8, 2014
    Applicant: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Qi Yang, Susan N. James, Mathew John Ballard, Mark Bown, Paul Feron, Graeme Douglas Puxty
  • Publication number: 20140127106
    Abstract: A zinc titanate reactive adsorbent comprising multiphase, polycrystalline nanofibers comprising ZnTiO3, ZnO, TiO2, and Zn2TiO4.
    Type: Application
    Filed: October 30, 2013
    Publication date: May 8, 2014
    Inventors: Prashant Jain, Mayank Behl, Mark Shannon(deceased), Junghoon Yeom
  • Publication number: 20140110629
    Abstract: The present invention relates to the process of obtaining adsorbent materials based upon supported metal species on porous silicates, and their use for reducing the amount of sulfur and nitrogen contaminants in petroleum fractions and products derived of, i.e., light and heavy gas oils, FCC gasoline and fuels, where FCC stands for Fluid Catalytic Cracking process. Therefore, the invention comprises the selection, preparation, modification and adsorptive properties of the abovementioned porous materials, which are based on porous silicates with metal species intercalated and/or impregnated, such as Ti(O,OH), Mg(O,OH)—, Zr(O,OH)—, Fe(O,OH), Al(O,OH). Also, additional options were considered, for example those comprising metals from the 1st and 2nd transition series, such as Cu+, Ni2+, Zn2+, Fe2+, Ag+, Co2+, Ti4+, V2+,5+, Cr3+ and Mn2+.
    Type: Application
    Filed: October 24, 2013
    Publication date: April 24, 2014
    Inventors: Patricia Flores Sanchez, Jose Manuel Dominguez Esquivel, Jorge Arturo Aburto Anell
  • Publication number: 20140103255
    Abstract: A composition of matter, and method to make same, for a nano-based material including a nanocarbon support to which is attached an aliphatic amine. In particular, the composition of matter is an aliphatic amine-nanocarbon material that includes a nanocarbon (NC) support, such as C60, nano-graphite, graphene, nanocarbon ribbons, graphite intercalation compounds, graphite oxide, nano-coal, nanohorns, and combinations thereof, and further includes an aliphatic amine, such as polyethyleneimine (PEI).
    Type: Application
    Filed: December 20, 2013
    Publication date: April 17, 2014
    Applicant: William Marsh Rice University
    Inventors: Andrew R. Barron, Eoghan Dillon
  • Publication number: 20140093937
    Abstract: The present invention provides compositions, methods and kits for the removal of proteins from complex reaction mixtures useful in majority workflows of molecular biology research experiments. More specifically, such compositions, methods and kits are useful in such processes as purification of nucleic acids from biological samples or after their treatment with specific enzymes, when residual enzyme activity in reaction mixture is not compatible with downstream applications.
    Type: Application
    Filed: July 29, 2013
    Publication date: April 3, 2014
    Inventors: Vitalis Tiknius, Egle Merkiene
  • Publication number: 20140090558
    Abstract: An absorption medium which comprises water, an amine (A) of formula (I) in which R is an n-alkyl radical having 1 to 4 carbon atoms, and an alkanolamine (B) which is a tertiary amine or a sterically hindered primary or secondary amine has a high absorption capacity for CO2 with a high absorption rate. In the absorption of acid gases from a gas mixture a separation of the absorption medium into two liquid phases or the precipitation of a solid upon absorption of CO2 and regeneration of the absorption medium can be avoided with the absorption medium, even without addition of a solvent.
    Type: Application
    Filed: May 25, 2012
    Publication date: April 3, 2014
    Applicant: Evonik Degussa GmbH
    Inventors: Jörn Rolker, Matthias Seiler, Rolf Schneider, Thibaut Lenormant
  • Publication number: 20140094360
    Abstract: A method for recovery of impurities and/or degradation products and/or heat-stable salts from amine-based solvents used for capture of C02 from gas streams. The method comprises recovering C02 from a C02-enriched amine-based solvent thereby producing a lean amine-based solvent, contacting and mixing together the lean amine-based solvent with a reaction composition comprising a phase-change catalyst and a diluent, thereby producing a first organic phase comprising the impurities and/or degradation products and/or heat-stable salts and a first aqueous phase comprising the lean amine-based solvent, separating the first organic phase and the first aqueous phase; and separately recovering the first organic phase and the first aqueous phase. The organic phase can be regenerated by intermixing with a NaOH solution to form an organic phase comprising therein the reaction composition and and an aqueous phase comprising the NaOH solution with the impurities and/or degradation products and/or heat-stable salts.
