Carbon-oxide And Hydrogen Containing Patents (Class 252/373)
  • Publication number: 20140370289
    Abstract: The present disclosure relates generally to methods and active materials for purifying gas streams containing halide as a contaminant, for example, in amounts as low as parts-per-million (ppm) or even parts-per-billion (ppb). In one aspect of the invention, an active material includes (a) one or more first metals each present as a metal oxide or metal hydroxide, the first metals being selected from the group consisting of iron, cobalt, nickel, copper, ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, and gold; and (b) one or more second metals each present as a metal oxide or metal hydroxide, the one or more second metals being selected from the group consisting of alkali metals, alkaline earth metals, scandium, yttrium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, technetium, and rhenium.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 18, 2014
    Inventors: Justin X. Wang, Simran K. Sokhey, Jason E. Spencer, Yeping Cai
  • Publication number: 20140367616
    Abstract: A safety means for protecting a plant section located on the pressure side of a jet compressor connected with a propellant system against the exceedance of an admissible pressure, comprising a controlled safety valve actuated by external energy, whose control means measures is connected with the plant section to be protected via at least one pressure tapping line, wherein the safety valve is arranged such that upon exceedance of the pressure in the protected plant section it can vent propellant from the propellant system.
    Type: Application
    Filed: February 21, 2013
    Publication date: December 18, 2014
    Applicant: L'AIR LIQUIDE, SOCIÉTÉ ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCÉDÉS GEORGES CLAUDE
    Inventors: Alexander Roesch, Dieter Ulber, Ulrich Wolf
  • Publication number: 20140364518
    Abstract: A method of starting up one or more units, the method comprising the steps of: (a) starting up a first unit including a microchannel reactor housing a Fischer-Tropsch catalyst by initially feeding a carbon monoxide source and a hydrogen source to the first unit and through the microchannel reactor; (b) processing, within the microchannel reactor, at least a portion of the carbon monoxide source and the hydrogen source; (c) monitoring at least one of internal pressure, temperature, and concentration at least one of within the microchannel reactor and downstream from the microchannel reactor; (d) at least partially containing the microchannel reactor using a wall of a containment device, the wall cooperating with the microchannel reactor to delineate at least one of a first inlet cavity and a first outlet cavity of the microchannel reactor, where at least one of the first inlet cavity and the first outlet cavity is not in fluid communication with at least one of a second inlet cavity and a second outlet cavity;
    Type: Application
    Filed: June 10, 2013
    Publication date: December 11, 2014
    Inventors: William Allen Rogers, JR., Christopher Paul Weil, Robert Dwayne Litt, Ronald Chester Pasadyn, George Bradley Smith, Charles Robert Miele, Thomas Peter Forte, Jimmy Glen Pelham
  • Publication number: 20140361222
    Abstract: An opposed axial flow reaction vessel includes a process fluid collection system within the body of the vessel in fluid communication with one or more of the ports; a bed of particulate catalyst or sorbent containing a layer of inert particulate material around the process fluid collection system; and the one or more of the ports are configured such that a process fluid fed to the vessel is passed axially and in the opposite direction through the fixed bed of catalyst or sorbent and is collected by the process fluid collection system disposed centrally within the bed and in fluid communication with one or more of the ports.
    Type: Application
    Filed: August 21, 2014
    Publication date: December 11, 2014
    Applicant: Johnson Matthey PLC
    Inventors: Charles William Hooper, Michael Peter Roberts
  • Publication number: 20140364516
    Abstract: A method and an apparatus for generating synthesis gas using hydrocarbons and water are described. In further embodiments of the method and the apparatus, synthesis gases having any desired CO/hydrogen ratio and/or synthetic functionalised and/or non-functionalised hydrocarbons are generated. With this method, a hydrocarbon containing fluid may be transformed into a synthesis gas having variable hydrogen content without generating significant amounts of CO2. Further, hydrogen and different forms of carbon may be obtained as by-products.
    Type: Application
    Filed: December 20, 2012
    Publication date: December 11, 2014
    Inventor: Olaf Kuhl
  • Publication number: 20140360889
    Abstract: Embodiments of systems, devices, and methods for treating, remediating, or abating carbon-containing wastes generate at least one of clean water; non-toxic, non-hazardous ash; or power. Some embodiments are modular, permitting rapid deployment, flexible configuration, and easy transportation. Embodiments of the systems treat carbon-containing aqueous waste, carbon containing waste, or a combination thereof. The systems, devices, and methods are particularly suited to treating hydrocarbon containing waste generated in oil and natural gas drilling and hydrofracturing.