    Type: Application
    Filed: January 19, 2012
    Publication date: April 3, 2014
    Applicant: UNIVERSITY OF REGINA
    Inventors: Chintana Saiwan, Phattara Akkarachalanont, Teeradet Supap, Raphael Idem, Paitoon Tontiwachwuthikul
  • Publication number: 20140087163
    Abstract: Provided herein are synthetic porous electron-rich covalent organonitridic frameworks (PECONFs). The PECONFs are useful as an adsorbent class of materials. In the PECONFs, inorganic nitridic building units are interconnected via electron-rich aromatic units to form porous covalent frameworks. The frameworks include tunable porous, electron-rich organonitridic frameworks, which are determined based upon synthetic methods as exemplified herein.
    Type: Application
    Filed: April 11, 2011
    Publication date: March 27, 2014
    Applicant: Lehigh University
    Inventors: Kai Landskron, Paritosh Mohanty
  • Publication number: 20140084206
    Abstract: There is provided, in one form, a method for at least partially deactivating a sulfur species from a stream, such as but not limited to a hydrocarbon stream, an aqueous stream, and mixtures thereof. A treating mixture may be introduced into the stream in an amount effective to at least partially deactivate the sulfur species from the stream. The treating mixture may include a compound having the general formula: and combinations thereof. R1 may be a C1-C4 hydrocarbyl group. R2 may be a C1-C4 hydrocarbyl group that is the same or different as R1. R3 may be an ethanol or an isopropanol moiety. R4 may be an ethylene oxide moiety, propylene oxide moiety, butylene oxide moiety, and combinations thereof. n may be an integer from 1 to 100. M may be a hydrogen or a metal ion.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Jianzhong Yang, James Michael Brown
  • Publication number: 20140084208
    Abstract: A solvent for selective absorption of CO2 from the flue gas from a combustion plant is provided. The solvent includes an aqueous solution of a secondary amine as an active scrubbing substance and an additive which inhibits the formation of nitrosamine, the additive including a primary amine. A process for providing an absorption liquid is also provided.
    Type: Application
    Filed: January 12, 2012
    Publication date: March 27, 2014
    Inventors: Björn Fischer, Ralph Joh, Rüdiger Schneider
  • Publication number: 20140088334
    Abstract: One exemplary embodiment can be a process for removing one or more disulfide compounds from a caustic stream. The process can include passing the caustic stream, previously contacted with a hydrocarbon stream for removing one or more mercaptans, through a column to remove the one or more disulfide compounds downstream of a mercaptan oxidation zone. The caustic stream can be contacted with a solvent stream comprising one or more hydrocarbons in a column. The solvent stream can be passed to a plurality of beds for removal of extracted disulfides from the solvent over an adsorbent.
    Type: Application
    Filed: November 27, 2013
    Publication date: March 27, 2014
    Applicant: UOP LLC
    Inventors: Steven L. Krupa, Cedric R. Freeman
  • Patent number: 8679203
    Abstract: Hydrogen sulfide and mercaptans in hydrocarbons, gas mixtures of hydrocarbons and the like may be scavenged therefrom by being brought into intimate contact with a mercaptan scavenger formulation of quaternary ammonium alkoxide or hydroxide in the presence of a high oxidative state metal such as cobalt, iron, chromium and/or nickel. The high oxidative state metal, being an oxidizer, acts as a catalyst when combined with the quaternary ethoxide or hydroxide for improved mercaptan scavenging performance.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: March 25, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Timothy J. O'Brien, Jerry J. Weers
  • Publication number: 20140079613
    Abstract: An absorption medium for removing acid gases from a fluid stream comprises an aqueous solution of A) at least one cyclic amine compound having solely tertiary amine groups and/or sterically hindered secondary amine groups and B) at least one cyclic amine compound having at least one sterically unhindered secondary amine group. The absorption medium comprises, e.g., an aqueous solution of A) 1-hydroxyethylpiperidine and/or triethylenediamine and B) piperazine. The absorption medium is particularly suitable for separating off carbon dioxide from flue gases and satisfies the following criteria: (i) sufficient capacity at low CO2 partial pressures; (ii) sufficiently rapid absorption rate at low CO2 partial pressures; (iii) stability toward oxygen; (iv) low vapor pressure for reducing solvent losses; and (v) low energy requirement for regeneration of the absorption medium.