    Type: Application
    Filed: February 6, 2013
    Publication date: December 11, 2014
    Inventors: Coyte R. Jones, Robert C. Jones
  • Patent number: 8906266
    Abstract: Process for the preparation of hydrogen and carbon monoxide containing gas from a gaseous carbonaceous feedstock by performing the following steps: (a) auto-thermal reforming of a gaseous feedstock thereby obtaining a first gaseous mixture of hydrogen and carbon monoxide, (b) catalytic steam reforming of the gaseous carbonaceous feedstock to obtain a second gaseous mixture of hydrogen and carbon monoxide by feeding steam and the gaseous carbonaceous feedstock through a first set of numerous microchannels provided with a steam reforming catalyst and feeding the first gaseous mixture of hydrogen and carbon monoxide through a second set of numerous microchannels, wherein the first and second set of microchannels are oriented such that the required heat for the steam reforming reaction in the first set of microchannels is provided by convective heat exchange from the second set of microchannels, thereby obtaining the hydrogen and carbon monoxide containing gas as the effluent of the second set of microchannels.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: December 9, 2014
    Assignee: Shell Oil Company
    Inventor: Martin John Fernie
  • Publication number: 20140357471
    Abstract: The present invention concerns spheroidal alumina particles, catalysts comprising such particles as a support and a process for the production of spheroidal alumina particles, comprising the following steps: a) preparing a suspension comprising water, an acid and at least one boehmite powder for which the ratio of the crystallite dimensions in the [020] and [120] directions obtained using the Scherrer X-ray diffraction formula is in the range 0.7 to 1; b) adding a pore-forming agent, a surfactant and optionally water, or an emulsion comprising at least one pore-forming agent, a surfactant and water to the suspension of step a); c) mixing the suspension obtained in step b); d) shaping the spheroidal particles by the oil-drop method using the suspension obtained in step c); e) drying the particles obtained in step d); f) calcining the particles obtained in step e).
    Type: Application
    Filed: November 16, 2012
    Publication date: December 4, 2014
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Sylvie Lacombe, Priscilla Avenier, Malika Boualleg, Delphine Bazer-Bachi, Patrick Euzen, Joseph Lopez
  • Patent number: 8900546
    Abstract: Process to prepare a diluted hydrogen gas mixture starting from a gas mixture comprising hydrogen and carbon monoxide by (i) converting part of the carbon monoxide in said gas mixture to hydrogen and carbon dioxide by means of a catalysed water gas shift reaction to obtain a shifted gas and (ii) separating hydrogen from said shifted gas by means of a membrane to obtain the hydrogen comprising gas at the permeate side of the membrane and a carbon dioxide comprising gas at the retentate side of the membrane, wherein at the permeate side of the membrane a sweep gas is provided; (iii) cooling the carbon dioxide comprising gas to obtain liquid carbon dioxide and a gas mixture of non-condensable gasses and (iv) separating the liquid carbon dioxide from the non-condensable gasses; wherein the non-condensable gasses are fed into the hydrogen comprising gas.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: December 2, 2014
    Assignee: Shell Oil Company
    Inventors: Wouter David Van De Graaf, Mark Jan Prins
  • Patent number: 8900334
    Abstract: The goal of the invention consists in making available a method for supplying fuel to a pressurized gasification system, which ensures, in economically efficient manner, that the emission of pollutants from the coal transfer and the transport is minimized or completely avoided. This is achieved in that a gas that contains at least 10 ppm vol. CO is used for transfer and/or conveying, whereby a gas that contains oxygen is mixed into this gas, and that this gas mixture is heated to a temperature that oxidizes at least 10% of the pollutants contained in the gas.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: December 2, 2014
    Assignee: ThyssenKrupp UHDE GmbH
    Inventors: Johannes Kowoll, Stefan Hamel, Michael Rieger
  • Publication number: 20140346401
    Abstract: A multiple adiabatic bed reforming apparatus and process are disclosed in which stage-wise combustion, in combination with multiple reforming chambers with catalyst, utilize co-flow and cross-flow under laminar flow conditions, to provide a reformer suitable for smaller production situations as well as large scale production. A passive stage by stage fuel distribution network suitable for low pressure fuel is incorporated and the resistances in successive fuel distribution lines control the amount of fuel delivered to each combustion stage.
    Type: Application
    Filed: June 9, 2014
    Publication date: November 27, 2014
    Inventor: Anthony M. Johnston
  • Publication number: 20140346402
    Abstract: An apparatus for the catalytic reaction of gaseous hydrocarbons into synthesis gas by means of oxygen is disclosed. In order to improve the apparatus it is provided for the catalyst chamber containing the gas and the catalyst particle to be separated from the oxygen chamber containing the oxygen by a gas-permeable wall.