    Type: Application
    Filed: November 19, 2013
    Publication date: March 20, 2014
    Applicant: BASF SE
    Inventors: Hugo Rafael Garcia Andarcia, Ute Lichtfers, Georg Sieder, Oliver Spuhl, Steven Brughmans
  • Publication number: 20140042362
    Abstract: Methods and systems are provided for the in situ generation of polysulfide ions in a process stream including S2? and/or HS? ions. Methods and systems are also provided to ameliorate corrosion in a process stream containing an acid gas or a scrubbing agent solvent, and abate mercury and cyanide in process streams containing a scrubbing agent solvent.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 13, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Gordon Bryce McGARVEY, Robert J. FALKINER, David R. SLIM, Bryan M. KNICKERBOCKER
  • Patent number: 8641922
    Abstract: A sorbent for removal of acid gas from hydrocarbon gas includes a mixture of dewatered residue obtained from the distillation of ethanol, and an amine.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: February 4, 2014
    Assignee: Intevep, S.A.
    Inventors: Alfredo Viloria, Rafael Yoll, Yanine Gonzalez, Monica Roman, Jose Biomorgi
  • Publication number: 20140017153
    Abstract: Systems containing imidazoles or blends of imidazoles and amines are described herein. Methods of their preparation and use are also described herein. The methods of using the systems include the reduction of volatile compounds from gas streams and liquid streams.
    Type: Application
    Filed: June 10, 2013
    Publication date: January 16, 2014
    Inventor: Jason E. Bara
  • Publication number: 20130343974
    Abstract: An acid gas absorbent comprising at least one type of diamine compound represented by the following general formula (1), R1R2N—(CHR3)n—CH2—NR4R5??(1), where R1, R2, R4 and R5 represent any of: a cyclic alkyl group having carbon number from 3 to 6; an alkyl group having carbon number from 1 to 4; a hydroxyalkyl group; and a hydrogen atom, R3 represents any of: the hydrogen atom; a methyl group; and an ethyl group, “n” represents an integer number of 1 or 2, at least one of two amino groups is a secondary amino group, both of the two amino groups are groups other than a primary amino group.
    Type: Application
    Filed: June 20, 2013
    Publication date: December 26, 2013
    Inventors: Shinji MURAI, Yukishige MAEZAWA, Yasuhiro KATO, Takehiko MURAMATSU, Masatoshi HODOTSUKA, Satoshi SAITO
  • Publication number: 20130338351
    Abstract: A solid matrix for the extraction, stabilization, and storage of nucleic acids is provided. At least one protein denaturant, and at least one acid or acid-titrated buffer reagent are impregnated in a dry state therein the matrix; and the matrix is configured to provide an acidic pH on hydration. The matrix is configured to extract nucleic acids from a sample and stabilize the extracted nucleic acids, particularly RNA, in a dry format under ambient conditions for a prolonged period of time. Methods for collecting and recovering the nucleic acids stored in the dry solid matrix are also described.
    Type: Application
    Filed: August 16, 2013
    Publication date: December 19, 2013
    Applicant: General Electric Company
    Inventors: Erik Leeming Kvam, Bing Li, Brian Christopher Bales
  • Patent number: 8609049
    Abstract: A process for removing CO2 from a CO2 containing gas stream in which the CO2 containing gas stream is contacted with an aqueous ammonium solution. The aqueous ammonia solution comprises 0.1-40% w/v, v/v/w/w ammonia, and a soluble salt at a concentration range of 0.01%-10% wt or v/v or w/v, the soluble salt having cations selected from the group of group IA, IIA, IIIA and IVA metals with counter anions selected from the group of anion of group VIIA elements, NO3?, SO42?, OH?, PO43? and HCO3?. The invention also extends to a CO2 capture solvent comprising an aqueous ammonia solution and the above soluble salt.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: December 17, 2013
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Phil Jackson, Moetaz Ibrahim Attalla, Benjamin Jack Ballinger
  • Publication number: 20130320258
    Abstract: The use of a composition that includes a metal salt and an oil soluble amine formaldehyde reaction product scavenges H2S that is present in aqueous fluids (e.g. produced water liquid streams), natural gas and in oil and mixtures thereof (e.g. mixed production streams that contain all three phases) better than either component when used alone. The resulting scavenger combination significantly increases the reaction rate and the overall scavenging efficiency, i.e. capacity over each component when used alone, in the same total amount. Non-limiting examples of the metal salt include zinc or iron carboxylates, and a non-limiting example of an oil soluble amine formaldehyde reaction product is the reaction product of dibutylamine with formaldehyde.
    Type: Application
    Filed: May 22, 2013
    Publication date: December 5, 2013
    Applicant: Baker Hughes Incorporated
    Inventors: Scott E. Lehrer, Sunder Ramachandran, Vladimir Jovancicevic
  • Publication number: 20130320259
    Abstract: A solvent for selective absorption of CO2 from the flue gas from a combustion plant is provided. The solvent includes an aqueous solution of a secondary amine an active scrubbing substance and an additive, the additive including a salt of vitamin C or E. A process for providing an absorption liquid, and to the use of the solvent for selective absorption of CO2 from the flue gas from a combustion plant is also provided.
    Type: Application
    Filed: January 12, 2012
    Publication date: December 5, 2013
    Inventors: Björn Fischer, Ralph Joh, Rüdige Schneider
  • Publication number: 20130302230
    Abstract: The present invention generally relates to a process for making a metal oxide composition. The present invention also relates to a process for making a coated metal oxide substrate.
    Type: Application
    Filed: April 10, 2013
    Publication date: November 14, 2013
    Inventor: Delbert C. Scranton, JR.
  • Patent number: 8562927
    Abstract: The degradation of an absorbent solution comprising organic compounds provided with an amine function in aqueous solution is reduced considerably in the presence of a small amount of degradation inhibiting additives whose structure comprises a 5-atom heterocycle composed of a nitrogen atom, a sulfur atom or an oxygen atom, and 3 carbon atoms, at least one of which is joined to a sulfur atom not belonging to the ring. The absorbent solution is employed for deacidifying a gaseous effluent.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: October 22, 2013
    Assignee: IFP
    Inventors: P-Louis Carrette, Bruno Delfort
  • Patent number: 8545783
    Abstract: There is provided an acid gas absorbent having excellent performance of absorbing acid gas such as carbon dioxide, and an acid gas removal device and an acid gas removal method using the acid gas absorbent. An acid gas absorbent of an embodiment contains at least one type of tertiary amine compound represented by the following general formula (1). (In the above formula (1), the cycle A represents a cyclic structure whose carbon number is not less than 3 nor more than 8. R1, R2 and R3 each represent an alkyl group whose carbon number is 1 to 4, and R4 represents a hydroxyalkyl group. R1 and R2 are groups coupled to carbon atoms adjacent to a carbon atom forming the cycle A and coupled to a nitrogen atom.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: October 1, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinji Murai, Yukishige Maezawa, Yasuhiro Kato, Takehiko Muramatsu, Masatoshi Hodotsuka
  • Patent number: 8545781
    Abstract: The carbon dioxide adsorbent composition relates to a material that will adsorb carbon dioxide gas from the atmosphere and that is made by the treatment of oil fly ash with ammonium hydroxide. In order to make the carbon dioxide adsorbent, oil fly ash is first mixed with ammonium hydroxide. This mixture is then refluxed and cooled. Additional ammonium hydroxide is added to the cooled mixture of oil fly ash and ammonium hydroxide to form a secondary mixture. This forms an amine-functionalized fly ash composition, which is then filtered from the secondary mixture to be used as a carbon dioxide adsorbent composition. The carbon dioxide adsorbent composition is then dried and may be used as a carbon dioxide adsorbent for gas streams, such as flues and exhaust systems, containing carbon dioxide.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: October 1, 2013
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Ali Lawan Yaumi, Reyad Awwad Khalaf Shawabkeh, Ibnelwaleed Ali Hussein
  • Publication number: 20130214202
    Abstract: A method for processing an amine-based solvent contaminated by the introduction of sulfur oxides is provided. A potassium compound is introduced into a contaminated solvent, and the contaminated solvent is cooled so that a solubility of a potassium sulfate becomes less than a specified concentration of potassium sulfate. Further, an oxidizing agent is introduced into the contaminated solvent so that a potassium sulfite is oxidized to potassium sulfate. The potassium sulfate is filtered out, wherein a prepared solvent is formed. Further, a device for processing an amine-based, sulfur oxide-contaminated solvent is provided.