    Type: Application
    Filed: December 18, 2012
    Publication date: November 27, 2014
    Inventor: Karl-Heinz Tetzlaff
  • Publication number: 20140346403
    Abstract: A CO shift reaction apparatus is configured to suppress degradation of catalytic activity of a CO shift catalyst containing molybdenum and prolong the life of the catalyst. A CO shift reaction method uses the CO shift reaction apparatus. The CO shift reaction apparatus is configured to reform carbon monoxide contained in gas and includes a CO shift catalyst containing molybdenum; a reactor at least comprising: a gas inlet for introducing gas; a CO shift catalyst layer filled with the CO shift catalyst and through which the introduced gas passes; and a gas outlet for discharging the gas which has passed through the CO shift catalyst layer; and cooling means configured to cool the CO shift catalyst layer.
    Type: Application
    Filed: December 13, 2012
    Publication date: November 27, 2014
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Koji Higashino, Toshinobu Yasutake, Shuji Fujii, Masanao Yonemura, Makoto Susaki, Kaori Yoshida, Yoshio Seiki, Atsuhiro Yukumoto
  • Patent number: 8894885
    Abstract: A process and apparatus are provided for reducing content of tar in a tar containing syngas. The process includes contacting the tar containing syngas with a molecular oxygen containing gas in a first reaction zone to produce a gas mixture. The gas mixture is passed through a heat treatment zone maintained at a temperature between about 900° C. to about 2000° C. for a contact time of about 0.5 to about 5 seconds. In this aspect, at least a portion of the tar undergoes at least partial oxidation and/or cracking to produce a hot syngas.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: November 25, 2014
    Assignee: Ineos Bio SA
    Inventors: Peter S. Bell, Ching-Whan Ko, Joseph Golab, Bernard Descales, Julien Eyraud
  • Publication number: 20140339475
    Abstract: Disclosed is a catalyst used for steam carbon dioxide reforming of natural gas, wherein an alkaline earth metal alone or an alkaline earth metal and a group 8B metal are supported on a hydrotalcite-like catalyst containing nickel, magnesium and aluminum. The disclosed catalyst is useful as a steam carbon dioxide reforming (SCR) catalyst of natural gas at high temperature and high pressure, while minimizing deactivation of the catalyst due to sintering of the active component nickel and deactivation of the catalyst due to coke generation at the same time. A synthesis gas prepared using the catalyst has a H2/CO molar ratio maintained at 1-2.2. A synthesis gas having a H2/CO molar ratio of 1.8-2.2 may be used as a raw material for Fischer-Tropsch synthesis or methanol synthesis and a synthesis gas having a H2/CO molar ratio of may be used as a raw material for dimethyl ether synthesis.
    Type: Application
    Filed: August 20, 2013
    Publication date: November 20, 2014
    Applicant: Korea Institute of Science and Technology
    Inventors: Dong Ju MOON, Yun Ju LEE, Jae Sun JUNG, Jin Hee LEE, Seung Hwan LEE, Bang Hee KIM, Hyun Jin KIM, Eun Hyeok YANG
  • Patent number: 8889037
    Abstract: A method can include combusting an expanded turbine exhaust and a first fuel within a first reformer to produce a first exhaust. A hydrocarbon can be reformed in the first reformer to produce a reformed hydrocarbon and heat can be transferred from the first exhaust to a first medium. A refrigeration unit can be powered with thermal energy from the heated first medium and can cool a second medium. Heat can be transferred from one or more oxidants to the cooled second medium to produce cooled first and second oxidants. The cooled first oxidant and a second fuel can be introduced to a gas turbine unit to produce the expanded turbine exhaust and mechanical power. The cooled second oxidant can be compressed in a compressor powered with the mechanical power and the compressed second oxidant and the reformed hydrocarbon can be introduced to a second reformer to produce a syngas.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: November 18, 2014
    Assignee: Kellogg Brown & Root LLC
    Inventors: Shashi Singh, Keith King
  • Patent number: 8888873
    Abstract: A method for generating and purifying syngas and to an apparatus for generating and purifying syngas is presented.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: November 18, 2014
    Assignee: L'air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Natacha Haik-Beraud, Antoine Hernandez, Pascal Marty, Bernd Polster
  • Publication number: 20140332727
    Abstract: A process for the steam reforming of hydrocarbons comprises partially oxidising a feedgas comprising a hydrocarbon feedstock with an oxygen-containing gas in the presence of steam to form a partially oxidised hydrocarbon gas mixture at a temperature >1200° C. and passing the resultant partially oxidised hydrocarbon gas mixture through a bed of steam reforming catalyst, wherein the bed comprises a first layer and a second layer, each layer comprising a catalytically active metal on an oxidic support wherein the oxidic support for the first layer is a zirconia.