    Type: Application
    Filed: November 8, 2011
    Publication date: August 22, 2013
    Inventors: Rainald Forbert, Stefan Hauke, Ralph Joh, Frank Olschewski, Rüdiger Schneider
  • Patent number: 8506914
    Abstract: Systems containing imidazoles or blends of imidazoles and amines are described herein. Methods of their preparation and use are also described herein. The methods of using the systems include the reduction of volatile compounds from gas streams and liquid streams.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: August 13, 2013
    Assignee: Board of Trustees of The University of Alabama
    Inventor: Jason E. Bara
  • Patent number: 8506840
    Abstract: Disclosed is a flue gas absorbent composition which contains a compound and water. The compound has a ring structure and includes terminal primary amine groups and substituted ?-carbon atoms neighboring the amine groups. Further, a use of a solution of a compound having a ring structure and terminal amine groups as a flue gas absorbent is disclosed. The absorbent composition includes a ring-structure compound having superior absorption ability when compared to conventional absorbents, thereby exhibiting excellent properties, i.e., flue gas absorption rate improved by 50 to 100% and flue gas absorption capacity improved by 200 to 400%, as compared with currently used absorbents such as monoethanolamine (MEA) and 2-amino-2-methyl-propanol (AMP).
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: August 13, 2013
    Assignee: Korea Institute of Energy Research
    Inventors: Ara Cho, Jong Seop Lee, Byoung Moo Min
  • Patent number: 8506913
    Abstract: An acidic gas absorbent having a high acidic gas absorption capacity, that is, a high acidic gas absorption amount and a high acidic gas absorption rate, an acidic gas absorption device, and a method for absorbing an acidic gas, are provided. An acidic gas absorbent containing an azabicyclo compound and a primary or secondary amine compound; an acidic gas absorbent containing a heteroaromatic ring compound and a primary or secondary amine compound; an acidic gas removal device using these acidic gas absorbents; and a method for removing an acidic gas are disclosed.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: August 13, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinji Murai, Satoshi Saito, Yasuhiro Kato, Takehiko Muramatsu, Takashi Kuboki, Hiroko Watando, Asato Kondo, Yukishige Maezawa
  • Publication number: 20130164200
    Abstract: A solvent system comprising a diluent and a nitrogenous base for the removal of CO2 from mixed gas streams is provided. Also provided is a process for removing CO2 from mixed gas streams using the disclosed solvent system. The solvent system may be utilized within a gas processing system.
    Type: Application
    Filed: September 3, 2011
    Publication date: June 27, 2013
    Applicant: Research Triangle Institute
    Inventors: Marty Lail, Luke Coleman
  • Publication number: 20130164199
    Abstract: A solvent system comprising an ionic Liquid formed from a relatively acidic component and a nitrogenous base for the removal of acid gases from mixed gas streams is provided. Also provided is a process for removing acid gases from mixed gas streams using the disclosed solvent system. The solvent system may be utilized within a gas processing system.
    Type: Application
    Filed: September 2, 2011
    Publication date: June 27, 2013
    Inventors: Marty Lail, Luke Coleman
  • Publication number: 20130158250
    Abstract: Provided are compositions and methods of deacidifying a cellulose-based material. The compositions include a hydrohalo-olefin and a deacidification agent dispersed within the hydrohalo-olefin. Cellulose-based materials are contacted with the composition for a sufficient time to increase the pH of the material.