    Type: Application
    Filed: May 22, 2014
    Publication date: November 13, 2014
    Applicant: Johnson Matthey PLC
    Inventors: Peter William Farnell, Martin Fowles
  • Publication number: 20140332726
    Abstract: Disclosed is a hydrocarbon gas reforming supported catalyst, and methods for its use, that includes a catalytic material capable of catalyzing the production of a gaseous mixture comprising hydrogen and carbon monoxide from a hydrocarbon gas, and a support material comprising an alkaline earth metal/metal oxide compound having a structure of D-E, wherein D is a M1 or M1M2, M1 and M2 each individually being an alkaline earth metal selected from the group consisting of Mg, Ca, Ba, and Sr, E is a metal oxide selected from the group consisting of Al2O4, SiO2, ZrO2, TiO2, and CeO2, wherein the catalytic material is attached to the support material.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 13, 2014
    Applicant: SABIC Global Technologies B.V.
    Inventors: Lawrence D'SOUZA, Vinu VISWANATH
  • Publication number: 20140332725
    Abstract: Disclosed is a hydrocarbon gas reforming supported catalyst, and methods for its use, that includes a catalytic material capable of catalyzing the production of a gaseous mixture comprising hydrogen and carbon monoxide from a hydrocarbon gas, and a clay support material comprising a clay mineral, wherein the catalytic material is attached to the clay support material.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 13, 2014
    Applicant: SABIC Global Technologies B.V.
    Inventors: Lawrence D'SOUZA, Vinu VISWANATH
  • Publication number: 20140332724
    Abstract: The invention provides a system designed for the complete conversion of carbonaceous feedstock into syngas and slag. The system comprises a primary chamber for the volatilization of feedstock generating a primary chamber gas (an offgas); a secondary chamber for the further conversion of processed feedstock to a secondary chamber gas (a syngas) and a residue; a gas-reformulating zone for processing gas generated within one or more of the chambers; and a melting chamber for vitrifying residue. The primary chamber comprises direct or indirect feedstock additive capabilities in order to adjust the carbon content of the feedstock. The system also comprises a control system for use with the gasification system to monitor and regulate the different stages of the process to ensure the efficient and complete conversion of the carbonaceous feedstock into a syngas product.
    Type: Application
    Filed: February 6, 2014
    Publication date: November 13, 2014
    Applicant: Plasco Energy Group Inc.
    Inventors: Andreas TSANGARIS, Marc Bacon
  • Publication number: 20140326925
    Abstract: Gasification reactor and process for the production of synthesis gas by partial combustion of a carbonaceous feed. The reactor comprises a reactor chamber with one or more burners and at least one oil lance extending into the reactor chamber. The oil lances can for instance be located at a level 1.5 meters or less below or above the burners.
    Type: Application
    Filed: October 17, 2012
    Publication date: November 6, 2014
    Inventors: Johannes Cornelis De Jong, Chengming Gao
  • Patent number: 8877098
    Abstract: Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: November 4, 2014
    Assignees: Battelle Memorial Institute, Genifuel Corporation
    Inventors: Douglas C. Elliott, James R. Oyler
  • Patent number: 8877097
    Abstract: With a method for the generation of synthesis gas by means of gasification of solid or liquid carbonaceous fuels with an oxidation agent containing oxygen, in a reactor, wherein the synthesis gas is passed out of the reactor overhead, and the mineral ash/slag droplets that occur during the reaction are passed out of the reactor downward, in the direction of gravity, it is supposed to be made possible to use a flue-tube boiler, which is clearly less expensive, for heat removal in place of radiant boilers. This is achieved in that the synthesis gas is passed over a hot-gas filter (2), without being cooled, and subsequently passed through a flue-tube boiler (3), for cooling, wherein ash/slag particles precipitated on the hot-gas filter (2) are passed back into the gasification reactor (1), in the direction of gravity.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: November 4, 2014
    Assignee: ThyssenKrupp Uhde GmbH
    Inventors: Johannes Dostal, Domenico Pavone
  • Publication number: 20140319427
    Abstract: A method and system for producing a synthesis gas in an oxygen transport membrane based reforming system that utilizes a combined feed stream having a steam to carbon ratio between about 1.6 and 3.0 and a temperature between about 500° C. and 750° C. The combined feed stream is comprised a pre-reformed hydrocarbon feed, superheated steam, and a reaction product stream created by the reaction of a hydrogen containing stream reacted with the permeated oxygen at the permeate side of the oxygen transport membrane elements and wherein the hydrogen containing stream is a recycled portion of the synthesis gas.
    Type: Application
    Filed: December 6, 2013
    Publication date: October 30, 2014
    Inventors: Shrikar Chakravarti, Brian R. Kromer, Keith A. Craigie, Sean M. Kelly, Juan Li
  • Publication number: 20140319426
    Abstract: A method and system for producing a synthesis gas in an oxygen transport membrane based reforming system that utilizes a combined feed stream having a steam to carbon ratio between about 1.6 and 3.0 and a temperature between about 500° C. and 750° C. The combined feed stream is comprised a pre-reformed hydrocarbon feed, superheated steam, and a reaction product stream created by the reaction of a hydrogen containing stream reacted with the permeated oxygen at the permeate side of the oxygen transport membrane elements and wherein the oxygen transport membrane based reforming system and associated synthesis production process equipment are substantially free of carbon formation and metal dusting corrosion.
    Type: Application
    Filed: November 26, 2013
    Publication date: October 30, 2014
    Inventors: Shrikar Chakravarti, Raymond Francis Drnevich, Kenneth L. Burgers
  • Publication number: 20140319424
    Abstract: A method and system for producing a synthesis gas in an oxygen transport membrane based reforming system is disclosed that carries out a primary reforming process, a secondary reforming process.
    Type: Application
    Filed: November 13, 2013
    Publication date: October 30, 2014
    Inventors: Shrikar Chakravarti, Raymond Francis Dmevich, Minish M. Shah, Ines C. Stuckert
  • Publication number: 20140319425
    Abstract: A method and system for producing a synthesis gas in an oxygen transport membrane based reforming system that utilizes a combined feed stream having a steam to carbon ratio between about 1.6 and 3.0 and a temperature between about 500° C. and 750° C. The combined feed stream is comprised a pre-reformed hydrocarbon feed, superheated steam, and a reaction product stream created by the reaction of a hydrogen containing stream reacted with the permeated oxygen at the permeate side of the oxygen transport membrane elements.
    Type: Application
    Filed: November 26, 2013
    Publication date: October 30, 2014
    Inventors: Shrikar Chakravarti, Raymond Francis Drnevich, Kenneth L. Burgers, Minish M. Shah
  • Publication number: 20140323598
    Abstract: A method and system for producing a synthesis gas in an oxygen transport membrane based reforming system is disclosed that carries out a primary reforming process within a reforming reactor, and a secondary reforming process within an oxygen transport membrane reactor and in the presence of heat generated from a oxygen transport membrane reactor and an auxiliary source of heat. The auxiliary source of heat is disposed within the reactor housing proximate the reforming reactors and may include an auxiliary reactively driven oxygen transport membrane reactor or a ceramic burner.
    Type: Application
    Filed: April 25, 2014
    Publication date: October 30, 2014
    Inventors: Shrikar Chakravarti, Raymond F. Drnevich, Ines C. Stuckert, Minish M. Shah
  • Publication number: 20140306161
    Abstract: A gasifier, including a vertically disposed furnace body, a monitoring unit, and a microwave plasma generating device. The furnace body includes a material and fuel inlet, a syngas outlet, an oxygen/vapor inlet, and a slag outlet. The furnace body has a clearance zone in an upper part thereof and a fixed bed zone in a lower part thereof. The slag outlet is disposed at the bottom of the furnace body. The monitoring unit is disposed close to the syngas outlet. At least one microwave plasma generating device is disposed on the furnace body.
    Type: Application
    Filed: June 25, 2014
    Publication date: October 16, 2014
    Inventors: Yilong CHEN, Yanfeng ZHANG, Minggui XIA, Liang ZHANG
  • Publication number: 20140309102
    Abstract: A hydrotalcite-type compound of the formula (I): [CuxZnyAlw(OH)2](2x+2y+3w?2)+(A2?)(2x+2y+3w?2)/n,kH2O??(I) wherein (A2?) represents either a carbonate anion or a silicate anion, x>0, y>0, w>0, (x+y)=(1?w), 1<[(x+y)/w]<5, and 1/99?x/y?1/1; a synthesis process for its preparation; a catalyst obtained by its calcination and the subsequent reduction of the calcined product.
    Type: Application
    Filed: November 14, 2012
    Publication date: October 16, 2014
    Inventors: Francesco Basile, Guiseppe Brenna, Raphael Faure, Guiseppe Fornasari, Daniel Gary, Angelo Vaccari
  • Publication number: 20140306160
    Abstract: A microwave plasma based entrained flow gasifier of biomass, including a furnace body and a fuel pretreatment system. The furnace body includes a fuel inlet disposed at the lower part of the furnace body, a syngas outlet disposed at the top of the furnace body, and a slag outlet disposed at the bottom of the furnace body. The fuel inlet presents in the form of nozzles. The fuel pretreatment system is disposed outside of the furnace body, and includes a fuel crushing apparatus, a sieving apparatus disposed downstream to the fuel crushing apparatus, a first fuel container for receiving particle size-qualified fuel, a second fuel container for receiving particle size-unqualified fuel, and a feeding hopper disposed downstream to the first fuel container. The first fuel container and the second fuel container are disposed side-by-side downstream to the sieving apparatus.