    Type: Application
    Filed: December 13, 2012
    Publication date: June 20, 2013
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventor: Honeywell International, Inc.
  • Publication number: 20130034474
    Abstract: Disclosed are methods for treating hazardous materials, such as those which result from an unwanted spill or leak, which comprise one or more of the steps or effects of: neutralizing the dispersed material; solidifying the dispersed material; immobilizing the material; and/or reducing the evolution of harmful or unwanted gaseous forms from the spillage, preferably using a binding agent which comprises a polyacrylate-polyacrylamide cross-linked copolymer.
    Type: Application
    Filed: October 9, 2012
    Publication date: February 7, 2013
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventor: HONEYWELL INTERNATIONAL, INC.
  • Publication number: 20120241361
    Abstract: The use of neutral aqueous solutions of glyoxal (pH approximately 6 to 8.5) scavenges H2S that is present in natural gas and in oil better than glyoxal alone or base alone. The resulting scavenger combination significantly increases the reaction rate and the overall scavenging efficiency, i.e. capacity over glyoxal used alone. A buffer may be optionally used. In another embodiment, the combination of non-nitrogen-containing surfactants and glyoxal results in a significant increase in the reaction rate and the overall scavenging efficiency, i.e. capacity as compared to glyoxal used alone.
    Type: Application
    Filed: February 29, 2012
    Publication date: September 27, 2012
    Applicant: Baker Hughes Incorporated
    Inventors: Sunder Ramachandran, Vladimir Jovancicevic, Kyle C. Cattanach, Michael P. Squicciarini
  • Patent number: 8226819
    Abstract: An extraction aid has been found which provides for enhanced contaminate removal, such as metals and amines, from crude oils that uses components that are desirable in desalting processes as the components are water soluble, have low toxicity, are highly biodegradeable and exhibit high thermal stability. According to one embodiment of the invention, an extraction aid that provides enhanced extraction properties is comprised of a blend of acids, particularly water soluble acids. More specifically, a combination of two acids chosen from the group consisting of acetic acid, sulfuric acid, glycolic acid, citric acid and methanesulfonic acid.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: July 24, 2012
    Assignee: General Electric Company
    Inventors: Alan E. Goliaszewski, Cato R. McDaniel
  • Publication number: 20120161071
    Abstract: An acid gas absorbent of which recovery amount of acid gas such as carbon dioxide is high, and an acid gas removal device and an acid gas removal method using the acid gas absorbent are provided. The acid gas absorbent of the embodiment comprising at least one type of tertiary amine compound represented by the following general formula (1). (In the above-stated formula (1), either one of the R1, R2 represents a substituted or non-substituted alkyl group of which carbon number is 2 to 5, and the other one represents a substituted or non-substituted alkyl group of which carbon number is 1 to 5. The R3 represents a methyl group or an ethyl group, and the R4 represents a hydroxyalkyl group. The R1, R2 may either be the same or different, and they may be coupled to form a cyclic structure.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 28, 2012
    Inventors: Shinji MURAI, Yukishige Maezawa, Yasuhiro Kato, Takehiko Muramatsu, Satoshi Saito, Hiroko Watando, Naomi Shida, Reiko Yoshimura, Takashi Kuboki
  • Publication number: 20120132853
    Abstract: The present invention relates to a method of protecting membranes by treatment with an aqueous solution containing at least one water-soluble, nucleophilic compound, and the use of this aqueous solution for protecting matrices.
    Type: Application
    Filed: May 20, 2010
    Publication date: May 31, 2012
    Inventor: Thorsten Singer
  • Publication number: 20120067783
    Abstract: A method for reducing the amount of hydrogen sulfide present in liquid hydrocarbon media while minimizing the amount of corrosion in processing equipment contacting the liquid hydrocarbon media. The method includes adjusting a glyoxal solution to a pH of from about 2.5 to about 6.0 and dispersing the adjusted glyoxal solution in the liquid hydrocarbon media. A hydrogen sulfide scavenging composition and method for making are also provided.
    Type: Application
    Filed: September 27, 2011
    Publication date: March 22, 2012
    Inventors: Gregory KAPLAN, Larry John Karas