    Type: Application
    Filed: June 24, 2014
    Publication date: October 16, 2014
    Inventors: Yilong CHEN, Yanfeng ZHANG, Minggui XIA, Liang ZHANG
  • Patent number: 8859823
    Abstract: An improved OXO process with converted waste oil recycle includes: (a) hydroformylating an olefin with synthesis gas in a reactor to produce an OXO product as well as by-product waste oil, the by-product waste oil having a lower or higher boiling temperature than said OXO product; (b) separating OXO product from the by-product waste oil; (c) converting separated waste oil to synthesis gas; and (d) recycling the synthesis gas produced in step (c) to the reactor of step (a).
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: October 14, 2014
    Assignee: Oxea Corporation
    Inventors: Christopher John Bischoff, Chessley Alan Hungerford, Mark Henry Sprow
  • Patent number: 8859453
    Abstract: A metal oxide-supported nickel catalyst includes a matrix containing a metal oxide and catalytic sites distributed throughout the matrix and having an intricate interface with the matrix, in which the catalytic sites are selected from the group consisting of nano-nickel(0) domains and nano-nickel(0)-A(0) alloy domains. Also disclosed are a method for preparing this catalyst and a method for using it to produce carbon monoxide and hydrogen by partial oxidation of a C1-C5 hydrocarbon.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: October 14, 2014
    Assignee: National University of Singapore
    Inventors: Liang Hong, Xiong Yin
  • Publication number: 20140299816
    Abstract: A catalyst for reforming hydrocarbons may include an inorganic oxide and a catalyst metal supported on the inorganic metal oxide. At least a portion of the catalyst metal may be supported in the form of a solid-solution particle. The catalyst metal may include a first metal (selected from cobalt, iron, copper, and manganese); nickel; and magnesium.
    Type: Application
    Filed: February 6, 2014
    Publication date: October 9, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: In Hyuk SON, Seung Jae LEE
  • Publication number: 20140299817
    Abstract: The invention relates to a ligand that may be used to create a catalyst including a coordination complex is formed by the addition of two metals; Cp, Cp* or an unsubstituted or substituted ?-arene; and two coordinating solvent species or solvent molecules. The bimetallic catalyst may be used in the hydrogenation of CO2 to form formic acid and/or salts thereof, and in the dehydrogenation of formic acid and/or salts thereof to form H2 and CO2.
    Type: Application
    Filed: September 12, 2012
    Publication date: October 9, 2014
    Applicant: National Institute of Advanced Industrial Science and Technology (AIST)
    Inventors: Jonathan F. Hull, Yuichiro Himeda, Etsuko Fujita, James T. Muckerman
  • Patent number: 8852457
    Abstract: A method for purification and conditioning of crude syngas based on properties of molten salts, includes removing particles at a high-temperature by enabling the high-temperature crude syngas produced by a gasification device to firstly pass through a high-temperature particle removal device to remove solid particles in the gas; removing hydrocarbons in the presence of oxygen by introducing an oxidant into the crude syngas after treatment, selectively removing the hydrocarbons in the crude syngas and simultaneously utilizing high temperature produced by oxidation of the hydrocarbons to crack tar; and removing gas pollutants and conditioning by introducing the obtained crude syngas into molten salts medium, removing pollutants containing sulfur and chlorine in the crude syngas, and simultaneously adjusting the H2/CO ratio of the syngas to obtain purified syngas.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: October 7, 2014
    Assignee: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
    Inventors: Xiaobo Wang, Zengli Zhao, Haibin Li, Anqi Liu, Hongxiang Wu
  • Patent number: 8852456
    Abstract: The present invention relates to a method for the combined production of hydrogen and carbon dioxide from a hydrocarbon mixture, in which the hydrocarbon mixture is reformed to produce a syngas which is cooled, then enriched with H2 and CO2, optionally dried, and treated in a PSA hydrogen purification unit to produce hydrogen, the PSA offgas being treated to capture the CO2 and to supply an offgas. This offgas is again treated to supply a stream enriched with H2 and CO2 which is returned to the PSA, where it constitutes a second feed distinct from the main feed.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: October 7, 2014
    Assignee: L'air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Solene Valentin, Paul Terrien, Pascal Tromeur
  • Publication number: 20140296586
    Abstract: A feedstock flexible process for converting feedstock into oil and gas includes (i) indirectly heated hydrous devolatilization of volatile feedstock components, (ii) indirectly heated thermochemical conversion of fixed carbon feedstock components, (iii) heat integration and recovery, (iv) vapor and gas pressurization, and (v) vapor and gas clean-up and product recovery. A system and method for feedstock conversion includes a thermochemical reactor integrated with one or more hydrous devolatilization and solids circulation subsystems configured to accept a feedstock mixture, comprised of volatile feedstock components and fixed carbon feedstock components, and continuously produce a volatile reaction product stream therefrom, while simultaneously and continuously capturing, transferring, and converting the fixed carbon feedstock components to syngas.
    Type: Application
    Filed: November 5, 2012
    Publication date: October 2, 2014
    Inventors: Ravi Chandran, Daniel Michael Leo, Shawn Robert Freitas
  • Publication number: 20140291581
    Abstract: The present invention relates to a process for producing a hydrogen containing gas mixture comprising the following steps: (i) providing a preheated mixture comprising a fossil fuel, preferably methane, and steam, (ii) conducting an adiabatic reaction between the fossil fuel and the steam, in the presence of a catalyst, wherein a first reaction product mixture is formed comprising methane, hydrogen and carbon dioxide, and (iii) conducting an oxygen-assisted reforming reaction in the presence of a catalyst between said first reaction product mixture and an oxygen comprising stream, wherein the oxygen comprising stream comprises at least 40 vol % oxygen, forming a second reaction product mixture comprising hydrogen and carbon monoxide. The invention also relates to a system suitable for hydrogen production from a hydrocarbon feed according to the present invention.
    Type: Application
    Filed: July 26, 2012
    Publication date: October 2, 2014
    Applicant: SRANICARBON B.V. ACTING UNDER THE NAME OF MT INNOVATION CENTER
    Inventors: Gaetano Iaquaniello, Emma Palo, Palma Contaldo
  • Publication number: 20140288196
    Abstract: A system and method for increasing the production of Syngas from an SMR (Steam Methane Reforming) processing plant by providing CO2 as an additional feedstock, such as from an exhaust stream of a Corn-to-Ethanol plant, or from a power plant or industrial plant, like a cement plant. The CO2 steam and methane are introduced into the SMR reactor heated to about 870° C. and at about one atmosphere such that a reaction takes place that produces Syngas comprising CO, Hydrogen (H2) and carbon dioxide (CO2). The Syngas is then cleaned and provided to a Fischer-Tropsch synthesis reactor or other Bio-catalytic synthesis reactor to produce Ethanol or other high value liquid fuel.
    Type: Application
    Filed: March 25, 2014
    Publication date: September 25, 2014
    Inventors: Gary C. Young, Eric S. Wagner, John C. Wooley
  • Publication number: 20140284524
    Abstract: A catalyst for reforming hydrocarbons may include a nickel nanoparticle having a controlled crystal facet, the controlled crystal facet being a surface of the nickel nanoparticle and including a {100} face, a {111} face, or a combination thereof. The present disclosure also relates to a production method thereof and a method of reforming hydrocarbons using the same.
    Type: Application
    Filed: March 24, 2014
    Publication date: September 25, 2014
    Applicants: Yonsei University, University - Industry Foundation (UIF), Samsung Electronics Co., Ltd.
    Inventors: Seung Jae LEE, In Hyuk SON, Hyunjoo LEE, Chanyeon KIM
  • Publication number: 20140288195
    Abstract: The invention relates to a novel process for the thermochemical conversion of a carbon-based feedstock to synthesis gas containing predominantly hydrogen (H2) and carbon monoxide (CO). The process comprises (a) oxycombustion of the carbon-based feedstock to create a cogeneration of electricity and of heat; (b) high-temperature electrolysis (HTE) of water using at least the heat produced according to step (a); and (c) reverse water gas shift (RWGS) reaction starting from the carbon dioxide (CO2) produced according to step (a) and the hydrogen (H2) produced according to step (b).
    Type: Application
    Filed: October 31, 2012
    Publication date: September 25, 2014
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Pierre Castelli, Guillaume Boissonnet
  • Publication number: 20140284525
    Abstract: A process for increasing the hydrogen content of a synthesis gas containing one or more sulphur compounds, the synthesis gas including hydrogen, carbon oxides and steam, and having a ratio, R, defined as R=(H2?CO2)/(CO+CO2)?0.6 and a steam to carbon monoxide ratio ?1.8, includes the steps of (i) adjusting the synthesis gas temperature, (ii) passing the temperature-adjusted synthesis gas through an adiabatic pre-shift vessel containing a bed of sulphur-tolerant water-gas shift catalyst at a space velocity ?12,500 hour?1 to form a pre-shifted gas stream, and (iii) subjecting at least a portion of the pre-shifted gas stream to one or more further stages of water-gas shift.
    Type: Application
    Filed: October 10, 2012
    Publication date: September 25, 2014
    Inventors: Peter Edward James Abbott, Gary Bevan Combes, Richard James Beavis
  • Publication number: 20140275678
    Abstract: The gasification of a carbonaceous material includes receiving a volume of feedstock, supplying thermal energy to the volume of feedstock to convert at least a portion of the volume of feedstock to at least one pyrolysis reaction product via at least one pyrolysis reaction, super-heating the at least one pyrolysis reaction product, providing a volume of super-heated steam, mixing the volume of super-heated steam with the super-heated at least one pyrolysis reaction product and converting at least a portion of at least one reformed product to at least one synthesis gas product via at least one water-gas-shift reaction.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Searete LLC
    Inventors: Joshua C. Walter, Samuel Scott Goodrich
  • Publication number: 20140275299
    Abstract: Systems and methods are provided for synthesizing low nitrogen concentration organic liquids from biomass, such as algae, the organic liquids being suitable for refining into fuels and other chemicals. The biomass together with a solvent that is immiscible with water at room temperature are subjected to a subcritical hydrothermal treatment to disrupt cell structure and transform the biomass into a gas phase, a bio-oil phase, an aqueous phase and a solid phase. The aqueous phase contains most of the nitrogen. The resulting multi-phasic mixture can be separated into four phases, including an aqueous phase and the organic liquid which consists of bio-oil dissolved in the solvent. Refined organic liquid can be recycled into the hydrothermal treatment as the solvent. The subcritical hydrothermal treatment can be performed at a generally low temperature and followed by a second hydrothermal treatment at a higher temperature.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: William Brian Bedwell, Matthew Atwood, Jin-Ping Lim, Esperanza Alvarez, Jordi Perez Mariano
  • Publication number: 20140275297
    Abstract: Processes, systems and equipment can be used to convert carbonaceous fuel to an output gas stream that includes CO as a primary C-containing product. In some embodiments, the processes and systems also can produce H2 in a separate reaction, with the H2 advantageously being capable of being combined with the CO from a partial oxidation process to provide syngas which, in turn, can be used to produce fuels and chemicals. The processes and systems can be tuned so as to not produce significant amounts of CO2 and do not require an air separation unit.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Luis G Velazquez-Vargas, Thomas J. Flynn, Bartev B. Sakadjian, Douglas J. DeVault, David L. Kraft
  • Publication number: 20140264178
    Abstract: Process for increasing the hydrogen content of a synthesis gas containing one or more sulphur compounds, the synthesis gas including hydrogen, carbon oxides and steam, and having a ratio defined as R?(H2—C02)/(CO+C02)?0.6 and a steam to carbon monoxide ratio ?1.8, includes the steps of (i) adjusting the temperature of the synthesis gas; (ii) passing at least a portion of the heated synthesis gas adiabatically through a first bed of sulphur-tolerant water-gas shift catalyst disposed in a first shift vessel at a space velocity ?12,500 hour?1 to form a pre-shifted gas stream; and (iii) forming a shifted gas stream by subjecting at least a portion of the pre-shifted gas stream to a second stage of water-gas shift in a second shift vessel containing a second bed of sulphur-tolerant water-gas shift catalyst that is cooled in heat exchange with a gas stream including the synthesis gas.
    Type: Application
    Filed: October 10, 2012
    Publication date: September 18, 2014
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Peter Edward James Abbott, Gary Bevan Combes, Richard James Beavis
  • Publication number: 20140275298
    Abstract: Systems and methods for fabricating syngas mixtures or fuels are disclosed. A system may include parallel processing chambers, each processing chamber configured to produce one component of a syngas mixture. Each chamber may include at least one plasma torch having a source of a working gas. In one embodiment, a first processing chamber may be optimized to produce hydrogen gas, and a second processing chamber may be optimized to produce carbon monoxide gas. The system may include a mixing component configured to mix the hydrogen gas and the carbon monoxide gas. The system may also include a reaction system to receive the hydrogen gas and the carbon monoxide gas and produce a fuel therefrom. The parallel processing chamber system may be used in methods for producing a syngas mixture or a fuel.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: Powerdyne, Inc.
    Inventors: Geoffrey Hirson, Gus F. Shouse
  • Publication number: 20140264177
    Abstract: Processes that generate syngas or reformed gas that have the desired H2/CO ratio, such that they can be used directly for producing higher value liquids, such as using a FT GTL process. The systems and methods of the present invention are simpler and more cost effective than conventional systems and methods. The systems and methods of the present invention generate the required CO2 in a reforming furnace by combusting natural gas with a mixture of O2 from an external source and CO2 that is recirculated from a reforming furnace. A second application of the natural gas combustion with external O2 mixed with recirculated CO2 in the reformer burners can be utilized in a DR process. The reformed gas or syngas containing H2 and CO is used to reduce iron oxide to metallic iron in a shaft furnace, for example.
    Type: Application
    Filed: March 3, 2014
    Publication date: September 18, 2014
    Applicant: MIDREX TECHNOLOGIES, INC.
    Inventors: David C. MEISSNER, Matthew C. STUBBING, Gary E. METIUS